April 2010 © Leo Triplet and the Leo I Group
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
HST/WFPC2 Imaging of the Circumnuclear Structure of Llagns
HST/WFPC2 imaging of the circumnuclear structure of LLAGNs. I Data and nuclear morphology1 Rosa M. Gonz´alez Delgado1, Enrique P´erez1, Roberto Cid Fernandes2, Henrique Schmitt3, (1) Instituto de Astrof´ısica de Andaluc´ıa(CSIC), P.O. Box 3004, 18080 Granada, Spain ([email protected]; [email protected]) (2) Depto. de F´ısica-CFM, Universidade Federal de Santa Catarina, C.P. 476, 88040-900, Florian´opolis, SC, Brazil ([email protected]) (3) Remote Sensing Division, Naval Research Laboratory, Code 7210, 4555 Overlook Avenue, Washington, DC 20375 ([email protected]) (4) Interferometrics, Inc., 13454 Sunrise Valley Drive, Suite 240, Herndon, VA20171 ABSTRACT In several studies of Low Luminosity Active Galactic Nuclei (LLAGNs), we have characterized the properties of the stellar populations in LINERs and LINER/HII Transition Objects (TOs). We have found a numerous class of galac- tic nuclei which stand out because of their conspicuous 0.1–1 Gyr populations. These nuclei were called ”Young-TOs” since they all have TO-like emission line ratios. To advance our knowledge of the nature of the central source in LLAGNs and its relation with stellar clusters, we are carrying out several imaging projects with the Hubble Space Telescope (HST) at near-UV, optical and near-IR wave- lengths. In this paper, we present the first results obtained with observations of the central regions of 57 LLAGNs imaged with the WFPC2 through any of arXiv:0710.4450v1 [astro-ph] 24 Oct 2007 the V (F555W, F547M, F614W) and I (F791W, F814W) filters that are avail- able in the HST archive. -
April Constellations of the Month
April Constellations of the Month Leo Small Scope Objects: Name R.A. Decl. Details M65! A large, bright Sa/Sb spiral galaxy. 7.8 x 1.6 arc minutes, magnitude 10.2. Very 11hr 18.9m +13° 05’ (NGC 3623) high surface brighness showing good detail in medium sized ‘scopes. M66! Another bright Sb galaxy, only 21 arc minutes from M65. Slightly brighter at mag. 11hr 20.2m +12° 59’ (NGC 3627) 9.7, measuring 8.0 x 2.5 arc minutes. M95 An easy SBb barred spiral, 4 x 3 arc minutes in size. Magnitude 10.5, with 10hr 44.0m +11° 42’ a bright central core. The bar and outer ring of material will require larger (NGC 3351) aperature and dark skies. M96 Another bright Sb spiral, about 42 arc minutes east of M95, but larger and 10hr 46.8m +11° 49’ (NGC 3368) brighter. 6 x 4 arc minutes, magnitude 10.1. Located about 48 arc minutes NNE of M96. This small elliptical galaxy measures M105 only 2 x 2.1 arc minutes, but at mag. 10.3 has very high surface brightness. 10hr 47.8m +12° 35’ (NGC 3379) Look for NGC 3384! (110NGC) and NGC 3389 (mag 11.0 and 12.2) which form a small triangle with M105. NGC 3384! 10hr 48.3m +12° 38’ See comment for M105. The brightest galaxy in Leo, this Sb/Sc spiral galaxy shines at mag. 9.5. Look for NGC 2903!! 09hr 32.2m +21° 30’ a hazy patch 11 x 4.7 arc minutes in size 1.5° south of l Leonis. -
A Nuclear Molecular Outflow in the Seyfert Galaxy NGC 3227
Astronomy & Astrophysics manuscript no. ALMANGC3227_final c ESO 2019 June 18, 2019 A nuclear molecular outflow in the Seyfert galaxy NGC 3227 A. Alonso-Herrero1, S. García-Burillo2, M. Pereira-Santaella3, R. I. Davies4, F. Combes5, M. Vestergaard6; 7, S. I. Raimundo6, A. Bunker3, T. Díaz-Santos8, P. Gandhi9, I. García-Bernete10, E. K. S. Hicks11, S. F. Hönig8, L. K. Hunt12, M. Imanishi13; 14, T. Izumi13, N. A. Levenson15, W. Maciejewski16, C. Packham17; 13, C. Ramos Almeida18; 19, C. Ricci8; 20, D. Rigopoulou3, P. F. Roche3, D. Rosario21, M. Schartmann22; 4, A. Usero2, and M. J. Ward21 1 Centro de Astrobiología (CAB, CSIC-INTA), ESAC Campus, E-28692 Villanueva de la Cañada, Madrid, Spain e-mail: [email protected] 2 Observatorio de Madrid, OAN-IGN, Alfonso XII, 3, E-28014 Madrid, Spain 3 Department of Physics, University of Oxford, Keble Road, Oxford OX1 3RH, UK 4 Max Planck Institut für extraterrestrische Physik Postfach 1312, D-85741 Garching bei München, Germany 5 LERMA, Obs. de Paris, PSL Research Univ., Collége de France, CNRS, Sorbonne Univ., UPMC, Paris, France 6 DARK, The Niels Bohr Institute, University of Copenhagen, Vibenshuset, Lyngbyvej 2, DK-2100 Copenhagen O., Denmark 7 Steward Observatory, University of Arizona, 933 N. Cherry Avenue, Tucson, Arizona, USA 8 Núcleo de Astronomía de la Facultad de Ingeniería, Universidad Diego Portales, Av. Ejército Libertador 441, Santiago, Chile 9 Department of Physics & Astronomy, University of Southampton, Hampshire SO17 1BJ, Southampton, UK 10 Instituto de Física de Cantabria, CSIC-Universidad de Cantabria, E-39005 Santander, Spain 11 Department of Physics & Astronomy, University of Alaska Anchorage, AK 99508-4664, USA 12 INAF-Osservatorio Astrofisico di Arcetri, Largo E. -
A Search For" Dwarf" Seyfert Nuclei. VII. a Catalog of Central Stellar
TO APPEAR IN The Astrophysical Journal Supplement Series. Preprint typeset using LATEX style emulateapj v. 26/01/00 A SEARCH FOR “DWARF” SEYFERT NUCLEI. VII. A CATALOG OF CENTRAL STELLAR VELOCITY DISPERSIONS OF NEARBY GALAXIES LUIS C. HO The Observatories of the Carnegie Institution of Washington, 813 Santa Barbara St., Pasadena, CA 91101 JENNY E. GREENE1 Department of Astrophysical Sciences, Princeton University, Princeton, NJ ALEXEI V. FILIPPENKO Department of Astronomy, University of California, Berkeley, CA 94720-3411 AND WALLACE L. W. SARGENT Palomar Observatory, California Institute of Technology, MS 105-24, Pasadena, CA 91125 To appear in The Astrophysical Journal Supplement Series. ABSTRACT We present new central stellar velocity dispersion measurements for 428 galaxies in the Palomar spectroscopic survey of bright, northern galaxies. Of these, 142 have no previously published measurements, most being rela- −1 tively late-type systems with low velocity dispersions (∼<100kms ). We provide updates to a number of literature dispersions with large uncertainties. Our measurements are based on a direct pixel-fitting technique that can ac- commodate composite stellar populations by calculating an optimal linear combination of input stellar templates. The original Palomar survey data were taken under conditions that are not ideally suited for deriving stellar veloc- ity dispersions for galaxies with a wide range of Hubble types. We describe an effective strategy to circumvent this complication and demonstrate that we can still obtain reliable velocity dispersions for this sample of well-studied nearby galaxies. Subject headings: galaxies: active — galaxies: kinematics and dynamics — galaxies: nuclei — galaxies: Seyfert — galaxies: starburst — surveys 1. INTRODUCTION tors, apertures, observing strategies, and analysis techniques. -
Accretion-Inhibited Star Formation in the Warm Molecular Disk of the Green-Valley Elliptical Galaxy Ngc 3226?
The Astrophysical Journal, 797:117 (17pp), 2014 December 20 doi:10.1088/0004-637X/797/2/117 C 2014. The American Astronomical Society. All rights reserved. Printed in the U.S.A. ACCRETION-INHIBITED STAR FORMATION IN THE WARM MOLECULAR DISK OF THE GREEN-VALLEY ELLIPTICAL GALAXY NGC 3226? P. N. Appleton1, C. Mundell2, T. Bitsakis1,3, M. Lacy4, K. Alatalo1, L. Armus5, V. Charmandaris6,7,8, P.-A. Duc9, U. Lisenfeld10, and P. Ogle11 1 NASA Herschel Science Center, Infrared Processing and Analysis Center, Caltech, 770S Wilson Avenue, Pasadena, CA 91125, USA; [email protected] 2 Astrophysics Research Institute, John Moores University, Liverpool Science Park, 146 Brownlow Hill, Liverpool L3 5RF, UK 3 Instituto de Astronomia, National Autonomous University of Mexico, PO 70-264, 04510 Mexico D.F., Mexico 4 NRAO, Charlottesville, VA, USA 5 Spitzer NASA Herschel Science Center, 1200 East California Boulevard, Caltech, Pasadena, CA 91125, USA 6 Department of Physics, University of Crete, GR-71003 Heraklion, Greece 7 Institute for Astronomy, Astrophysics, Space Applications & Remote Sensing, National Observatory of Athens, GR-15236 Penteli, Greece 8 Chercheur Associe,´ Observatoire de Paris, F-75014, Paris, France 9 Service d’Astrophysique, Laboratoire AIM, CEA-Saclay, Orme des Merisiers, Bat 709, F-91191 Gif sur Yvette, France 10 Dept. Fisica Teorica y del Cosmos, University of Granada, Edifica Mecenas, Granada, Spain 11 NASA Extragalactic Database, IPAC, Caltech, 1200 East California Boulevard, Caltech, Pasadena, CA 91125, USA Received 2014 June 17; accepted 2014 October 26; published 2014 December 5 ABSTRACT We present archival Spitzer photometry and spectroscopy and Herschel photometry of the peculiar “Green Valley” elliptical galaxy NGC 3226. -
Synapses of Active Galactic Nuclei: Comparing X-Ray and Optical Classifications Using Artificial Neural Networks?
A&A 567, A92 (2014) Astronomy DOI: 10.1051/0004-6361/201322592 & c ESO 2014 Astrophysics Synapses of active galactic nuclei: Comparing X-ray and optical classifications using artificial neural networks? O. González-Martín1;2;??, D. Díaz-González3, J. A. Acosta-Pulido1;2, J. Masegosa4, I. E. Papadakis5;6, J. M. Rodríguez-Espinosa1;2, I. Márquez4, and L. Hernández-García4 1 Instituto de Astrofísica de Canarias (IAC), C/Vía Láctea s/n, 38205 La Laguna, Spain e-mail: [email protected] 2 Departamento de Astrofísica, Universidad de La Laguna (ULL), 38205 La Laguna, Spain 3 Shidix Technologies, 38320, La Laguna, Spain 4 Instituto de Astrofísica de Andalucía, CSIC, C/ Glorieta de la Astronomía s/n, 18005 Granada, Spain 5 Physics Department, University of Crete, PO Box 2208, 710 03 Heraklion, Crete, Greece 6 IESL, Foundation for Research and Technology, 711 10 Heraklion, Crete, Greece Received 2 September 2013 / Accepted 3 April 2014 ABSTRACT Context. Many classes of active galactic nuclei (AGN) have been defined entirely through optical wavelengths, while the X-ray spectra have been very useful to investigate their inner regions. However, optical and X-ray results show many discrepancies that have not been fully understood yet. Aims. The main purpose of the present paper is to study the synapses (i.e., connections) between X-ray and optical AGN classifications. Methods. For the first time, the newly implemented efluxer task allowed us to analyse broad band X-ray spectra of a sample of emission-line nuclei without any prior spectral fitting. Our sample comprises 162 spectra observed with XMM-Newton/pn of 90 lo- cal emission line nuclei in the Palomar sample. -
SAC's 110 Best of the NGC
SAC's 110 Best of the NGC by Paul Dickson Version: 1.4 | March 26, 1997 Copyright °c 1996, by Paul Dickson. All rights reserved If you purchased this book from Paul Dickson directly, please ignore this form. I already have most of this information. Why Should You Register This Book? Please register your copy of this book. I have done two book, SAC's 110 Best of the NGC and the Messier Logbook. In the works for late 1997 is a four volume set for the Herschel 400. q I am a beginner and I bought this book to get start with deep-sky observing. q I am an intermediate observer. I bought this book to observe these objects again. q I am an advance observer. I bought this book to add to my collect and/or re-observe these objects again. The book I'm registering is: q SAC's 110 Best of the NGC q Messier Logbook q I would like to purchase a copy of Herschel 400 book when it becomes available. Club Name: __________________________________________ Your Name: __________________________________________ Address: ____________________________________________ City: __________________ State: ____ Zip Code: _________ Mail this to: or E-mail it to: Paul Dickson 7714 N 36th Ave [email protected] Phoenix, AZ 85051-6401 After Observing the Messier Catalog, Try this Observing List: SAC's 110 Best of the NGC [email protected] http://www.seds.org/pub/info/newsletters/sacnews/html/sac.110.best.ngc.html SAC's 110 Best of the NGC is an observing list of some of the best objects after those in the Messier Catalog. -
Arxiv:Astro-Ph/0310277V1 9 Oct 2003 Tdb H Soito Fuieste O Eerhi Astr in Foundation
The Globular Cluster Systems of the Early-type Galaxies NGC 3379, NGC 4406, and NGC 4594 and Implications for Galaxy Formation Katherine L. Rhode1,2 Department of Astronomy, Yale University, New Haven, CT 06520 [email protected] Stephen E. Zepf1 Department of Physics & Astronomy, Michigan State University, East Lansing, MI 48824 [email protected] ABSTRACT We have investigated the global properties of the globular cluster (GC) systems of three early-type galaxies: the Virgo cluster elliptical NGC 4406, the field elliptical NGC 3379, and the field S0 galaxy NGC 4594. These galaxies were observed as part of a wide-field CCD survey of the GC populations of a large sample of normal galaxies beyond the Local Group. Images obtained with the Mosaic detector on the Kitt Peak 4-m telescope provide radial coverage to at least 24′, or ∼70−100 kpc. We use BV R photometry and image classification to select GC candidates and thereby reduce con- tamination from non-GCs, and HST WFPC2 data to help quantify the contamination that remains. The GC systems of all three galaxies have color distributions with at least two peaks and show modest negative color gradients. The proportions of blue GCs range from 60−70% of the total populations. The GC specific frequency (SN ) of arXiv:astro-ph/0310277v1 9 Oct 2003 NGC 4406 is 3.5±0.5, ∼20% lower than past estimates and nearly identical to SN for the other Virgo cluster elliptical included in our survey, NGC 4472. SN for NGC 3379 and NGC 4594 are 1.2±0.3 and 2.1±0.3, respectively; these are similar to past values but the errors have been reduced by a factor of 2−3. -
Accretion-Inhibited Star Formation in the Warm Molecular Disk of The
Accretion-Inhibited Star formation in the Warm Molecular Disk of the Green-valley Elliptical Galaxy NGC 3226? P. N. Appleton1, C. Mundell2, T. Bitsakis1,3, M. Lacy4, K. Alatalo1, L. Armus5, V. Charmandaris6,7,8, P-A. Duc9, U. Lisenfeld10, P. Ogle11 Received ; accepted 1NASA Herschel Science Center, Infrared Processing and Analysis Center, Caltech, 770S Wilson Av., Pasadena, CA 91125. [email protected] 2Astrophysics Research Institute, John Moores University, Liverpool Science Park, 146 Brownlow Hill, Liverpool L3 5RF, UK 3Instituto de Astronomia, National Autonomous University of Mexico, P. O. 70-264, 04510 D. F., Mexico 4NRAO, Charlottesville 5Spitzer NASA Herschel Science Center, 1200 E. California Blvd., Caltech, Pasadena, CA 91125 6Department of Physics, University of Crete, GR-71003, Heraklion, Greece 7Institute for Astronomy, Astrophysics, Space Applications & Remote Sensing, National Observatory of Athens, GR-15236, Penteli, Greece arXiv:1410.7347v2 [astro-ph.GA] 30 Oct 2014 8Chercheur Associ´e, Observatoire de Paris, F-75014, Paris, France 9Service d’Astrophysique, Laboratoire AIM, CEA-Saclay, Orme des Merisiers, Bat 709, 91191 Gif sur Yvette , France 10Dept. Fisica Teorica y del Cosmos, University of Granada, Edifica Mecenas,Granada, Spain 11NASA Extragalactic Database, IPAC, Caltech, 1200 E. California Blvd, Caltech, Pasadena, CA 91125 –2– Abstract We present archival Spitzer photometry and spectroscopy, and Herschel pho- tometry, of the peculiar “Green Valley” elliptical galaxy NGC 3226. The galaxy, which contains a low-luminosity AGN, forms a pair with NGC 3227, and is shown to lie in a complex web of stellar and HI filaments. Imaging at 8 and 16µm re- veals a curved plume structure 3 kpc in extent, embedded within the core of the galaxy, and coincident with the termination of a 30 kpc-long HI tail. -
X-Ray Nature of the LINER Nuclear Sources O
A&A 460, 45–57 (2006) Astronomy DOI: 10.1051/0004-6361:20054756 & c ESO 2006 Astrophysics X-ray nature of the LINER nuclear sources O. González-Martín1, J. Masegosa1, I. Márquez1,M.A.Guerrero1, and D. Dultzin-Hacyan2 1 Instituto de Astrofísica de Andalucía, CSIC, Apartado Postal 3004, 18080 Granada, Spain e-mail: [email protected] 2 Instituto de Astronomía, UNAM, Apartado Postal 70-264, 04510 México D.F., México Received 22 December 2005 / Accepted 17 May 2006 ABSTRACT We report the results from a homogeneous analysis of the X-ray (Chandra ACIS) data available for a sample of 51 LINER galaxies selected from the catalogue by Carrillo et al. (1999, Rev. Mex. Astron. Astrofis., 35, 187) and representative of the population of bright LINER sources. The nuclear X-ray morphology has been classified by their nuclear compactness in the hard band (4.5– 8.0 keV) into 2 categories: active galactic nuclei (AGN) candidates (with a clearly identified unresolved nuclear source) and starburst (SB) candidates (without a clear nuclear source). Sixty percent of the total sample are classified as AGNs, with a median luminosity 40 −1 of LX(2−10 keV) = 2.5 × 10 erg s , which is an order of magnitude higher than for SB-like nuclei. The spectral fitting allows us to conclude that most of the objects need a non-negligible power-law contribution. When no spectral fitting can be performed (data with a low signal-to-noise ratio), the color–color diagrams allow us to roughly estimate physical parameters, such as column density, temperature of the thermal model, or spectral index for a power-law, and therefore to better constrain the origin of the X-ray emission. -
XMM-Newton Observations of the Dwarf Elliptical Galaxy NGC 3226
A&A 420, 905–910 (2004) Astronomy DOI: 10.1051/0004-6361:20035825 & c ESO 2004 Astrophysics XMM-Newton observations of the dwarf elliptical galaxy NGC 3226 P. Gondoin, A. Orr, and H. Siddiqui Research and Scientific Support Department, European Space Agency - Postbus 299, 2200 AG Noordwijk, The Netherlands Received 9 December 2003 / Accepted 22 March 2004 Abstract. We report on an XMM-Newton observation of the dwarf elliptical galaxy NGC 3226 performed in November 2000. The analysis of the 0.4–10 keV spectrum of its nucleus is consistent with a power law continuum (Γ ≈ 1.96) absorbed at low 21 −2 energies by neutral gas (with a hydrogen column density NH ≈ 3–8×10 cm and a covering fraction greater than 85%) and by 21 −2 −1 weakly ionized gas (NW ≈ 4–6 × 10 cm with ξ ≈ 1–7 erg s cm). However, the study indicates that a bremstrahlung model absorbed by neutral material is a better description reminiscent of the X-ray emission from advection-dominated accretion flows (ADAFs). The temperature of the best fit bremstrahlung model (T ≈ 108 K) and the absence of short and mid time-scale variability suggests that the X-ray emission originates from regions relatively far from the nucleus as in convection-dominated accretion flows (CDAFs) or in the so-called “wind” models. By comparing the 2–10 keV luminosity of the central object 40 −1 (LX = 2.58 × 10 erg s after correction from Galactic and intrinsic absorption) with radio flux measurements, we find a 7 mass in the range (1.7–50) × 10 M for the accreting black hole, a value comparable with an independent estimate from the dispersion of radial velocities. -
Making a Sky Atlas
Appendix A Making a Sky Atlas Although a number of very advanced sky atlases are now available in print, none is likely to be ideal for any given task. Published atlases will probably have too few or too many guide stars, too few or too many deep-sky objects plotted in them, wrong- size charts, etc. I found that with MegaStar I could design and make, specifically for my survey, a “just right” personalized atlas. My atlas consists of 108 charts, each about twenty square degrees in size, with guide stars down to magnitude 8.9. I used only the northernmost 78 charts, since I observed the sky only down to –35°. On the charts I plotted only the objects I wanted to observe. In addition I made enlargements of small, overcrowded areas (“quad charts”) as well as separate large-scale charts for the Virgo Galaxy Cluster, the latter with guide stars down to magnitude 11.4. I put the charts in plastic sheet protectors in a three-ring binder, taking them out and plac- ing them on my telescope mount’s clipboard as needed. To find an object I would use the 35 mm finder (except in the Virgo Cluster, where I used the 60 mm as the finder) to point the ensemble of telescopes at the indicated spot among the guide stars. If the object was not seen in the 35 mm, as it usually was not, I would then look in the larger telescopes. If the object was not immediately visible even in the primary telescope – a not uncommon occur- rence due to inexact initial pointing – I would then scan around for it.