Haemophilus-Pasteurella Group

Total Page:16

File Type:pdf, Size:1020Kb

Haemophilus-Pasteurella Group INTERNATIONALJOURNAL OF SYSTEMATICBACTERIOLOGY, Jan. 1992, p. 12-18 Vol. 42, No. 1 0020-7713/921010012-07$02.OO/O Copyright 0 1992, International Union of Microbiological Societies Application of Multivariate Analyses of Enzymic Data to Classification of Members of the Actinobacillus- Haemophilus-Pasteurella Group VESLEMJbY MYHRVOLD,' ILIA BRONDZ,2t AND INGAR OLSEN'" Department of Microbiology, Dental Faculty, University of Oslo, Oslo, Norway,' and Research Department, National Institute of Occupational Health, UmeB, Sweden2 Outer membrane vesicles and fragments from Actinobacillus actinomycetemcomitans, Actinobacillus lignier- esii, Actinobacillus ureae, Haemophilus aphrophilus, Haemophilus paraphrophilus, Haemophilus influenzae, Haemophilus parainfluenzae, Pasteurella haemolytica, and Pasteurella multocida were isolated and examined semiquantitatively for 19 enzyme activities by using the API ZYM micromethod. The enzyme contents of vesicles and fragments were compared with the enzyme contents of whole cells of the same organisms. Enzymic data were analyzed by using principal-componentanalysis and soft independent modeling of class analogy. This technique allowed us to distinguish among the closely related organisms A. actinomycetemcomitans, H. aphro- philus, and H. paraphrophiius. A. actinomycetemcomitans was divided into two groups of strains. A. lignieresii fell outside or on the border of the A. actinobacillus class. A. ureae, H. injluenzae, H. parainjluenzae, P. haemolytica, and P. multocida fell outside the A. actinomycetemcomitans, H. aphrophilus, and H. paraphro- philus classes. Organisms belonging to the Actinobacillus-Haemophilus- The enzymic characterization data were treated statisti- Pasteurella group, which constitute the family Pasteurel- cally by using multivariate analyses. We have previously laceae, have assumed increasing clinical importance in med- used such methods as auxiliary techniques to define the icine and dentistry over the last few years (see references 30, following bacterial and yeast genera: Actinobacillus, Hae- 34, 38, 39). Unfortunately, generic separation in this family mophilus, and Pasteurella (6, 11); Porphyromonas (3, 8, 9); has been questioned, and with conventional biochemical Prevotella, Bacteroides, Campylobacter, and Wolinella (2, tests it can be difficult to distinguish among the sometimes 8, 9); Treponema (4); and Candida, Torulopsis, and Saccha- confusingly similar species of these genera. This particularly romyces (7, 10). applies to Actinobacillus (Haemophilus) actinomycetem- comitans, Haemophilus aphrophilus, and Haemophilus para- MATERIALS AND METHODS phrophilus. Therefore, additional criteria should be sought to assist in the taxonomic separation of organisms belonging Bacteria. The bacterial species and strains which we used to the Actinobacillus-Haemophilus-Pasteurellagroup. and their sources are shown in Table 1. The organisms were Like a number of other gram-negative rod-shaped bacte- cultured in an atmosphere containing 80% N,, 10% H,, and ria, organisms belonging to the genera Actinobacillus, Hae- 10% CO, at 37°C for 3 days. Each cell culture was divided mophilus, and Pasteurella form budding extrusions (exten- into two parts; one part was used for isolation of vesicles and sions of the outer membrane) which can be either attached to fragments that were assessed enzymically, and the other part the bacterial cell surface or released to the environment was used for enzymic assessment of whole cells. In order to during growth (16, 19, 23, 25, 35). These structures are remove vesicles and fragments attached to whole-cell sur- referred to below as outer membrane vesicles or outer faces, a light ultrasonic treatment was performed before membrane fragments. They serve as vehicles for toxins and enzymic registration. enzymes (for a review, see reference 24), and their small Collection of outer membrane vesicles and fragments. The sizes (21 to 500 nm) permit them to cross epithelial barriers outer membrane vesicles and fragments were obtained after that are impermeable to whole cells. ammonium sulfate precipitation, differential centrifugation, The aim of this study was to examine whether the enzymic and dialysis (14). Briefly, cells from 0.5 liter of a 3-day contents of vesicles and fragments and the enzymic contents culture of bacteria were collected by centrifugation at 10,000 of whole cells, as determined by using the API ZYM X g for 15 min. Then, over a period of 2 h, 120 g of micromethod, can be used for taxonomic distinction among ammonium sulfate (May & Baker, Ltd., Dagenham, En- members of the Actinobacillus-Haemophilus-Pasteurella gland) was added to the culture supernatant (40% satura- group. Previously, the API ZYM method has been used to tion). After a second centrifugation at 20,000 x g for 40 min, distinguish whole cells of A. actinomycetemcomitans, Acti- the resulting pellet was suspended in 15.0 ml of 50 mM Tris nobacillus lignieresii, and H. aphrophilus (29). Another buffer (pH 9.5) containing 0.5 mM dithiothreitol (Sigma purpose of this study was to determine whether the enzyme Chemical Co., St. Louis, Mo.). This suspension was dia- contents of vesicles and fragments differed from the enzyme lyzed for 16 h at 4°C against 3 liters of the same buffer. The contents of whole cells within the same species. vesicles and fragments obtained were then collected by centrifugation at 27,000 x g for 40 min and resuspended in 5 ml of 50 mM Tris buffer (pH 7.2) containing 0.5 mM * Corresponding author. dithiothreitol. After a final centrifugation at 27,000 x g for 40 ? Present address: Department of Microbiology, Dental Faculty, min, the vesicles and fragments were resuspended in 1.0 ml University of Oslo, Oslo, Norway. of Tris buffer (pH 7.2) and kept at -20°C. The method 12 VOL.42, 1992 API ZYM PROFILES OF PASTEURELLACEAE 13 TABLE 1. Origins and sources of the strains of the incubated, and read according to the manufacturer’s direc- Actinobacillus-Haemophilus-Pasteurellagroup investigated tions. The enzymic tests were carried out aerobically after Strain Sample Site of isolation Sourcea inoculation with 65 r~.lof vesicles and fragments or whole bacterial cells emulsified in 2 ml of sterile, distilled water to A. actinomycetemcomitans a turbidity between McFarland no. 5 and 6 standards. All FDC Y4 1 Periodontitis FDC tests were performed three times by using material collected SUNY 75 2 Dental plaque SUNY from cultures obtained on different days. BK435 3 Pus Kilian Statistical analyses. The statistical analyses were based on FDC 511 4 Periodontitis FDC FDC 2097 5 Periodontitis FDC mean scores from three experiments. In this study the FDC 2112 6 Periodontitis FDC following two multivariate approaches were used: principal- ATCC 29523 7 Blood ATCC component analysis (18, 37) and soft independent modeling ATCC 29524 8 Chest aspirate ATCC of class analogy (SIMCA) (36). In the principal-component ATCC 33384T 9 Lung abscess ATCC method the original space for variable measurements is A. lignieresii projected down onto two low-dimension subspaces. One of ATCC 19393 17 Bovine lesion ATCC these is sample related, and the other is variable related. NCTC 4189T 25 Glands, cattle NCTC This projection also decides which of the variables contrib- A. ureae KWF 3520/59= 24 Ozaena KWF utes most to the sample-related projection. The complexity H. aphrophilus FDC 621 10 Periodontitis FDC of both models was determined by cross-validation (36, 37). FDC 626 11 Periodontitis FDC The approximate class borders for the SIMCA analysis were FDC 654 12 Periodontitis FDC constructed by using an F test. FDC 655 13 Periodontitis FDC ATCC 13252 14 ATCC ATCC 19415 15 Endocarditis ATCC ATCC 33389= 16 Endocarditis ATCC RESULTS H. paraphrophilus API ZYM data. The vesicles and fragments and the whole KWF IMoAI 27 Cerebellar abscess KWF bacterial cells obtained from 33 bacterial strains and as- KWF IIMoAI 28 Cerebellar abscess KWF KWFIIIRA43 29 Sputum KWF sessed in three independent experiments by using cultures H76 30 Oral cavity Sims produced on different days were negative for the following HK477 31 Dental plaque Kilian enzyme activities: lipase, trypsin, chymotrypsin, a-galac- ATCC 29240 32 Parietal abscess ATCC tosidase, P-galactosidase, P-glucuronidase, P-glucosidase, ATCC 29241T 33 Paronychia ATCC N-acetyl-P-glucosaminidase, a-mannosidase, and a-fucosi- H. infiuenzae dase. The results of the enzymic reactions for the bacterial ATCC 31441 21 Clinical isolate ATCC strains in the tests for the nine remaining enzymes are shown ATCC 33533 22 Blood ATCC in Table 2 (vesicles and fragments) and in Table 3 (whole ATCC 8143T 26 NCTC cells). H. aphrophilus and H. paraphrophilus produced H. parainfiuenzae NCTC 4101 19 Human tongue NCTC a-glucosidase, while A. actinomycetemcomitans, A. lignier- ATCC 7901 20 ATCC esii, Actinobacillus ureae, Haemophilus influenzae, Pas- P. haemolytica NCTC 9380T 23 NCTC teurella haemolytica, and Pasteurella multocida did not. P. multocida NCTC 10322T 18 NCTC Minor differences were occasionally found between the enzymic profiles of vesicles and fragments and the enzymic a ATCC, American Type Culture Collection, Rockville, Md.; NCTC, profiles of whole cells for specific organisms. In such cases National Collection of Type Cultures, London, England; FDC, Forsyth Dental Center, Boston, Mass.; SUNY, State University of New York at the activity tended to be highest in the whole-cell prepara- Buffalo, Buffalo, New York; Kilian, M. Kilian, Royal Dental College, Aarhus, tions. This was particularly
Recommended publications
  • Redalyc.Establishment of a Pathogenicity Index for One-Day-Old
    Revista Brasileira de Ciência Avícola ISSN: 1516-635X [email protected] Fundação APINCO de Ciência e Tecnologia Avícolas Brasil Pilatti, RM; Furian, TQ; Lima, DA; Finkler, F; Brito, BG; Salle, CTP; Moraes, HLS Establishment of a Pathogenicity Index for One-day-old Broilers to Pasteurella multocida Strains Isolated from Clinical Cases in Poultry and Swine Revista Brasileira de Ciência Avícola, vol. 18, núm. 2, abril-junio, 2016, pp. 255-260 Fundação APINCO de Ciência e Tecnologia Avícolas Campinas, Brasil Available in: http://www.redalyc.org/articulo.oa?id=179746750008 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Brazilian Journal of Poultry Science Revista Brasileira de Ciência Avícola Establishment of a Pathogenicity Index for One-day- ISSN 1516-635X May - Jun 2016 / v.18 / n.2 / 255-260 old Broilers to Pasteurella multocida Strains Isolated http://dx.doi.org/10.1590/1806-9061-2015-0089 from Clinical Cases in Poultry and Swine Author(s) ABSTracT Pilatti RMI Although Pasteurella multocida is a member of the respiratory Furian TQI microbiota, under some circumstances, it is a primary agent of diseases Lima DAI , such as fowl cholera (FC), that cause significant economic losses. Finkler FII Brito BGII Experimental inoculations can be employed to evaluate the pathogenicity Salle CTPI of strains, but the results are usually subjective and knowledge on the Moraes HLSI pathogenesis of this agent is still limited.
    [Show full text]
  • ﺑﺴﻢ اﷲ اﻟﺮﺣﻤﻦ اﻟﺮﺣﻴﻢ Molecular Characterization Of
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by KhartoumSpace ﺑﺴﻢ اﷲ اﻟﺮﺣﻤﻦ اﻟﺮﺣﻴﻢ Molecular Characterization of Pasteurella multocida Vaccine Strains By: Hajir Badawi Mohammed Ahmed B.V.M Khartoum University (2006) Supervisor: Dr. Awad A. Ibrahim A dissertation submitted to the University of Khartoum in partial fulfillment of the requirements for the degree of M. Sc. in Microbiology Department of Microbiology, Faculty of Veterinary Medicine, University of Khartoum June, 2010 Dedication To my mother Father Brother, sister and friends With great love Acknowledgments First and foremost, I would like to thank my Merciful Allah, the most beneficent for giving me strength and health to accomplish this work. Then I would like to deeply thank my supervisor Dr. Awad A. Ibrahim for his advice, continuous encouragement and patience throughout the period of this work. My gratitude is also extended to prof. Mawia M. Mukhtar and for Dr. Manal Gamal El-dein, Institute of Endemic Disease. My thanks extend to members of Department of Microbiology Faculty of Veterinary Medicine for unlimited assistant and for staff of Central Laboratory Soba. I am grateful to my family for their continuous support and standing beside me all times. My thanks also extended to all whom I didn’t mention by name and to the forbearance of my friends, and colleagues who helped me. Finally I am indebted to all those who helped me so much to make this work a success. Abstract The present study was carried out to study the national haemorrhagic septicaemia vaccine strains at their molecular level.
    [Show full text]
  • Pasteurella Multocida Isolated from Cattle
    Journal of Applied Pharmaceutical Science Vol. 3 (04), pp. 106-110, April, 2013 Available online at http://www.japsonline.com DOI: 10.7324/JAPS.2013.3419 ISSN 2231-3354 Antibiotic Susceptibility and Molecular Analysis of Bacterial Pathogen Pasteurella Multocida Isolated from Cattle Azmat Jabeen, Mahrukh Khattak, Shahzad Munir*, Qaiser Jamal, Mubashir Hussain Department of Microbiology, Kohat University of Science and Technology, Kohat, Khyber Pakhtunkhwa, Pakistan. ARTICLE INFO ABSTRACT Article history: Pasteurella multocida is a Gram negative, non motile and coccobacillus bacterium. It has 5 strains i.e. A, B, D, Received on: 01/02/2013 E and F and 16 serotypes (1-16). In present study, we analyzed Pasteurella multocida B: 2 strains, responsible Revised on: 19/02/2013 for Hemorrhagic Septicemia (HS) in cattle, on morphological/microbial, biochemical, molecular level and to Accepted on: 15/03/2013 check the antibiotic sensitivity of the Pasteurella multocida. Microbial analysis showed that while grown on Available online: 27/04/2013 Brain Heart Infusion agar plates and Blood Agar Base Medium, grayish lustrous colonies of Pasteurella multocida were observed. Gram staining showed that Pasteurella multocida are gram negative. Microscopic Key words: observations revealed it to be coccobacillus and it was non- motile. Identification was conducted by Pasteurella multocida, conventional biochemical tests and percentage identification of Analytical Profile Index was 96 %. Antibiotic Hemorrhagic Septicemia, sensitivity with different antibiotics was checked by disk diffusion method and was found resistant to Analytical Profile Index, Augmentin, Amoxicillin and Aztreonam and was more susceptible to Ceftiofur. On molecular level its DNA Antibiotic sensitivity. was extracted and was run with marker having range from 0.5 – 10 kb.
    [Show full text]
  • 12. What's Really New in Antibiotic Therapy Print
    What’s really new in antibiotic therapy? Martin J. Hug Freiburg University Medical Center EAHP Academy Seminars 20-21 September 2019 Newsweek, May 24-31 2019 Disclosures There are no conflicts of interest to declare EAHP Academy Seminars 20-21 September 2019 Antiinfectives and Resistance EAHP Academy Seminars 20-21 September 2019 Resistance of Klebsiella pneumoniae to Pip.-Taz. olates) EAHP Academy Seminars 20-21 September 2019 https://resistancemap.cddep.org/AntibioticResistance.php Multiresistant Pseudomonas Aeruginosa Combined resistance against at least three different types of antibiotics, 2017 EAHP Academy Seminars 20-21 September 2019 https://atlas.ecdc.europa.eu/public/index.aspx Distribution of ESBL producing Enterobacteriaceae EAHP Academy Seminars 20-21 September 2019 Rossolini GM. Global threat of Gram-negative antimicrobial resistance. 27th ECCMID, Vienna, 2017, IS07 Priority Pathogens Defined by the World Health Organisation Critical Priority High Priority Medium Priority Acinetobacter baumanii Enterococcus faecium Streptococcus pneumoniae carbapenem-resistant vancomycin-resistant penicillin-non-susceptible Pseudomonas aeruginosa Helicobacter pylori Haemophilus influenzae carbapenem-resistant clarithromycin-resistant ampicillin-resistant Enterobacteriaceae Salmonella species Shigella species carbapenem-resistant fluoroquinolone-resistant fluoroquinolone-resistant Staphylococcus aureus vancomycin or methicillin -resistant Campylobacter species fluoroquinolone-resistant Neisseria gonorrhoae 3rd gen. cephalosporin-resistant
    [Show full text]
  • Marion County Reportable Disease and Condition Summary, 2015
    Marion County Reportable Disease and Condition Summary, 2015 Marion County Health Department 3180 Center St NE, Salem, OR 97301 503-588-5357 http://www.co.marion.or.us/HLT Reportable Diseases and Conditions in Marion County, 2015 # of Disease/Condition cases •This table shows all reportable Chlamydia 1711 Animal Bites 663 cases of disease, infection, Hepatitis C (chronic) 471 microorganism, and conditions Gonorrhea 251 Campylobacteriosis 68 in Marion County in 2015. Latent Tuberculosis 68 Syphilis 66 Pertussis 64 •The 3 most reported Salmonellosis 52 E. Coli 31 diseases/conditions in Marion HIV Infection 20 County in 2015 were Chlamydia, Hepatitis B (chronic) 18 Elevated Blood Lead Levels 17 Animal Bites, and Chronic Giardia 14 Pelvic Inflammatory Disease 13 Hepatitis C. Cryptosporidiosis 11 Cryptococcus 9 Carbapenem-resistant Enterobacteriaceae 8 •Health care providers report all Haemophilus Influenzae 8 Tuberculosis 6 cases or possible cases of Shigellosis 3 diseases, infections, Hepatitis C (acute) 2 Listeriosis 2 microorganisms and conditions Non-TB Mycobacteria 2 within certain time frames as Rabies (animal) 2 Scombroid 2 specified by the state health Taeniasis/Cysticercosis 2 Coccidioidomycosis 1 department, Oregon Health Dengue 1 Authority. Hepatitis A 1 Hepatitis B (acute) 1 Hemolytic Uremic Syndrome 1 Legionellosis 1 •A full list of Oregon reportable Malaria 1 diseases and conditions are Meningococcal Disease 1 Tularemia 1 available here Vibriosis 1 Yersiniosis 1 Total 3,595 Campylobacter (Campy) -Campylobacteriosis is an infectious illness caused by a bacteria. -Most ill people have diarrhea, cramping, stomach pain, and fever within 2-5 days after bacteria exposure. People are usually sick for about a week.
    [Show full text]
  • Francisella Tularensis 6/06 Tularemia Is a Commonly Acquired Laboratory Colony Morphology Infection; All Work on Suspect F
    Francisella tularensis 6/06 Tularemia is a commonly acquired laboratory Colony Morphology infection; all work on suspect F. tularensis cultures .Aerobic, fastidious, requires cysteine for growth should be performed at minimum under BSL2 .Grows poorly on Blood Agar (BA) conditions with BSL3 practices. .Chocolate Agar (CA): tiny, grey-white, opaque A colonies, 1-2 mm ≥48hr B .Cysteine Heart Agar (CHA): greenish-blue colonies, 2-4 mm ≥48h .Colonies are butyrous and smooth Gram Stain .Tiny, 0.2–0.7 μm pleomorphic, poorly stained gram-negative coccobacilli .Mostly single cells Growth on BA (A) 48 h, (B) 72 h Biochemical/Test Reactions .Oxidase: Negative A B .Catalase: Weak positive .Urease: Negative Additional Information .Can be misidentified as: Haemophilus influenzae, Actinobacillus spp. by automated ID systems .Infective Dose: 10 colony forming units Biosafety Level 3 agent (once Francisella tularensis is . Growth on CA (A) 48 h, (B) 72 h suspected, work should only be done in a certified Class II Biosafety Cabinet) .Transmission: Inhalation, insect bite, contact with tissues or bodily fluids of infected animals .Contagious: No Acceptable Specimen Types .Tissue biopsy .Whole blood: 5-10 ml blood in EDTA, and/or Inoculated blood culture bottle Swab of lesion in transport media . Gram stain Sentinel Laboratory Rule-Out of Francisella tularensis Oxidase Little to no growth on BA >48 h Small, grey-white opaque colonies on CA after ≥48 h at 35/37ºC Positive Weak Negative Positive Catalase Tiny, pleomorphic, faintly stained, gram-negative coccobacilli (red, round, and random) Perform all additional work in a certified Class II Positive Biosafety Cabinet Weak Negative Positive *Oxidase: Negative Urease *Catalase: Weak positive *Urease: Negative *Oxidase, Catalase, and Urease: Appearances of test results are not agent-specific.
    [Show full text]
  • Haemophilus Influenzae Invasive Disease ! Report Immediately 24/7 by Phone Upon Initial Suspicion Or Laboratory Test Order
    Haemophilus Influenzae Invasive Disease ! Report immediately 24/7 by phone upon initial suspicion or laboratory test order PROTOCOL CHECKLIST Enter available information into Merlin upon receipt of initial report for people <5 years old Review background on disease (see page 2), case definition (see page 4), and laboratory testing (see page 5) For cases in people ≥5 years old, interviews/investigations are not recommended unless the illness is known to be caused by H. influenzae type B. Surveillance for H. influenzae invasive disease in people ≥5 years old is now conducted only through electronic laboratory reporting (ELR) surveillance Contact health care provider to obtain pertinent information including demographics, medical records, vaccination history, and laboratory results Facilitate serotyping of H. influenzae isolates for people <5 years old at Florida Bureau of Public Health Laboratories (BPHL) Jacksonville Determine if the isolate is H. influenzae type b (Hib) Interview patient’s family or guardian Review disease facts Modes of transmission Incubation period Symptoms/types of infection Ask about exposure to relevant risk factors Exposure to a person with documented H. influenzae infection H. influenzae type B vaccination history Patient with immunocompromised state – HIV, sickle cell, asplenia, malignancy Determine if patient was hospitalized for reported illness Document pertinent clinical symptoms and type of infection Document close contacts (see page 7) and family members who may be at risk if Hib is identified Determine whether patient or symptomatic contact is in a sensitive situation (daycare or other settings with infants or unvaccinated children) Recommend exclusion for patients or symptomatic contacts until 24 hours of effective antibiotic treatment.
    [Show full text]
  • Haemophilus Influenzae Disease: Commonly Asked Questions
    Minnesota Department of Health Fact Sheet 1/2009 Haemophilus Influenzae Disease: Commonly Asked Questions What is Haemophilus influenzae? How is Haemophilus influenzae diagnosed? Haemophilus influenzae is a bacteria that is found in the nose and throat of children and Haemophilus influenzae is diagnosed adults. Some people can carry the bacteria in when the bacteria are grown from cultures their bodies but do not become ill. of the blood, cerebral spinal fluid (CSF) or other normally sterile body site. Cultures Haemophilus influenzae serotype B (Hib) is take a few days to grow. commonly associated with infants and young children and was once the most common cause of severe bacterial infection in children. How is Haemophilus influenzae Due to widespread use of Hib vaccine in infection treated? children, few cases are reported each year. Serious infections are treated with specific Non-serotype B infections occur primarily antibiotics. among the elderly and adults with underlying disease. There are no vaccines available against non-serotype B disease. Should people who have been in contact with someone diagnosed with Haemophilus influenzae be treated? What are the symptoms of Haemophilus influenzae? For Hib disease, treatment with specific antibiotics is recommended for household Haemophilus influenzae causes a variety of members when there is at least one illnesses including meningitis (inflammation unvaccinated child under 4 years of age in of the coverings of the spinal column and the home. Preventive treatment for non- brain), bacteremia (infection of the blood), vaccinated daycare center contacts of pneumonia (infection of the lungs), and known Hib cases may also be septic arthritis (infection of the joints).
    [Show full text]
  • Clinical Antibiotic Guidelines†
    CLINICAL ANTIBIOTIC GUIDELINES† ACYCLOVIR IV*/PO *RESTRICTED TO ANTIBIOTIC FORM Predictable activity: Unpredictable activity: No activity: Herpes Simplex Cytomegalovirus Epstein Barr Virus Herpes Zoster Indicated: IV: 1. Therapy for suspected or documented Herpes simplex encephalitis 2. Therapy for suspected or documented Herpes simplex infection of a newborn or immunocompromised patient 3. Therapy for primary varicella infection in immunocompromised patients 4. Therapy for severe or disseminated varicella-zoster infections in immunocompromised or immunocompetent patient 5. Therapy for primary genital herpes with neurologic complications Oral: 1. Therapy for primary Herpes simplex infections (oral/genital) 2. Suppressive (preventative) therapy for recurrent (³ 6 episodes/year) severe Herpes simplex infections (oral/genital) 3. Episodic therapy for recurrent (³ 6 episodes/year) Herpes simplex genital infections (initiate within 24 hours of prodrome onset) 4. Prophylaxis for HSV in bone marrow transplants where patient is seropositive 5. Therapy and suppressive therapy for Eczema Herpeticum 6. Therapy for varicella-zoster infections in immunocompetent and immunocompromised patients (if not severe) 7. Therapy for primary varicella infections in pregnancy 8. Therapy for varicella in immunocompetent patients > 13 years old (initiate within 24 hours of rash onset) 9. Therapy for varicella in patients < 13 years old (initiate within 24 hours of rash onset) if there is a chronic cutaneous or pulmonary disorder, long term salicylate therapy, or short, intermittent or aerosolized corticosteroid use Not Indicated: 1. Therapy for acute Epstein-Barr infections (acute mononucleosis) 2. Therapy for documented CMV infections CLINICAL ANTIBIOTIC GUIDELINES† AMIKACIN RESTRICTED TO ANTIBIOTIC FORM Predictable activity: Unpredictable activity: No activity: Enterobacteriaceae Staphylococcus spp Streptococcus spp Pseudomonas spp Enterococcus spp some Mycobacterium spp Alcaligenes spp Anaerobes Indicated: 1.
    [Show full text]
  • Virulence Genes and Prevention of Haemophilus Influenzae Infections
    Arch Dis Child: first published as 10.1136/adc.60.12.1193 on 1 December 1985. Downloaded from Archives of Disease in Childhood, 1985, 60, 1193-1196 Current topic Virulence genes and prevention of Haemophilus influenzae infections E R MOXON Infectious Disease Unit, Department of Paediatrics, John Radcliffe Hospital, Oxford The bacterium Haemophilus influenzae causes a infections) are encapsulated.3 H influenzae may wide spectrum of important childhood diseases that make any one of six chemically and antigenically includes meningitis, epiglottitis, cellulitis, acute distinct polysaccharide capsules (designated a-f), pneumonitis, septic arthritis, and otitis media. but strains expressing type b antigen account for Meningitis, the commonest of the systemic infec- most serious infections. The second important tions, in addition to being life threatening, is of observation was that serum factors (later identified particular importance to paediatricians because the as antibodies) with specific activity against the type damage it causes to the developing brain is often b antigen are critical in host defence against systemic permanent. H influenzae is a major cause of H influenzae infections.4 Given these facts, it is pyogenic meningitis in childhood throughout the reasonable to ask what is so important about the how does it differ world, and occurs in about one child in every type b capsule of H influenzae, copyright. thousand, usually within three years of birth. from the five other polysaccharide capsules, and to Although the availability of antibiotics has de- what extent other surface antigens, such as outer creased mortality dramatically (from greater than membrane proteins and lipopolysaccharide, modu- 90% to less than 10%), the occurrence of central late H influenzae virulence or serve as targets for the nervous system damage among survivors has not lethal effects of host immune responses.
    [Show full text]
  • Interaction Study of Pasteurella Multocida with Culturable Aerobic
    Hanchanachai et al. BMC Microbiology (2021) 21:19 https://doi.org/10.1186/s12866-020-02071-4 RESEARCH ARTICLE Open Access Interaction study of Pasteurella multocida with culturable aerobic bacteria isolated from porcine respiratory tracts using coculture in conditioned media Nonzee Hanchanachai1,2, Pramote Chumnanpuen2,3 and Teerasak E-kobon2,4,5* Abstract Background: The porcine respiratory tract harbours multiple microorganisms, and the interactions between these organisms could be associated with animal health status. Pasteurella multocida is a culturable facultative anaerobic bacterium isolated from healthy and diseased porcine respiratory tracts. The interaction between P. multocida and other aerobic commensal bacteria in the porcine respiratory tract is not well understood. This study aimed to determine the interactions between porcine P. multocida capsular serotype A and D strains and other culturable aerobic bacteria isolated from porcine respiratory tracts using a coculture assay in conditioned media followed by calculation of the growth rates and interaction parameters. Results: One hundred and sixteen bacterial samples were isolated from five porcine respiratory tracts, and 93 isolates were identified and phylogenetically classified into fourteen genera based on 16S rRNA sequences. Thirteen isolates from Gram-negative bacterial genera and two isolates from the Gram-positive bacterial genus were selected for coculture with P. multocida. From 17 × 17 (289) interaction pairs, the majority of 220 pairs had negative interactions indicating competition for nutrients and space, while 17 pairs were identified as mild cooperative or positive interactions indicating their coexistence. All conditioned media, except those of Acinetobacter, could inhibit P. multocida growth. Conversely, the conditioned media of P. multocida also inhibited the growth of nine isolates plus themselves.
    [Show full text]
  • The Global View of Campylobacteriosis
    FOOD SAFETY THE GLOBAL VIEW OF CAMPYLOBACTERIOSIS REPORT OF AN EXPERT CONSULTATION UTRECHT, NETHERLANDS, 9-11 JULY 2012 THE GLOBAL VIEW OF CAMPYLOBACTERIOSIS IN COLLABORATION WITH Food and Agriculture of the United Nations THE GLOBAL VIEW OF CAMPYLOBACTERIOSIS REPORT OF EXPERT CONSULTATION UTRECHT, NETHERLANDS, 9-11 JULY 2012 IN COLLABORATION WITH Food and Agriculture of the United Nations The global view of campylobacteriosis: report of an expert consultation, Utrecht, Netherlands, 9-11 July 2012. 1. Campylobacter. 2. Campylobacter infections – epidemiology. 3. Campylobacter infections – prevention and control. 4. Cost of illness I.World Health Organization. II.Food and Agriculture Organization of the United Nations. III.World Organisation for Animal Health. ISBN 978 92 4 156460 1 _____________________________________________________ (NLM classification: WF 220) © World Health Organization 2013 All rights reserved. Publications of the World Health Organization are available on the WHO web site (www.who.int) or can be purchased from WHO Press, World Health Organization, 20 Avenue Appia, 1211 Geneva 27, Switzerland (tel.: +41 22 791 3264; fax: +41 22 791 4857; e-mail: [email protected]). Requests for permission to reproduce or translate WHO publications –whether for sale or for non-commercial distribution– should be addressed to WHO Press through the WHO web site (www.who.int/about/licensing/copyright_form/en/index. html). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries.
    [Show full text]