PSEUDO-REDUCTIVE AND QUASI-REDUCTIVE GROUPS OVER NON-ARCHIMEDEAN LOCAL FIELDS Maarten Solleveld IMAPP, Radboud Universiteit Heyendaalseweg 135, 6525AJ Nijmegen, the Netherlands email:
[email protected] Abstract. Among connected linear algebraic groups, quasi-reductive groups generalize pseudo-reductive groups, which in turn form a useful relaxation of the notion of reductivity. We study quasi-reductive groups over non-archimedean local fields, focusing on aspects involving their locally compact topology. For such groups we construct valuated root data (in the sense of Bruhat– Tits) and we make them act nicely on affine buildings. We prove that they admit Iwasawa and Cartan decompositions, and we construct small compact open subgroups with an Iwahori decomposition. We also initiate the smooth representation theory of quasi-reductive groups. Among others, we show that their irreducible smooth representations are uni- formly admissible, and that all these groups are of type I. Finally we discuss how much of these results remains valid if we omit the connectedness assumption on our linear algebraic groups. Contents Introduction 2 1. Notations and preliminaries 6 2. Pseudo-reductive groups 8 2.1. Structure over non-archimedean local fields 10 2.2. Actions on affine buildings 15 2.3. The Iwasawa and Cartan decompositions 18 3. Quasi-reductive groups 22 3.1. Valuated root data 24 3.2. Affine buildings 28 3.3. Compact open subgroups 31 3.4. Decompositions 35 arXiv:1706.07644v2 [math.GR] 10 Oct 2017 4. Representation theory 39 4.1. Parabolic induction and restriction 39 4.2. Uniform admissibility 42 5. Disconnected groups 45 5.1.