Graptolites from Glacial Erratics of the Laerheide Area, Northern Germany

Total Page:16

File Type:pdf, Size:1020Kb

Graptolites from Glacial Erratics of the Laerheide Area, Northern Germany PalZ DOI 10.1007/s12542-017-0345-9 RESEARCH PAPER Graptolites from glacial erratics of the Laerheide area, northern Germany 1 2 Jo¨rg Maletz • Heinrich Scho¨ning Received: 24 November 2016 / Accepted: 12 March 2017 Ó The Author(s) 2017. This article is an open access publication Abstract Ordovician and Silurian glacial erratics of the Material vermutlich stammt, nur selten zu finden. Die Laerheide area (Lower Saxony, north-western Germany) Graptolithen finden sich in Kalken des Oberen Ordovizi- bear well-preserved graptolites. The faunas provide ums (Sandbium–Katium) und Schwarzschiefern des Kati- important information on the origin and transport direction ums. Ha¨ufiger sind jedoch die kalkigen oder siltig-sandigen of the sediments preserved in a kame, representing the Geschiebe des ‘Gru¨nlich-Grauen Graptolithengesteines’ Drenthe stadial of the Saalian glaciation. The faunas even mit Graptolithen des Oberen Wenlock bis Ludlow (Oberes include species not commonly encountered in the succes- Silur). sions of mainland Sweden, from where the erratics pre- sumably originated. The most common graptolites are from Schlu¨sselwo¨rter Geschiebe Á Mora¨nen Á Kame Á Drenthe- Upper Ordovician (Sandbian to Katian) limestones and Stadium Á Deutschland Á Pala¨ozoikum Á Graptolithen from Katian black shales. More common, however, are greenish limestones, sand- and siltstones, often combined in the term ‘Gru¨nlich-Graues Graptolithengestein’, in Introduction which upper Wenlock to Ludlow (upper Silurian) grapto- lites are common. Fossil-bearing glacial erratics have long been used to doc- ument transport and flow directions of glacial ice sheets Keywords Glacial erratics Á Moraines Á Kame Á Drenthe- from the place of origin of the material (e.g. Roemer Stadium Á Germany Á Palaeozoic Á Graptolites 1862, 1885), even though modern methods like satellite imaging are now superseding this seemingly ‘old-fashioned’ Kurzfassung Gut erhaltene Graptolithen ko¨nnen in ordo- method (e.g. Boulton et al. 2001). ‘Leitgeschiebe’ are still vizischen und silurischen Geschieben aus der Laerheide regarded as important tracers for the origins of North Ger- (Niedersachsen) gefunden werden. Sie bieten Informatio- man glacial deposits (see Ehlers 2011) and include both nen zu Ursprung und Transportrichtung der Sedimente, die sedimentary and crystalline rocks. The investigation of heute in einer Kamestruktur des Drenthe-Stadiums der sedimentary erratics has been dominated by the collection Saale-Vereisung erhalten sind. Manche dieser Formen sind and description of the fossils. These identify unambiguously auch in den skandinavischen Abfolgen, aus denen das the age of the sedimentary rocks and their origin if the sedimentary rock types are still exposed in the area of their origin. Spectacular fossils such as Xenusion auerswaldae Handling editor: Mike Reich. Pompeckj, 1927 (probably originating from the Lower Cambrian Kalmarsund Sandstone of southern Sweden: Jae- & Jo¨rg Maletz ger and Martinsson 1967; Hauschke and Kretschmer 2015) [email protected] have been found in glacial erratics, and new taxa are even 1 Department of Geological Sciences, FU Berlin, now being described from glacial(?) erratics originating Malteserstrasse 74-100, 12249 Berlin, Germany from the Palaeozoic succession of Scandinavia (e.g. Botting 2 Am Spielplatz 3, 34613 Schwalmstadt, Germany and Rhebergen 2011). 123 J. Maletz, H. Scho¨ning Graptolites are relatively common and highly diverse in Fig. 1 Graptolites from North German glacial erratics. a Saetograp-c glacial erratics (Fig. 1). The earliest illustration of a glacial tus leintwardinensis (Hopkinson in Lapworth, 1880), SMF 68294, Nienhagen bei Rostock, Ludlow, Silurian. b, c Saetograptus chimaera erratic block with graptolites may be by Walch (1771, (Barrande, 1850), SMF 75783, SMF 75784, Nienhagen bei Rostock, suppl. IVc, Fig. 5) from Stargard, Mecklenburg. It took Ludlow, Silurian. d Corynites wyszogrodensis (Kozłowski, 1956), nearly a century, however, before Heidenhain (1869) and SMF 75785, Berlin, coll. Ku¨hne, Katian, Ordovician. e Bohemograp- Haupt (1878) described these faunas in more detail. tus sp., proximal end, SMF 75786, B9/96, Bramsche, Mecklenburg- Vorpommern, Ludlow, Silurian. f Dicranograptus clingani (Car- Gu¨mbel (1878) may have been the first to isolate grapto- ruthers, 1868), SMF 75787, Slg. Weil Nr. 18, Kieler Bucht, Katian, lites chemically from their calcitic matrix based on this Ordovician. g Spinograptus spinosus (Wood, 1900), MB.G. 1078, kind of material. A great time for graptolite research started Hiddensee, Ru¨gen, scanning electron microscope (SEM) photo, with Wiman (1895), who described in detail the con- Ludlow, Silurian. h Plectograptus toernquisti (Bates et al., 2006), SMF 75496, Bramsche, Mecklenburg-Vorpommern, Ludlow, Sil- struction of graptolite tubaria (an replacement term for urian. i Rectograptus gracilis (Roemer, 1861), PMU 31641, Ro¨sta˚nga, rhabdosomes: Mitchell et al. 2013, p. 34) based on chem- Scania, Sweden, partial relief specimen filled with pyrite, obverse ically isolated graptolites from glacial erratics, but also view (not from glacial erratic), Katian, Ordovician. j–l Monograptus from samples collected in situ from a number of Scandi- priodon (Bronn, 1835), SMF 75780, Kiesgrube Basedow, Mecklen- burg-Vorpommern, coll. R. Klafack, j, k coated with ammonium navian localities. One of the most detailed descriptions of chloride to better show the details, note preservation of fuselli in (k), chemically isolated graptolites remains Kraft’s (1926) Wenlock, Silurian. Scale bars represent 1 mm in all photos investigation of Rectograptus gracilis, but the important works of Kozłowski (1938, 1949) on Tremadocian benthic taxa and Urbanek (1958) of Silurian monograptids are also Ordovician graptolites from glacial erratics provide highlights of graptolite research. There is no doubt that the important constructional information due to the excellent study of Silurian retiolitids (e.g. Mu¨nch 1931; Eisenack preservation as relief specimens. One of the reasons for the 1935; Kozłowska-Dawidziuk 1995; Maletz 2008, 2010) previously poor record may be the lack of interest in this would not have been possible without chemically isolated fossil group, but also the difficulty for most fossil collectors material, including that from glacial erratics (Fig. 1g, h). to get answers to questions on taxonomy and to find the Kowalski (1964, 1966a, b, 1968a, b, 1969, 1984) pro- relevant literature. Despite this, graptolites can provide vided overviews on the graptolites found in glacial erratics important information for dating glacially deposited sedi- in a number of short review papers. These show the most ments and for the origination of the fossil-bearing rocks important taxa encountered, but unfortunately, the illus- (Kalbe and Maletz 2015, p. 5). Unfortunately, the record of trated material is often not specimens of glacial origin, but graptolites in glacial erratics has been limited to identifi- based on available published illustrations from various cation and taxonomic description (e.g. Kraft 1926; Gothan sources, and therefore may be misleading. It appears that 1934; Eisenack 1935; Urbanek 1959; Zessin et al. 1994), many of the taxa listed in various publications as origi- and further evaluation of the enclosing sediments and their nating from North German glacial erratics have never been (palaeo-)geographical origin has not been undertaken. properly described or illustrated from these erratics. Research on graptolites from glacial erratics has con- Available descriptions and illustrations are not sufficient centrated mostly on the Silurian faunas (see Jaeger for modern identification (e.g. Heidenhain 1869; Haupt 1959, 1978, 1991), as the ‘Gru¨nlich-Graues Grap- 1878; Roemer 1885), and the specimens are unfortunately tolithengestein’ (cf. Roemer 1862, p. 608) became not available for re-identification. famous—at least in Germany—for the presence of three- Glacial erratics with Ordovician graptolites are either dimensionally and well-preserved graptolites (Fig. 1a–e). It rarely encountered or have not attracted much attention, is also the most commonly encountered graptolitiferous even though they may also bear excellently preserved rock type in glacial erratics of Scandinavian origin. Jaeger faunas and even provide information on taxa not known (1991) and Maletz (2008) indicated that the time interval from other sources. This is shown by the descriptions of covered by this lithology ranges from the Homerian Archiretiolites regimontanus by Eisenack (1935) and Co- (Wenlock) Cyrtograptus lundgreni Biozone to the Lud- rynites wyszogrodensis by Kozłowski (1956) (Fig. 1d), fordian (Ludlow) Bohemograptus cornutus/praecornutus species that have been found only once or twice and are Biozone. Quite a number of Silurian monograptids have unknown from successions in situ. Other species have been been described—in some cases exclusively—from glacial described from Scandinavian successions, but important erratics (e.g. Jaekel 1889;Ku¨hne 1955; Urbanek 1958; details were revealed only by isolated material, for exam- Jaeger 1991). In particular, glacial erratics from northern ple of Gymnograptus linnarssoni from western Pomerania, Germany have yielded excellently preserved material of a Poland (Urbanek 1959). Ordovician graptolites may be number of monograptids (Mu¨nch 1938;Ku¨hne 1955; Jae- more common in glacial erratics than previously indicated ger 1959, 1991; Maletz 1999). Mu¨nch (1938) was one of (Fig. 2). the first
Recommended publications
  • 7. Rickards, Wright, Hamedi.Pdf
    Records of the Western AustralIan Museum Supplement No. 58: 103-122 (2000). Late Ordovician and Early Silurian graptolites from southern Iran R.B. Rickardsl, A.J. Wright2 and M.A. HamedP I Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge CB2 3 EQ, England 1 School of Geosciences, University of Wollongong, Wollongong, N.s.W. 2522, Australia "Department of Geology, Tarbiet Modares University, Tehran, Iran Abstract - Graptolites are described for the first time from the Faraghun mountains (Kuh-e-Faraghun) and the Gahkum mountains (Kuh-e-Gahkum) on the northern edge of the southeast part of the Zagros Mountains, Iran. 38 taxa are recorded, including 4 Ordovician and 34 Silurian species; the latter are the first Silurian graptolites described from Iran. Ashgill (Late Ordovician) graptolite assemblages from Kuh-e-Faraghun include: Persclllptograptlls persculptlls and Orthograptlls amplexicalllis, indicating a persculptlls Biozone age; and Orthograptus amplexicalllis abbreviatlls, indicating the latest Ordovician anceps Biozone. Kuh-e-Faraghun Early Silurian faunas include representatives of the L1andovery leptotheca Biozone; another assemblage, including Monograptlls convollltus and Pselldorthograptlls inopinatlls, indicates the slightly younger L1andovery convollltlls Biozone. Graptolites from Kuh-e-Gahkum comprise a rich Stimlllograptlls sedgwickii assemblage, indicating a slightly higher L1andovery level again (sedgwickii Biozone); a convollltlls Biozone fauna is also probably represented in our collections. INTRODUCTION the Kerman district, East-Central Iran; the fauna Late Ordovician and Early Silurian graptolites, they reported is that described in part from the from two areas in the northern part of the Zagros Katkoyeh Formation by Rickards et al. (1994), now belt (Figures 1, 2, 3), are described for the first time being fully described on the basis of collections from Iran.
    [Show full text]
  • Th TRILO the Back to the Past Museum Guide to TRILO BITES
    With regard to human interest in fossils, trilobites may rank second only to dinosaurs. Having studied trilobites most of my life, the English version of The Back to the Past Museum Guide to TRILOBITES by Enrico Bonino and Carlo Kier is a pleasant treat. I am captivated by the abundant color images of more than 600 diverse species of trilobites, mostly from the authors’ own collections. Carlo Kier The Back to the Past Museum Guide to Specimens amply represent famous trilobite localities around the world and typify forms from most of the Enrico Bonino Enrico 250-million-year history of trilobites. Numerous specimens are masterpieces of modern professional preparation. Richard A. Robison Professor Emeritus University of Kansas TRILOBITES Enrico Bonino was born in the Province of Bergamo in 1966 and received his degree in Geology from the Depart- ment of Earth Sciences at the University of Genoa. He currently lives in Belgium where he works as a cartographer specialized in the use of satellite imaging and geographic information systems (GIS). His proficiency in the use of digital-image processing, a healthy dose of artistic talent, and a good knowledge of desktop publishing software have provided him with the skills he needed to create graphics, including dozens of posters and illustrations, for all of the displays at the Back to the Past Museum in Cancún. In addition to his passion for trilobites, Enrico is particularly inter- TRILOBITES ested in the life forms that developed during the Precambrian. Carlo Kier was born in Milan in 1961. He holds a degree in law and is currently the director of the Azul Hotel chain.
    [Show full text]
  • Cortical Fibrils and Secondary Deposits in Periderm of the Hemichordate Rhabdopleura (Graptolithoidea)
    Cortical fibrils and secondary deposits in periderm of the hemichordate Rhabdopleura (Graptolithoidea) PIOTR MIERZEJEWSKI and CYPRIAN KULICKI Mierzejewski, P. and Kulicki, C. 2003. Cortical fibrils and secondary deposits in periderm of the hemichordate Rhabdopleura (Graptolithoidea). Acta Palaeontologica Polonica 48 (1): 99–111. Coenecia of extant hemichordates Rhabdopleura compacta and Rh. normani were investigated using SEM techniques. Cortical fibrils were detected in their fusellar tissue for the first time. The densely packed cortical fibrils form a character− istic band−like construction in fusellar collars, similar to some Ordovician rhabdopleurids. No traces of external second− ary deposits are found in coenecia. Two types of internal secondary deposits in tubes are recognized: (1) membranous de− posits, composed of numerous, tightly packed sheets, similar to the crustoid paracortex and pseudocortex; and (2) fibrillar deposits, devoid(?) of sheets and made of cortical fibrils, arranged in parallel and interpreted as equivalent to graptolite endocortex. There is no significant difference in either the shape or the dimensions of cortical fibrils found in Rhabdopleura and graptolites. The cortical fabric of both rhabdopleuran species studied is composed of long, straight and more or less wavy, unbranched fibrils arranged in parallel; their diameters vary from 220 to 570 µm. The study shows that there is no significant difference between extinct and extant Graptolithoidea (= Pterobranchia) in the histological and ultrastructural pattern of their primary and secondary deposits of the periderm. The nonfusellar periderm of the prosicula is pitted by many depressions similar to pits in the cortical tissue of graptolites. Key words: Rhabdopleura, Pterobranchia, Hemichordata, periderm, sicula, ultrastructure, fibrils. Piotr Mierzejewski [[email protected]], Instytut Paleobiologii PAN, ul.
    [Show full text]
  • Revised Sequence Stratigraphy of the Ordovician of Baltoscandia …………………………………………… 20 Druzhinina, O
    Baltic Stratigraphical Association Department of Geology, Faculty of Geography and Earth Sciences, University of Latvia Natural History Museum of Latvia THE EIGHTH BALTIC STRATIGRAPHICAL CONFERENCE ABSTRACTS Edited by E. Lukševičs, Ģ. Stinkulis and J. Vasiļkova Rīga, 2011 The Eigth Baltic Stratigraphical Conference 28 August – 1 September 2011, Latvia Abstracts Edited by E. Lukševičs, Ģ. Stinkulis and J. Vasiļkova Scientific Committee: Organisers: Prof. Algimantas Grigelis (Vilnius) Baltic Stratigraphical Association Dr. Olle Hints (Tallinn) Department of Geology, University of Latvia Dr. Alexander Ivanov (St. Petersburg) Natural History Museum of Latvia Prof. Leszek Marks (Warsaw) Northern Vidzeme Geopark Prof. Tõnu Meidla (Tartu) Dr. Jonas Satkūnas (Vilnius) Prof. Valdis Segliņš (Riga) Prof. Vitālijs Zelčs (Chairman, Riga) Recommended reference to this publication Ceriņa, A. 2011. Plant macrofossil assemblages from the Eemian-Weichselian deposits of Latvia and problems of their interpretation. In: Lukševičs, E., Stinkulis, Ģ. and Vasiļkova, J. (eds). The Eighth Baltic Stratigraphical Conference. Abstracts. University of Latvia, Riga. P. 18. The Conference has special sessions of IGCP Project No 591 “The Early to Middle Palaeozoic Revolution” and IGCP Project No 596 “Climate change and biodiversity patterns in the Mid-Palaeozoic (Early Devonian to Late Carboniferous)”. See more information at http://igcl591.org. Electronic version can be downloaded at www.geo.lu.lv/8bsc Hard copies can be obtained from: Department of Geology, Faculty of Geography and Earth Sciences, University of Latvia Raiņa Boulevard 19, Riga LV-1586, Latvia E-mail: [email protected] ISBN 978-9984-45-383-5 Riga, 2011 2 Preface Baltic co-operation in regional stratigraphy is active since the foundation of the Baltic Regional Stratigraphical Commission (BRSC) in 1969 (Grigelis, this volume).
    [Show full text]
  • The Trilobite Genus Panderia from the Ordovician of Scandina Via and The
    THE TRILOBITE GENUS PANDERIA FROM THE ORDOVICIAN OF SCANDINAVIA AND THE BALTIC AREAS DAVID L. BRUTON Paleontologisk Museum, Universitetet i Oslo, Norway BRUTON, DAVID L.: The trilobite genus Panderia from the Ordovician of Scandinavia and the B1ltic areas. Norsk Geologisk Tidsskrift, Vol. 48, pp. 1-53. Oslo 1968. Type and additional material of the trilobite genus Panderia Volborth, 1863 is described from sections and borings in the Ordovician of Sweden, Norway, Estonia, and Latvia. This work supports previous conclusions that Panderia is an illaenid but that it differs from all other members of the family Illaenidae to an extent that the new subfamily Panderinae subfam. nov. is established. The presence of a triangular rostral flange similar to that known for Stenopareia suggests that Panderinae is more closely related to the Illaeninae than to the Bumastinae. Panderia to­ gether with Dysplanus (Bumastinae) and 1//aenus (Illaeninae) from the Lower Ordovician of Scandinavia, are among the earliest illaenids so far known and possible ancestors of Panderia are forms from the late Tremadoc of O land and the Oslo region and early Arenig in Viistergotland. The new genus Ottenbyaspis gen. nov. (type species 1//aenus oriens Mo berg & Segerberg, 1906) is created for these early forms which, how­ ever, are still insufficiently known to be assigned to any known family. Study of the ventral sutures of the Panderia species examined, shows that there is a development from the earliest forms, in which connective sutures and rostral plate are present (eu-ptychopariid type), to later forms in which the connective sutures are lacking and the ventral chcxk and connecting doublure are fused (levisellid type).
    [Show full text]
  • Palaeontological Society of Japan
    ISSN 0031-0204 Transactions and Proceedings of the Palaeontological Society of Japan New Series No. 148 Palaeontological Society of Japan September 30, 1986 Co-Editors Hisayoshi 100 and Takashi HAMADA Officers for 1985-1986 President: Toshimasa TANAI Honorary President: Teiichi KOBAYASHI Councillors; Kiyotaka GHINZEI, Takashi HAMADA, Tetsuro HANAI, Yoshikazu HASEGAWA, Itaru HAYAMI, Hisayoshi IGO, Junji ITOIGAWA, Tadao KAMEl, Tatsuaki KIMURA, Tamio KOTAKA, Kei MORI, Ikuwo OBATA, Tsunemasa SAITO, Yokichi TAKAYANAGI, Toshimasa TAN AI Members of Standing Committee: Kiyotaka CHINZEI (Membership), Takashi HAMADA (Co­ Editor of Transactions), Yoshikazu HASEGAWA (Foreign Affairs), Itaru HAY AMI (Planning), Hisayoshi IGO (Co-Editor of Transactions), Tatsuaki KIMURA (Finance), Ikuwo OBATA (General Affairs), Yokichi TAKAYANAGI (Editor of "Fossils"), Juichi YANAGIDA (Editor of Special Papers) Secretary: Hiroshi NODA (Editor of Transactions) Auditor: Yoshiaki MA TSUSHIMA The fossil on the cover is Unuma (Spinunuma) echinatus ICHIKAWA and YAO, a Middle Jurassic multisegmented radiolaria from Unuma, Gifu Prefecture, central Japan (photo by A. YAO, x 260). All communication relating to this journal should be addressed to the PALAEONTOLOGICAL SOCIETY OF JAPAN c/o Business Center for Academic Societies, Yayoi 2-4-16, Bunkyo-ku, Tokyo 113, Japan Trans. Proc. Palaeont. Soc. Japan, N.S., No. 143, pp. 409-421, pis. 81-85, September 30,1986 816. SOME INOCERAMIDS (BIV AL VIA) FROM THE CENOMANIAN (CRETACEOUS) OF JAPAN-I NEW OR LITTLE KNOWN FOUR SPECIES FROM HOKKAIDO AND KYUSHU* TATSURO MATSUMOTO c/o Department of Geology, Kyushu University 33, Fukuoka 812 and MASAYUKINODA Minami·Oita Junior High School, Oita 870 Abstract. In a series of papers in 3 parts some new and little known ino· ceramid species from the Cenomanian of Japan are to be described.
    [Show full text]
  • Bulletin of the Geological Society of Denmark, Vol. 35/3-4, Pp. 203-207
    Graptolite Taxonomy and Classification MU EN-ZHI Mu En-zhi: Graptolite Taxonomy and Classification. Bull. geol. Soc. Denmark, vol. 35, pp. 203--207, Co­ penhagen, July 1st, 1987. https://doi.org/10.37570/bgsd-1986-35-21 Graptolithina comprises chiefly six orders. Among them Graptoloidea and a part of Dendroidea known as Graptodendroids are planktonic in mode of life. Graptoloidea consists of three suborders namely Axono­ lipa, Axonocrypta and Axonophora. The families Dendrograptidae-Anisograptidae-Tetragraptidae and Didymograptidae-Isograptidae-Cardiograptidae-Diplograptidae-Monograptidae represent anagenetic grades. Some important evolutionary trends took place once again, representing cladogenetic divergen­ ces. All other families or subfamilies are offshoots of various grades. The suborder Axonocrypta is dis­ cussed in detail. Mu En-zhi, Nanjing Institute of Geology and Palaeontology, Academia Sinica, Chimingssu, Nanjing, China, August20th, 1986. General Consideration tinae, tri-radiate Anisograptinae and biradiate Adelograptinae) is derived from the floating Dic­ Graptolithina, a class of Hemichordata, com­ tyonema due to the loss of dissepiments (Mu, prises chiefly six orders known as Dendroidea, 1974), while the reclined Psigraptidae Lin (1981) Graptoloidea, Tuboidea, Camaroidea, Stolonoi­ with isolated autothecae is an offshoot. Recently dea and Crustoidea (Kozlowski, 1949, 1966; Bul­ Zhao & Zhang (1985) proposed a new family man, 1970). The thecae in Dendroidea and Grap­ Muenzhigraptidae with biform autothecae rep­ toloidea are regularly arranged in stipes, al­ resenting the direct ancestor of Psigraptidae. though Dendroidea has three kinds of thecae Graptoloidea first appeared in the late Xin­ (autotheca, bitheca and stolotheca), while Grap­ changian (X3) due to the loss of bithecae from toloidea has only one. In the graptoloid thecae, Adelograptinae and flourished in early Ning­ the proximal portion (protheca) and the distal kuoan (N1), marking another new stage in grap­ portion (metatheca) are homologous with the tolite history.
    [Show full text]
  • Late Ludfordian and Early Pridoli Monograptids from the Polish Lowland
    LATE LUDFORDIAN AND EARLY PRIDOLI MONOGRAPTIDS FROM THE POLISH LOWLAND ADAM URBANEK Urbanek, A. 1997. Late Ludfordian and early Pfidoli monograptids from the Polish Low­ land. In: A. Urbanek and L. Teller (eds), Silur ian Graptolite Faunas in the East European Platform: Stratigraphy and Evolution. - Palaeontologia Polonica 56, 87-23 1. Graptolites etched from the Mielnik-I wellcore (EPoland) reveal the main features of the development of monograptid faunas within the late Ludfordian-early Pi'idoli interval. Fifteen species and subspecies are described and Monog raptus (Slovinog raptus) subgen. n. as well as Neocolonograptu s gen. n. are erected. Morphology of many species has been described adequately for the first time and their systematic position corrected. Four grap­ tolite zones of the late Ludfordian are distinguished. The late Ludfordian fauna, which appears after the kozlowskii Event, is composed mainly of immigrants dominated by hooded monograptids. They reappear as a result of the Lazarus effect. Some of them initiated the lobate-spinose phyletic line terminating with Mon ograptus (Uncinatograptus) spineus, a highly characteristic index species. The lobate and the lobate-spinose types are accompanied by bilobate forms (Pse udomonoclimac is latilobu s). The graptolite sequence indicates that the appeara nce of the early Pfidoli fauna was preceded by a biotic crisis, namely the spineus Event. Therefore this fauna is made up of a few holdovers and some new elements which developed from Pristiograptus dubiu s stem lineage (Neocolonograptus gen. n., Istrograpt us Tsegelnjuk). This early assemblage, com­ posed of bilobate forms, was later enriched by hooded monograptid s, reappearing after the spineus Event.
    [Show full text]
  • Panderia Beaumonti (Rouault, 1847) Da Formação Cabeço Do Peão Do Berouniano Médio (Ordovícico Superior, Portugal)
    Versão online: http://www.lneg.pt/iedt/unidades/16/paginas/26/30/185 Comunicações Geológicas (2014) 101, Especial I, 537-541 IX CNG/2º CoGePLiP, Porto 2014 ISSN: 0873-948X; e-ISSN: 1647-581X Panderia beaumonti (Rouault, 1847) da Formação Cabeço do Peão do Berouniano Médio (Ordovícico Superior, Portugal) Panderia beaumonti (Rouault, 1847) of the Cabeço do Peão Formation of Middle Berounian (Upper Ordovician, Portugal) S. Pereira1*, A. A. Sá2,3, C. Marques da Silva1, N. Vaz2,3 Artigo Curto Short Article © 2014 LNEG – Laboratório Nacional de Geologia e Energia IP Resumo: O estudo de 52 fósseis de trilobites Panderiidae Romão et al. (1995). Posteriormente Guy & Lebrun (2010) provenientes de uma jazida clássica do Membro Queixoperra figuraram pela primeira vez os panderídeos desta unidade. (Formação Cabeço do Peão, Ordovícico Superior, Mação, Os autores admitiram que morfologicamente os exemplares Portugal), cuja identidade específica era duvidosa, permitiu identificar Panderia beaumonti no Berouniano Médio português. A de Panderia de Mação são muito similares a P. beaumonti espécie é pela primeira vez descrita e figurada em Portugal e o seu (Rouault, 1847) do Ordovícico Médio espanhol, deixando registo em Mação é o mais recente documentado para a espécie na contudo em suspenso a pergunta: “serão mesmo?” Península Ibérica. No decurso do nosso trabalho, cujos resultados agora Palavras-chave: Panderia, Membro Queixopêrra, Berouniano se apresentam, foram estudados 52 espécimes de Panderia Médio, Ordovícico, Portugal. provenientes de uma jazida clássica do Membro Queixopêrra em Mação. Estes foram atribuídos à espécie Abstract: Fifty two Panderiidae trilobite fossils from a classical site of the Queixoperra Member (Cabeço do Peão Formation, Upper Panderia beaumonti, já conhecida há mais de 150 anos no Ordovician, Mação, Portugal) with dubious specific assignment were Dobrotiviano de França, Espanha e, pouco depois, studied.
    [Show full text]
  • Trilobites and Biofacies in the Earlyœmiddle Ordovician of Baltica
    Estonian Journal of Earth Sciences, 2013, 62, 4, 205–230 doi: 10.3176/earth.2013.16 Trilobites and biofacies in the Early–Middle Ordovician of Baltica and a brief comparison with the Yangtze Plate Jan Bergström a, Helje Pärnasteb and Zhou Zhiyic a Department of Palaeozoology, Swedish Museum of Natural History, P.O. Box 5007, SE-104 05 Stockholm, Sweden b Institute of Geology at Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia; [email protected] c Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences, 39 East Beijing Road, Nanjing 210008, China; [email protected] Received 27 June 2012, accepted 9 September 2013 Abstract. Baltica except for Baltoscandia was subject to an early Tremadocian immigration of trilobites similar to that on other plates. In Baltoscandia the Olenid biofacies lingered on until it was replaced by the late Tremadocian Ceratopyge biofacies. For the rest of the time (Floian to mid-Darriwilian), Baltoscandia had fairly monotonous lithologies and faunas, constituting a single Asaphid biofacies with lateral variations expressed as differences largely in the relative abundance of species. In the South Urals immigration started in the earliest Tremadocian with fairly rich deep-water faunas. A poorer fauna is known from the Polar Urals. A slightly younger, sparse fauna is known from Paj-Khoj. Over most of the Ural border north of the South Urals there was a further development of first a Ceratopyge biofacies, then an eastern Asaphid biofacies, together with more siliciclastic input to the lithofacies and with fewer asaphids than in Baltoscandia. In the South Urals there was a development in the Darriwilian of a Cheirurid biofacies following the Ceratopyge biofacies.
    [Show full text]
  • Greenhouse−Icehouse Transition in the Late Ordovician Marks a Step Change in Extinction Regime in the Marine Plankton
    Greenhouse−icehouse transition in the Late Ordovician marks a step change in extinction regime in the marine plankton James S. Cramptona,b, Roger A. Coopera,1, Peter M. Sadlerc, and Michael Footed aDepartment of Paleontology, GNS Science, Lower Hutt 5040, New Zealand; bSchool of Geography, Environment and Earth Science, Victoria University of Wellington, Wellington 6140, New Zealand; cDepartment of Earth Sciences, University of California, Riverside, CA 92521; and dDepartment of the Geophysical Sciences, University of Chicago, Chicago, IL 60637 Edited by Andrew H. Knoll, Harvard University, Cambridge, MA, and approved December 22, 2015 (received for review September 25, 2015) Two distinct regimes of extinction dynamic are present in the major commonly are inferred to be good approximations of their true marine zooplankton group, the graptolites, during the Ordovician ranges in time, and empirical graptoloid range data have been and Silurian periods (486−418 Ma). In conditions of “background” used as examples of, or tests for, macroevolutionary rates (3, 4, extinction, which dominated in the Ordovician, taxonomic evolu- 11–13). Like most of the marine macroplankton, their evolu- tionary rates were relatively low and the probability of extinction tionary dynamics are interpreted to have depended closely on was highest among newly evolved species (“background extinction those of the microphytoplankton and bacterioplankton (13–16), mode”). A sharp change in extinction regime in the Late Ordovician the primary producers in the food web and which, in the modern marked the onset of repeated severe spikes in the extinction rate oceans, are sensitive indicators of oceanic circulation, nutrient curve; evolutionary turnover increased greatly in the Silurian, and flux, and global climate (1, 17); in addition, they depended on the extinction mode changed to include extinction that was inde- physical properties of the water mass such as temperature and pendent of species age (“high-extinction mode”).
    [Show full text]
  • Early Silurian Graptolites from Southeastern Alaska and Their Correlation with Graptolitic Sequences in North America and the Arctic
    Early Silurian Graptolites From Southeastern Alaska and Their Correlation With Graptolitic Sequences in North America and the Arctic GEOLOGICAL SURVEY PROFESSIONAL PAPER 653 Early Silurian Graptolites From Southeastern Alaska and Their Correlation With Graptolitic Sequences in North America and the Arctic By MICHAEL CHURKIN, JR., and CLAIRE CARTER GEOLOGICAL SURVEY PROFESSIONAL PAPER 653 Descriptions and illustrations of $9 species of Graptoloidea and correlation of the assemblages with other graptolitic successions in North America, the Soviet Arctic, and Great Britain UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1970 UNITED STATES DEPARTMENT OF THE INTERIOR WALTER J. HICKEL, Secretary GEOLOGICAL SURVEY William T. Pecora, Director Library of Congress Catalog-card No. 78-605140 For sale by the Superintendent of Documents, U.S. Government Printing Office Washington, D.C. 20402 - Price $1 (paper cover) CONTENTS Page Page Abstract-_ _________________________________________ 1 Standard graptolite zones for the Lower Silurian___-_._- 6 Introduction-______________________________________ 1 Lower Silurian graptolites in western North America-___ 6 Acknowledgments. ____ __--_-_________-____-__-______ 1 Systematic descriptions._____________________________ 13 Graptolites of the Descon Formation, southeastern Alaska__ _____________________________________ 2 Class Graptolithina.____________________________ 13 Description of the Descon Formation.________..___ 2 Order Graptoloidea_-___________---___-__-_- 13 Graywacke sandstone and banded
    [Show full text]