With a Key to the Complex in China and Adjacent Areas
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
On Further Specimens of the Pit Viper Trimeresurus Erythrurus
Journal of Animal Diversity Online ISSN 2676-685X Volume 3, Issue 1 (2021) Research Article http://dx.doi.org/10.52547/JAD.2021.3.1.7 On further specimens of the Pit viper Trimeresurus erythrurus (Cantor, 1839) (Squamata: Viperidae), with description of a topotype and range extension to the Godavari Basin, peninsular India Kaushik Deutiˡ, Ramaswamy Aengals², Sujoy Rahaˡ, Sudipta Debnathˡ, Ponnusamy Sathiyaselvam3 and Sumaithangi Rajagopalan Ganesh4* 1Zoological Survey of India, Herpetology Division, 27 JL Nehru Road, Kolkata 700016, West Bengal, India ²Zoological Survey of India, Sunderbans Field Research Center, Canning 743329, West Bengal, India 3Bombay Natural History Society, Hornbill House, Shaheed Bhagat Singh Marg, Mumbai 400023, India 4Chennai Snake Park, Rajbhavan post, Chennai 600022, Tamil Nadu, India *Corresponding author : [email protected] Abstract We report on a topotypical specimen of the spot-tailed pit viper Trimeresurus erythrurus recorded from Sunderbans in India and a distant, southerly, range extension from Kakinada mangroves, based on preserved (n= 1, seen in 2019) and live uncollected (n= 2; seen in 2014) specimens, respectively. The specimens Received: 26 December 2020 (n= 3) share the following characteristics: verdant green dorsum, yellow iris, Accepted: 27 January 2021 white ventrolateral stripes in males, 23 midbody scale rows, 161–172 ventrals, Published online: 17 July 2021 61–76 subcaudals, and reddish tail tip. Drawing on the published records, its apparent rarity within its type locality and lack of records from the Circar Coast of India, our study significantly adds to the knowledge of the distribution and morphology of this species. Being a medically important venomous snake, its presence in the Godavari mangrove basin calls for wider dissemination of this information among medical practitioners, in addition to fundamental researchers like academics and herpetologists. -
Epidemiology of Snakebites from a General Hospital in Singapore: a 5-Year Retrospective Review (2004-2008) 1 Hock Heng Tan, MBBS, FRCS A&E (Edin), FAMS
640 Epidemiology of Snakebites—Hock Heng Tan Original Article Epidemiology of Snakebites from A General Hospital in Singapore: A 5-year Retrospective Review (2004-2008) 1 Hock Heng Tan, MBBS, FRCS A&E (Edin), FAMS Abstract Introduction: This is a retrospective study on the epidemiology of snakebites that were presented to an emergency department (ED) between 2004 and 2008. Materials and Methods: Snakebite cases were identified from International Classification of Diseases (ICD) code E905 and E906, as well as cases referred for eye injury from snake spit and records of antivenom use. Results: Fifty-two cases were identified: 13 patients witnessed the snake biting or spitting at them, 22 patients had fang marks and/or clinical features of envenomations and a snake was seen and the remaining 17 patients did not see any snake but had fang marks suggestive of snakebite. Most of the patients were young (mean age 33) and male (83%). The three most commonly identified snakes were cobras (7), pythons (4) and vipers (3). One third of cases occurred during work. Half of the bites were on the upper limbs and about half were on the lower limbs. One patient was spat in the eye by a cobra. Most of the patients (83%) arrived at the ED within 4 hours of the bite. Pain and swelling were the most common presentations. There were no significant systemic effects reported. Two patients had infection and 5 patients had elevated creatine kinase (>600U/L). Two thirds of the patients were admitted. One patient received antivenom therapy and 5 patients had some form of surgical intervention, of which 2 had residual disability. -
New Records of Snakes (Squamata: Serpentes) from Hoa Binh Province, Northwestern Vietnam
Bonn zoological Bulletin 67 (1): 15–24 May 2018 New records of snakes (Squamata: Serpentes) from Hoa Binh Province, northwestern Vietnam Truong Quang Nguyen1,2,*, Tan Van Nguyen 1,3, Cuong The Pham1,2, An Vinh Ong4 & Thomas Ziegler5 1 Institute of Ecology and Biological Resources, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Hanoi, Vietnam 2 Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Hanoi, Vietnam 3 Save Vietnam’s Wildlife, Cuc Phuong National Park, Ninh Binh Province, Vietnam 4 Vinh University, 182 Le Duan Road, Vinh City, Nghe An Province, Vietnam 5 AG Zoologischer Garten Köln, Riehler Strasse 173, D-50735 Cologne, Germany * Corresponding author. E-mail: [email protected] Abstract. We report nine new records of snakes from Hoa Binh Province based on a reptile collection from Thuong Tien, Hang Kia-Pa Co, Ngoc Son-Ngo Luong nature reserves, and Tan Lac District, comprising six species of Colubri- dae (Dryocalamus davisonii, Euprepiophis mandarinus, Lycodon futsingensis, L. meridionalis, Sibynophis collaris and Sinonatrix aequifasciata), one species of Pareatidae (Pareas hamptoni) and two species of Viperidae (Protobothrops mu- crosquamatus and Trimeresurus gumprechti). In addition, we provide an updated list of 43 snake species from Hoa Binh Province. The snake fauna of Hoa Binh contains some species of conservation concern with seven species listed in the Governmental Decree No. 32/2006/ND-CP (2006), nine species listed in the Vietnam Red Data Book (2007), and three species listed in the IUCN Red List (2018). Key words. New records, snakes, taxonomy, Hoa Binh Province. -
WHO Guidance on Management of Snakebites
GUIDELINES FOR THE MANAGEMENT OF SNAKEBITES 2nd Edition GUIDELINES FOR THE MANAGEMENT OF SNAKEBITES 2nd Edition 1. 2. 3. 4. ISBN 978-92-9022- © World Health Organization 2016 2nd Edition All rights reserved. Requests for publications, or for permission to reproduce or translate WHO publications, whether for sale or for noncommercial distribution, can be obtained from Publishing and Sales, World Health Organization, Regional Office for South-East Asia, Indraprastha Estate, Mahatma Gandhi Marg, New Delhi-110 002, India (fax: +91-11-23370197; e-mail: publications@ searo.who.int). The designations employed and the presentation of the material in this publication do not imply the expression of any opinion whatsoever on the part of the World Health Organization concerning the legal status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. Dotted lines on maps represent approximate border lines for which there may not yet be full agreement. The mention of specific companies or of certain manufacturers’ products does not imply that they are endorsed or recommended by the World Health Organization in preference to others of a similar nature that are not mentioned. Errors and omissions excepted, the names of proprietary products are distinguished by initial capital letters. All reasonable precautions have been taken by the World Health Organization to verify the information contained in this publication. However, the published material is being distributed without warranty of any kind, either expressed or implied. The responsibility for the interpretation and use of the material lies with the reader. In no event shall the World Health Organization be liable for damages arising from its use. -
Trimeresurus Sp
Trimeresurus sp. Copyright: Auszug aus Datenbank der Toxikologischen Abteilung der II. Medizinischen Klinik München; Toxinfo von Kleber JJ , Ganzert M, Zilker Th; Ausgabe 2002; erstellt Wagner Ph, Kleber JJ; Korthals Altes 1999 TOXIKOLOGIE: bei allen Arten von Trimeresurus Sp kommt es immer zu Lokalsymptomen bis Nekrose; zu rechnen ist mit außerdem mit Gerinnungsstörungen, Schocksymptomen T. ALBOLABRIS: massive Lokalsymptome, Gerinnungsstörung leicht bei 30%, stark bei 10% (16); Letalität in Thailand 3% (12) T. FLAVOVIRIDIS: vor Antiserum-Zeit 15% Letalität (12) starke Schwellung + Nekrosen, Schock, keine Gerinnungsstörungen bisher berichtet (11,12) T. GRAMINEUS: Schwellung; keine Nekrosen, keine Gerinnungsstörungen berichtet (1,14) T. KANBURIENSIS: Schwellung, Schock, Gerinnungsstörung (12) T. MUCROSQUAMATUS: Schwellung, Gerinnungsstörungen (12) T. POPEIORUM: Lokalsymptome; sehr geringe Gerinnungsstörung mit normalem Fibrinogen + Thrombo (15) T. PURPUREOMACULATUS: Schwellung, Nekrose, Gerinnungsstörung bis 40% (12,15) T. WAGLERI: Schwellung, Gerinnungsstörung (15) SYMPTOME: erste Vergiftungssymptome direkt nach dem Biß (sofortiger Schmerz, Schwellung entwickelt sich in den ersten 2-4 h) (2); meist starke Schwellung (häufig halbes bis ganzes Glied), bis ca. eine Woche anhaltend; Lymphangitis und schmerzhafte Lymphknotenschwellung (1,2,5,6) ; lokale subkutane Hämorrhagie, gelegentlich Blasenbildung und Hautnekrosen (1,2); bei T. flavoviridis auch Muskelnekrosen und Kompartmentsyndrom (3,12) MUND: lokal nach Giftaussaugen Schwellung an Lippe + Zunge bei T. albolabris (12) COR: selten Butdruckabfall, Schock (11,12); selten EKG-Veränderungen bei T. mucrosquamatus (12) LABOR: Thrombin ähnliche Aktivität führt zur Defibrinierung bis Verbrauchskoagulopathie mit Hypo- bis Afibrinogenämie, Thrombopenie (auch erst nach 12h Latenz) (1,2,4,13,16); Aktivierung der Fibrinolyse mit später Plasminerniedrigung (16); Leukozytose SONST: häufig Übelkeit, Erbrechen, Bauchschmerzen (11, 12); selten Nierenschädigung berichtet bei T. -
Zootaxa,Revision of the Tropidolaemus
Zootaxa 1644: 1–40 (2007) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2007 · Magnolia Press ISSN 1175-5334 (online edition) Revision of the Tropidolaemus wagleri-complex (Serpentes: Viperidae: Crotali- nae). I. Definition of included taxa and redescription of Tropidolaemus wagleri (Boie, 1827) GERNOT VOGEL1, PATRICK DAVID2, MARIO LUTZ3, JOHAN VAN ROOIJEN4 & NICOLAS VIDAL5 1 Society for Southeast Asian Herpetology, Im Sand 3, D-69115 Heidelberg, Germany E-mail: [email protected] 2 Département Systématique et Evolution, USM 602 Taxonomie-collection – Reptiles & Amphibiens, Case postale 30, Muséum National d’Histoire Naturelle, 25 rue Cuvier, F-75231 Paris Cedex 05, France, E-mail: [email protected] 3 Zoological Institute of HerpaWorld inc., Paradise Reptile Zoo, 5203 Puerto Galera, Oriental Mindoro, Philippines E-mail: [email protected] 4 Da Costastraat 99, 2321 AM Leiden, The Netherlands E-mail: [email protected] 5 Département Systématique et Evolution, UMR 7138, Systématique, Evolution, Adaptation, Case Postale 26, Muséum National d’His- toire Naturelle, 57 rue Cuvier, F-75231 Paris Cedex 05, France E-mail: [email protected] TABLE OF CONTENTS ABSTRACT…………………………………………………………………………………………….................... .........1 INTRODUCTION…………………………………………………………………………………………….................... 2 MATERIAL AND METHODS……………………………………………………………………………….................... 3 HISTORICAL ANALYSIS…………………………………………………………………………………….................. 6 TAXONOMIC RESULTS................. …………………………………………………………………………………….12 -
A Molecular Phylogeny of the Lamprophiidae Fitzinger (Serpentes, Caenophidia)
Zootaxa 1945: 51–66 (2008) ISSN 1175-5326 (print edition) www.mapress.com/zootaxa/ ZOOTAXA Copyright © 2008 · Magnolia Press ISSN 1175-5334 (online edition) Dissecting the major African snake radiation: a molecular phylogeny of the Lamprophiidae Fitzinger (Serpentes, Caenophidia) NICOLAS VIDAL1,10, WILLIAM R. BRANCH2, OLIVIER S.G. PAUWELS3,4, S. BLAIR HEDGES5, DONALD G. BROADLEY6, MICHAEL WINK7, CORINNE CRUAUD8, ULRICH JOGER9 & ZOLTÁN TAMÁS NAGY3 1UMR 7138, Systématique, Evolution, Adaptation, Département Systématique et Evolution, C. P. 26, Muséum National d’Histoire Naturelle, 43 Rue Cuvier, Paris 75005, France. E-mail: [email protected] 2Bayworld, P.O. Box 13147, Humewood 6013, South Africa. E-mail: [email protected] 3 Royal Belgian Institute of Natural Sciences, Rue Vautier 29, B-1000 Brussels, Belgium. E-mail: [email protected], [email protected] 4Smithsonian Institution, Center for Conservation Education and Sustainability, B.P. 48, Gamba, Gabon. 5Department of Biology, 208 Mueller Laboratory, Pennsylvania State University, University Park, PA 16802-5301 USA. E-mail: [email protected] 6Biodiversity Foundation for Africa, P.O. Box FM 730, Bulawayo, Zimbabwe. E-mail: [email protected] 7 Institute of Pharmacy and Molecular Biotechnology, University of Heidelberg, INF 364, D-69120 Heidelberg, Germany. E-mail: [email protected] 8Centre national de séquençage, Genoscope, 2 rue Gaston-Crémieux, CP5706, 91057 Evry cedex, France. E-mail: www.genoscope.fr 9Staatliches Naturhistorisches Museum, Pockelsstr. 10, 38106 Braunschweig, Germany. E-mail: [email protected] 10Corresponding author Abstract The Elapoidea includes the Elapidae and a large (~60 genera, 280 sp.) and mostly African (including Madagascar) radia- tion termed Lamprophiidae by Vidal et al. -
On Trimeresurus Sumatranus
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/266262458 On Trimeresurus sumatranus (Raffles, 1822), with the designation of a neotype and the description of a new species of pitviper from Sumatra (Squamata: Viperidae: Crotalinae) Article in Amphibian and Reptile Conservation · September 2014 CITATIONS READS 4 360 3 authors, including: Gernot Vogel Irvan Sidik Independent Researcher Indonesian Institute of Sciences 102 PUBLICATIONS 1,139 CITATIONS 12 PUBLICATIONS 15 CITATIONS SEE PROFILE SEE PROFILE Some of the authors of this publication are also working on these related projects: Save Vietnam Biodiversity View project Systematics of the genus Pareas View project All content following this page was uploaded by Gernot Vogel on 01 October 2014. The user has requested enhancement of the downloaded file. Comparative dorsal view of the head of Trimeresurus gunaleni spec. nov. (left) and T. sumatranus (right). Left from above: male, female (holotype), male, all alive, from Sumatra Utara Province, Sumatra. Right: adult female alive from Bengkulu Province, Su- matra, adult male alive from Bengkulu Province, Sumatra, preserved female from Borneo. Photos: N. Maury. Amphib. Reptile Conserv. | amphibian-reptile-conservation.org (1) September 2014 | Volume 8 | Number 2 | e80 Copyright: © 2014 Vogel et al. This is an open-access article distributed under the terms of the Creative Commons Attribution–NonCommercial–NoDerivs 3.0 Unported License, Amphibian & Reptile Conservation which permits -
Conservation of Herpetofauna in Bantimurung Bulusaraung National Park, South Sulawesi, Indonesia
CONSERVATION OF HERPETOFAUNA IN BANTIMURUNG BULUSARAUNG NATIONAL PARK, SOUTH SULAWESI, INDONESIA Final Report 2008 By: M. Irfansyah Lubis, Wempy Endarwin, Septiantina D. Riendriasari, Suwardiansah, Adininggar U. Ul-Hasanah, Feri Irawan, Hadijah Aziz K., and Akmal Malawi Departemen Konservasi Sumberdaya Hutan Fakultas Kehutanan Institut Pertanian Bogor Bogor Indonesia 16000 Tel : +62 – 251 – 621 947 Fax: +62 – 251 – 621 947 Email: [email protected] (team leader) Conservation of Herpetofauna in Bantimurung Bulusaraung National Park, South Sulawesi, Indonesia Executive Summary Sulawesi is an island with complex geological and geographical history, thus resulting in a complex array in biodiversity. Bantimurung Bulusaraung National Park (BabulNP) was gazetted in 2004 to protect the region’s biodiversity and karst ecosystem. However, the park’s herpetofauna is almost unknown. This project consists of three programs: herpetofauna survey in BabulNP, herpetofauna conservation education to local schools, and herpetofauna training for locals and was conducted from July to September 2007. Based on the survey conducted in six sites in the park, we recorded 12 amphibian and 25 reptile species. Five of those species (Bufo celebensis, Rana celebensis, Rhacophorus monticola, Sphenomorphus tropidonotus, and Calamaria muelleri) are endemic to Sulawesi. Two species of the genus Oreophryne are still unidentified. We visited six schools around the park for our herpetofauna conservation education program. The Herpetofauna Observation Training was held over four days with 17 participants from BabulNP staff, local NGOs, school teachers, and Hasanuddin University students. i Conservation of Herpetofauna in Bantimurung Bulusaraung National Park, South Sulawesi, Indonesia Acknowledgements This project would not have been possible without the contribution of many persons. We would like to express our gratitude to BP Conservation Leadership Programme for providing funding. -
Venom Protein of the Haematotoxic Snakes Cryptelytrops Albolabris
S HORT REPORT ScienceAsia 37 (2011): 377–381 doi: 10.2306/scienceasia1513-1874.2011.37.377 Venom protein of the haematotoxic snakes Cryptelytrops albolabris, Calloselasma rhodostoma, and Daboia russelii siamensis Orawan Khow, Pannipa Chulasugandha∗, Narumol Pakmanee Research and Development Department, Queen Saovabha Memorial Institute, Patumwan, Bangkok 10330 Thailand ∗Corresponding author, e-mail: pannipa [email protected] Received 1 Dec 2010 Accepted 6 Sep 2011 ABSTRACT: The protein concentration and protein pattern of crude venoms of three major haematotoxic snakes of Thailand, Cryptelytrops albolabris (green pit viper), Calloselasma rhodostoma (Malayan pit viper), and Daboia russelii siamensis (Russell’s viper), were studied. The protein concentrations of all lots of venoms studied were comparable. The chromatograms, from reversed phase high performance liquid chromatography, of C. albolabris venom and C. rhodostoma venom were similar but they were different from the chromatogram of D. r. siamensis venom. C. rhodostoma venom showed the highest number of protein spots on 2-dimensional gel electrophoresis (pH gradient 3–10), followed by C. albolabris venom and D. r. siamensis venom, respectively. The protein spots of C. rhodostoma venom were used as reference proteins in matching for similar proteins of haematotoxic snakes. C. albolabris venom showed more similar protein spots to C. rhodostoma venom than D. r. siamensis venom. The minimum coagulant dose could not be determined in D. r. siamensis venom. KEYWORDS: 2-dimensional gel electrophoresis, reverse phase high performance liquid chromatography, minimum coag- ulant dose INTRODUCTION inducing defibrination 5–7. The venom of D. r. sia- mensis directly affects factor X and factor V of the In Thailand there are 163 snake species, 48 of which haemostatic system 8,9 . -
The Herpetological Journal
Volume 14, Number 1 January 2004 ISSN 0268-0130 THE HERPETOLOGICAL JOURNAL Published by the Indexed in BRITISH HERPETOLOGJCAL SOCIETY Current Contents HERPETOLOGICAL JOURNAL, Vol. 14, pp. 21-33 (2004) REASSESSMENT OF THE VALIDITY AND DIAGNOSIS OF THE PITVIPER TRIMERESUR US VE NUSTUS VOGEL, 1991 ANITA MALHOTRA AND ROGER S. THORPE School of Biological Sciences, University of Wa les Bangor, Bangor, UK Trimeresurus venustus Vogel, I 99 I was described from southern Thailand in I 991 ' and distinguished from the similar T. kanburiensis primarily by the following characters: 21 scale rows at midbody rather than I 9 and less irregular and indented supraoculars. However, very few specimens of T. kanburiensis were known at the time of this description, and the name T. venustus has not been universally accepted. Recently, live specimens from the type locality of T. kanburiensis in western Th ailand have become available, allowing a reassessment of the status -of the southern Thai population. Phylogenetic analysis of two mitochondrial gene regions indicated that specimens from south Thailand are genetically quite distinct from the specimen from the type locality, and the former are more closely related to T. macrops than to T. kanburiensis. We present a multivariate morphometric analysis of the six specimens of T. kanburiensis from the type locality that are now known and twenty specimens from southern Thai land. Despite the small sample size, it is clear that some of the diagnostic characteristics used to define T. venustus are invalid. We conclude that the current evidence indicates that T. venustus is a valid species, and present new diagnostic characters to separate it from T. -
Venomics of Trimeresurus (Popeia) Nebularis, the Cameron Highlands Pit Viper from Malaysia: Insights Into Venom Proteome, Toxicity and Neutralization of Antivenom
toxins Article Venomics of Trimeresurus (Popeia) nebularis, the Cameron Highlands Pit Viper from Malaysia: Insights into Venom Proteome, Toxicity and Neutralization of Antivenom Choo Hock Tan 1,*, Kae Yi Tan 2 , Tzu Shan Ng 2, Evan S.H. Quah 3 , Ahmad Khaldun Ismail 4 , Sumana Khomvilai 5, Visith Sitprija 5 and Nget Hong Tan 2 1 Department of Pharmacology, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia; 2 Department of Molecular Medicine, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia; [email protected] (K.Y.T.); [email protected] (T.S.N.); [email protected] (N.H.T.) 3 School of Biological Sciences, Universiti Sains Malaysia, 11800 Minden, Penang, Malaysia; [email protected] 4 Department of Emergency Medicine, Universiti Kebangsaan Malaysia Medical Centre, 56000 Kuala Lumpur, Malaysia; [email protected] 5 Thai Red Cross Society, Queen Saovabha Memorial Institute, Bangkok 10330, Thailand; [email protected] (S.K.); [email protected] (V.S.) * Correspondence: [email protected] Received: 31 December 2018; Accepted: 30 January 2019; Published: 6 February 2019 Abstract: Trimeresurus nebularis is a montane pit viper that causes bites and envenomation to various communities in the central highland region of Malaysia, in particular Cameron’s Highlands. To unravel the venom composition of this species, the venom proteins were digested by trypsin and subjected to nano-liquid chromatography-tandem mass spectrometry (LC-MS/MS) for proteomic profiling. Snake venom metalloproteinases (SVMP) dominated the venom proteome by 48.42% of total venom proteins, with a characteristic distribution of P-III: P-II classes in a ratio of 2:1, while P-I class was undetected.