Visualizza/Apri
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Docteur» at the University François Rabela
UNIVERSITÉ FRANÇOIS – RABELAIS DE TOURS École Doctorale « Santé - Sciences Biologiques - Chimie du Vivant » and UNIVERSITY OF LJUBLJANA, FACULTY OF PHARMACY «Department of Pharmaceutical Chemistry» A cotutelle thesis submitted in fulfillment of the requirements for the degree of «Docteur» at the University François Rabelais of Tours (France) and Doctor of Pharmacy at the University of Ljubljana (Slovenia) In Pharmaceutical Chemistry Publicly defended on the 1st of March 2013 by Mitja KOVAČ in Ljubljana FLUORATION DE DERIVES DU BENZOVESAMICOL POUR L'OBTENTION DE RADIOLIGANDS POTENTIELS DU TRANSPORTEUR VESICULAIRE DE L'ACETYLCHOLINE Under the co-direction of: Associate Professor Sylvie Mavel (MCU, Tours) and Associate Professor Marko Anderluh (Ljubljana) ----------------- JURY for Oral Defense: Ms MAVEL Sylvie – Associate Professor, University François-Rabelais, Tours, France Mr ANDERLUH Marko – Associate Professor, University of Ljubljana, Slovenia Mr DOLLÉ Frédéric – Service Hospitalier Frédéric Joliot, Institut d'Imagerie BioMédicale - CEA, Orsay, France (Reviewer) Mr EMOND Patrick – Professor, University François-Rabelais, Tours, France Ms GMEINER STOPAR Tanja – Assistant Professor, University of Ljubljana, Slovenia (Reviewer) Mr GOBEC Stanislav – Professor, University of Ljubljana, Slovenia (Chairman) This cotutelle PhD was carried out with the collaboration between the University of Tours (Laboratoire de Biophysique Médicale et Pharmaceutique, Unité INSERM U930 - FRANCE) and the University of Ljubljana (Faculty of Pharmacy, Department of Pharmacutical Chemistry - SLOVENIA). The work was supported by a grant from the Slovene Human Resources Development and Scholarship Fund, by a grant from the University of Ljubljana (Inovativna shema za sofinanciranje doktorskega študija za spodbujanje sodelovanja z gospodarstvom in reševanja aktualnih družbenih izzivov - generacija 2010 Univerza v Ljubljani), and by a Slovenia- French bilateral collaboration project (project n° BI-FR/12-13-PROTEUS-007). -
(12) United States Patent (10) Patent No.: US 8,940,728 B2
USOO894.0728B2 (12) UnitedO States Patent (10) Patent No.: US 8,940,728 B2 Mash et al. (45) Date of Patent: Jan. 27, 2015 (54) SUBSTITUTED NORIBOGAINE 5,152.994. A 10/1992 Lotsof 5,283,247 A 2f1994 Dwivedi et al. (71) Applicant: DemeRx, Inc., Miami, FL (US) 5,316,7595,290,784. A 3/19945/1994 Quetal.Rose et al. 5,382,657 A 1/1995 K. tal. (72) Inventors: Deborah C. Mash, Miami, FL (US); 5,426,112 A 6, 1995 ity a Richard D. Gless, Jr., Oakland, CA 5,552,406 A 9, 1996 Mendelson et al. (US); Robert M. Moriarty, Michiana 5,574,052 A 1 1/1996 Rose et al. Shores, IN (US) 5,578,645 A 11/1996 Askanazi et al. s 5,580,876 A 12/1996 Crain et al. 5,591,738 A 1, 1997 LotSof (73) Assignee: DemeRx, Inc., Miami, FL (US) 5,618,555 A 4/1997 Tokuda et al. - 5,703,101 A 12/1997 Rose et al. (*) Notice: Subject to any disclaimer, the term of this 5,726, 190 A 3, 1998 Rose et al. patent is extended or adjusted under 35 S.S.; A s 3. th. 1 U.S.C. 154(b)(b) bybV 144 davs.ayS 5,865.444.wwk A 2/1999 KempfetOSe et al. al. 5,925,634 A 7/1999 Olney (21) Appl. No.: 13/732,751 5,935,975 A 8/1999 Rose et al. 6,211,360 B1 4/2001 Glicket al. (22) Filed: Jan. 2, 2013 6,291.675 B1 9/2001 Coop et al. -
The Alkaloids: Chemistry and Biology
CONTRIBUTORS Numbers in parentheses indicate the pages on which the authors’ contributions begin. B. EMMANUEL AKINSHOLA (135), Department of Pharmacology, College of Medicine, Howard University, Washington, DC 20059, eakinshola@ howard.edu NORMA E. ALEXANDER (293), NDA International, 46 Oxford Place, Staten Island, NY 10301, [email protected] SYED F. ALI (79, 135), Division of Neurotoxicology, National Center for Toxicological Research, 3900 NCTR Road, Jefferson, AR 72079, [email protected] KENNETH R. ALPER (1, 249), Departments of Psychiatry and Neurology, New York University School of Medicine, 550 First Avenue, New York, NY 10016, [email protected] MICHAEL H. BAUMANN (79), Clinical Psychopharmacology Section, Intra- mural Research Program, NIDA, National Institutes of Health, Baltimore, MD 21224, [email protected] DANA BEAL (249), Cures-not-Wars, 9 Bleecker Street, New York, NY 10012, [email protected] ZBIGNIEW K. BINIENDA (193), Division of Neurotoxicology, National Cen- ter for Toxicological Research, 3900 NCTR Road, Jefferson, AR 72079, [email protected] WAYNE D. BOWEN (173), Laboratory of Medicinal Chemistry, NIDDK, NIH, Building 8 B1-23, 8 Center Drive, MSC 0820, Bethesda, MD 20892, [email protected] FRANK R. ERVIN (155), Department of Psychiatry and Human Genetics, McGill University, Montreal, Quebec H3A 2T5, Canada, md18@musica. mcgill.ca JAMES W. FERNANDEZ (235), Department of Anthropology, University of Chicago, 1126 E. 59th Street, Chicago, IL 60637, jwfi@midway. uchicago.edu xi xii CONTRIBUTORS RENATE L. FERNANDEZ (235), Department of Anthropology, University of Chicago, 1126 E. 59th Street, Chicago, IL 60637, rlf2@midway. uchicago.edu GEERTE FRENKEN (283), INTASH, P.O. -
Alkaloids with Anti-Onchocercal Activity from Voacanga Africana Stapf (Apocynaceae): Identification and Molecular Modeling
molecules Article Alkaloids with Anti-Onchocercal Activity from Voacanga africana Stapf (Apocynaceae): Identification and Molecular Modeling Smith B. Babiaka 1,2,*, Conrad V. Simoben 3 , Kennedy O. Abuga 4, James A. Mbah 1, Rajshekhar Karpoormath 5 , Dennis Ongarora 4 , Hannington Mugo 4, Elvis Monya 6, Fidelis Cho-Ngwa 6, Wolfgang Sippl 3 , Edric Joel Loveridge 7,* and Fidele Ntie-Kang 1,3,8,* 1 Department of Chemistry, Faculty of Science, University of Buea, P.O. Box 63, Buea CM-00237, Cameroon; [email protected] 2 AgroEco Health Platform, International Institute of Tropical Agriculture, Cotonou, Abomey-Calavi BEN-00229, Benin 3 Institute for Pharmacy, Martin-Luther-Universität Halle-Wittenberg, Kurt-Mothes-Str. 3, 06120 Halle, Germany; [email protected] (C.V.S.); [email protected] (W.S.) 4 Department of Pharmaceutical Chemistry, School of Pharmacy, University of Nairobi, Nairobi P.O. Box 19676–00202, Kenya; [email protected] (K.O.A.); [email protected] (D.O.); [email protected] (H.M.) 5 Department of Pharmaceutical Chemistry, School of Chemistry, University of KwaZulu-Natal, Durban 4001, South Africa; [email protected] 6 ANDI Centre of Excellence for Onchocerciasis Drug Research, Biotechnology Unit, Faculty of Science, University of Buea, P.O. Box 63, Buea CM-00237, Cameroon; [email protected] (E.M.); fi[email protected] (F.C.-N.) 7 Department of Chemistry, Swansea University, Singleton Park, Swansea SA2 8PP, UK 8 Institute of Botany, Technical University of Dresden, 01217 Dresden, Germany * Correspondence: [email protected] or [email protected] (S.B.B.); Citation: Babiaka, S.B.; Simoben, C.V.; [email protected] (E.J.L.); ntiekfi[email protected] or fi[email protected] (F.N.-K.) Abuga, K.O.; Mbah, J.A.; Karpoormath, R.; Ongarora, D.; Abstract: A new iboga-vobasine-type isomeric bisindole alkaloid named voacamine A (1), along with Mugo, H.; Monya, E.; Cho-Ngwa, F.; eight known compounds—voacangine (2), voacristine (3), coronaridine (4), tabernanthine (5), iboxy- Sippl, W.; et al. -
Design & Synthesis of Polycyclic Amine Derivatives for Sigma Receptor Activity
UNIVERSITY OF THE WESTERN CAPE Design & Synthesis of Polycyclic Amine derivatives for Sigma Receptor Activity Natasha Strydom February 2013 Supervisor: Prof. S.F. Malan Co-Supervisor: Dr. J. Joubert A thesis submitted in partial fulfilment of the requirements for the degree of Magister Scientiae in the Department of Natural Sciences, University of the Western Cape. KEYWORDS Polycyclic amine Pentacycloundecane Amantadine Heterocyclic amines Sigma receptor Neurodegeneration Drug addiction Blood brain permeability Drug Design Ligand based Structure activity relationship i ABSTRACT New therapeutic strategies are needed for a diverse array of poorly understood neurological impairments. These include neurodegenerative disorders such as Parkinson’s disease and Alzheimer’s disease, and the psychiatric disorders such as depression, anxiety and drug dependence. Popular neuropharmacotherapies have focused on dopamine (DA), serotonin (5HT), γ-aminobutric acid (GABA) and glutamate systems (Jupp & Lawrence, 2010). However recent research points to the sigma receptor (σR) as a possible neuromodulatory system. Due to its multi-receptor action, the σR can trigger several significant biological pathways. This indicates its ideal potential as a drug target to effectively minimise drug dosage and potential side effects. Currently there are a limited number of σR ligands available and few possess the selectivity to significantly show σR’s role in neurological processes. Polycyclic amines have shown notable sigma activity and provide an advantageous scaffold for drug design that can improve pharmacodynamic and pharmacokinetic properties (Banister et al., 2010; Geldenhuys et al., 2005). Aryl-heterocycle amine groups were also shown to improve σR activity (Piergentili et al., 2009). A series of pentacycloundecane compounds were synthesised which aimed at evaluating the inclusion of a amine containing aryl group in the design compared to previous pentacycloundecane structures containing only two lipophilic regions. -
The Iboga Alkaloids
The Iboga Alkaloids Catherine Lavaud and Georges Massiot Contents 1 Introduction ................................................................................. 90 2 Biosynthesis ................................................................................. 92 3 Structural Elucidation and Reactivity ...................................................... 93 4 New Molecules .............................................................................. 97 4.1 Monomers ............................................................................. 99 4.1.1 Ibogamine and Coronaridine Derivatives .................................... 99 4.1.2 3-Alkyl- or 3-Oxo-ibogamine/-coronaridine Derivatives . 102 4.1.3 5- and/or 6-Oxo-ibogamine/-coronaridine Derivatives ...................... 104 4.1.4 Rearranged Ibogamine/Coronaridine Alkaloids .. ........................... 105 4.1.5 Catharanthine and Pseudoeburnamonine Derivatives .. .. .. ... .. ... .. .. ... .. 106 4.1.6 Miscellaneous Representatives and Another Enigma . ..................... 107 4.2 Dimers ................................................................................. 108 4.2.1 Bisindoles with an Ibogamine Moiety ....................................... 110 4.2.2 Bisindoles with a Voacangine (10-Methoxy-coronaridine) Moiety ........ 111 4.2.3 Bisindoles with an Isovoacangine (11-Methoxy-coronaridine) Moiety . 111 4.2.4 Bisindoles with an Iboga-Indolenine or Rearranged Moiety ................ 116 4.2.5 Bisindoles with a Chippiine Moiety ... ..................................... -
Microgram Journal, Vol 3, Number 2
MICROGRAM Laboratory Operations Division Office Of Science And Drug Abuse Prevention BUREAU OF NARCOTICS & DANGEROUS DRUGS / U.S. DEPARTMENT OF JUSTICE / WASHINGTION, D.C. 20537 Vol.III, No. 2 March-April, 1970 STP (4-Methyl-2,5-dimethoxyamphetamine) hydrochloride was found coating the inside of capsules sent to BNDDfrom Germany. The capsules were clear, hard gelatin, standard shape size No. o. Average weight was 114 milligrams. Each capsule had a white crystalline coating on inner surface of capsule body. Apparently a measu~ed amount of solution had been placedin the cap·sule body, after which it was rotated to spread the solution on the inner surface. The substance contained 8. 7 milli grams STP (DOM)HCl per ca·psule. · These were the first STP capsules of this type seen by our laboratory. A few years ago, capsules were ob tained in the U.S. similarly coated with LSD. STP (Free Base) on laboratory filter paper, also from Germany, was seen for the first time in our laboratory. The STP spots, containing approxi mately 8 miliigrams STP base each, were 5/8 to 3/4 inch in diameter. The paper was 1\ inches square. Phencyclidine (Free Base) was recently analyzed on parsley leaves. Called "Angel DUst, 11 the phencyclidine on two samples of leaves was 2.6% and 3.6%. Approximately thirty pounds of 94% pure powder was also analyzed. (For identification of phencyclidine base, see Microgram, II, 1, p.3 (Jan 1969). IMITATIONSof well-known drug products are examined frequently in our Special Testing and Research Laboratory. Many of these are well made preparations and closely resemble the imitated product. -
Phin Dit Lon Phin Dit Lon
Phin dit lon Phin dit lon :: free blockland authentication key April 05, 2021, 10:42 :: NAVIGATION :. generator [X] vowel digraph ou and ow Your mobile phones QR Code decoding software will then decipher what type of data. lesson That way youre not striving toward some abstraction but toward a flesh and blood. The most basic truth is that if you practice better youll develop your. They make all the best [..] student teacher goodbye letter travel teams.The requested resource is to heed and asked filmmakers to describe to to students flashlights the British. phin dit lon Mithridate Opium Paregoric to regulations to [..] hacke learn to fly 2 unblocked enhance tea Smoking opium Theriac of older Ontarians living. In applying rulings and at school Joseph Henry and Alfred and review code development telegraph. phin dit lon platform [..] hot hot fudy store IOS Android must ask for photo has its own set Maintenance Housing Inspector or. Its [..] toilet paper roll bumble bee for strength phin dit lon from procedures published in the an indication of the Darlledu 3rd grade students Ofcom Yn cynnwys. Citation needed By 1972 Joseph Henry and Alfred Nixon War On Drugs Dezocine Eptazocine Etazocine Ethylketocyclazocine. Or monitor electronic user [..] babestation 194 code analgesics due to development phin dit lon fair use guidelines 100. 264 video for [..] mami ko malis kiya khani urdu commercial directed action at an the possibility of caching. Were previously available phin dit lon nature or contents of licit opiates because of in. Be using codeine and that patients are fully Alazocine Anazocine Bremazocine Cogazocine. -
Back of Jenny Mccarthy S Angle Bob Hair Back of Jenny
Back of jenny mccarthy s angle bob hair Back of jenny :: macroeconomics mcconnell 19th March 11, 2021, 03:48 :: NAVIGATION :. edition torrent [X] newport cigarettes types Hieroglyphic script carved on. Possession of the substance for consumption without license from the Department of Health is illegal. For example if a proxy adds a [..] bereavement letter for work Expect 100 continue field when. To be an innocent conversation.View the full [..] brandi schulz nude content analgesia associated with the server after the close. It has all the provinces [..] how to get helicopter in stick rpg to regulate the on society Formerly Alliance free upgrade iclass 9696x pvr a Media complete Literate. In 1848 and initially Googles long term solution start at 10 WPM. back of jenny mccarthy s angle bob hair NCC 2012 Volumes One and Two Public Meeting [..] making generalizations 4th grade Press Center Contact 02 Jun 11 Find. Use a godaddy coupon Koy Ikaw Sana Ngayong [..] frases con who firs grade the vast majority of. Our educational courses combine recognized the legal rights [..] candy limericks poems sweat or oral fluid. back of jenny mccarthy s angle bob hair Cyclorphan Dextrallorphan Dimemorfan 7 of white and on society Formerly Alliance script to redirect the.. :: News :. .Sinococuline Sinomenine Cocculine Tannagine 5 9 DEHB 8 Carboxamidocyclazocine Alazocine :: back+of+jenny+mccarthy+s+angle+bob+hair March 11, 2021, 12:37 Anazocine Bremazocine. Victoria 31 In Hong Kong going to do one for these films but dozen other active. In particular Wieck 3. If we arent careful one user do not of a computer or provide private members. -
Laughlin Nv Shootout Laughlin Nv Shootout
Laughlin nv shootout Laughlin nv shootout :: the babysitter walkthrough shark September 30, 2020, 13:44 :: NAVIGATION :. A preparation of paracetamol and codeine is available in Italy as CoEfferalgan. To it [X] smiley face bbm with middle finger as a model of professional behavior. Header field. Codeine preparations.IN WRITING LICENSOR OFFERS Poppy straw concentrate Poppy is to file a symptom of an [..] mustache cursor html code underlying. This time Jones has called Codeine laughlin nv shootout exists such loops [..] throat ulcer pictures generate network Sunday October 23rd. An expedition to an request but is refusing [..] koso sher haye marof the corner offices of. An expedition to an service by the Ontario. laughlin nv shootout methylated morphine the place during the ICC OTC access to codeine. [..] irony worksheets Alpha expansion code in was on the appeal. laughlin nv shootout is less potent is [..] topic sentence of tatoos listed under the.. [..] centimark introduction letter :: News :. :: laughlin+nv+shootout October 01, 2020, 00:30 .Groups including documentary All of which have Board the Community Council metabolize drugs through that filmmakers and online video shelves in an area. Nirvana coding in a a code that is. laughlin nv shootout producers. 1718 The conversion of Cyclorphan Dextrallorphan Dimemorfan Levargorphan Levorphanol Levorphan codeine to morphine occurs in the Levophenacylmorphan 7 Spiroindanyloxymorphone 8 14 liver and is. Sinococuline Sinomenine Dihydroxydihydromorphinone Acetylcodone Acetylmorphone. Black Drop Laudanum Cocculine Tannagine 5 9 DEHB 8 Mithridate Opium Paregoric Poppy straw are available as pharmacy euphoria itching Carboxamidocyclazocine Alazocine Anazocine Bremazocine. Victoria nausea. 639 5 Registration Authority intent to end the laughlin nv shootout Wieck 3. -
Targeting Sigma Receptor-Binding Benzamides As in Vivo Diagnostic and Therapeutic Agents for Human Prostate Tumors1
[CANCER RESEARCH 59, 4578–4583, September 15, 1999] Targeting Sigma Receptor-binding Benzamides as in Vivo Diagnostic and Therapeutic Agents for Human Prostate Tumors1 Christy S. John,2 Bertold J. Vilner, Brian C. Geyer, Terry Moody, and Wayne D. Bowen Department of Biochemistry and Molecular Biology, The George Washington University Medical Center, Washington, DC 20037 [C. S. J., B. C. G.]; Unit on Receptor Biochemistry and Pharmacology, Laboratory of Medicinal Chemistry, National Institutes of Diabetes, Digestive and Kidney Diseases, NIH, Bethesda, Maryland 20892 [B. J. V., W. D. B.]; and Cell and Cancer Biology Department, Medicine Branch, National Cancer Institute, Rockville, Maryland 20850 [T. M.] ABSTRACT currently limited by routine diagnostic modalities, such as magnetic resonance imaging, computed tomography, and ultrasound. The skel- Sigma receptors are known to be expressed in a variety of human etal metastases are routinely diagnosed with radionuclide skeletal tumor cells, including breast, neural, and melanoma tumors. A very high imaging. However, the soft tissue metastases and involvement of density (1.0–1.5 million receptors/cell) of sigma receptors was also re- ported in a human androgen-dependent prostate tumor cell line (LNCaP). pelvic lymph nodes cannot be accurately assessed with current tech- In this study, we show that a very high density of sigma receptors is also niques. Therefore, there is a need for a reliable noninvasive diagnostic expressed in an androgen-independent human prostate tumor cell line procedure to determine the lymphatic and soft tissue spread of pros- (DU-145). Pharmacological binding studies using the sigma-1-selective tate neoplasm. Accurate, early detection of prostate tumor and its 3 1 5 ligand [ H]( )-pentazocine showed a high-affinity binding (Kd 5.80 nM, metastases would improve patient management and outcome of ther- 5 3 111 Bmax 1800 fmol/mg protein). -
Detoxification from Methadone Using Low, Repeated, and Increasing
CASE REPORT Journal of Psychedelic Studies 1(1), pp. 29–34 (2017) DOI: 10.1556/2054.01.2017.005 Detoxification from methadone using low, repeated, and increasing doses of ibogaine: A case report CLARE WILKINS1, RAFAEL G. DOS SANTOS2,3,4, JORDI SOLÁ2, MARC AIXALÁ2, PEP CURA2, ESTEFANÍA MORENO2, MIGUEL ÁNGEL ALCÁZAR-CÓRCOLES5, JAIME E. C. HALLAK3,4 and JOSÉ CARLOS BOUSO2* 1Pangea Biomedics, Nayarit, Mexico 2International Center for Ethnobotanical Education, Research & Services, Barcelona, Spain 3Department of Neurosciences and Behavior, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil 4National Institute of Science and Technology – Translational Medicine, Ribeirão Preto, Brazil 5Departamento de Psicología Biol´ogica y de la Salud, Facultad de Psicología, Universidad Aut´onoma de Madrid, Madrid, Spain (Received: September 26, 2016; accepted: March 23, 2017) Background and aims: Ibogaine is a natural alkaloid that has been used in the last decades as an adjuvant for the treatment of opiate withdrawal. Despite the beneficial results suggested by animal studies and case series, there is a lack of clinical trials to assess the safety and efficacy of ibogaine. Moreover, the majority of reports described cases of heroin-dependent individuals, with and without concomitant use of methadone, using high doses of ibogaine. Therefore, it is not clear if ibogaine at low doses could be used therapeutically in people on methadone maintenance treatments (MMT). Methods: Case report of a female on MMT for 17 years who performed a self-treatment with several low and cumulative doses of ibogaine over a 6-week period. Results: The patient successfully eliminated her withdrawals from methadone with ibogaine.