The Planetary Nebula Spectrograph Survey of S0 Galaxy Kinematics Data and Overview A
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
1. Introduction
THE ASTROPHYSICAL JOURNAL SUPPLEMENT SERIES, 122:109È150, 1999 May ( 1999. The American Astronomical Society. All rights reserved. Printed in U.S.A. GALAXY STRUCTURAL PARAMETERS: STAR FORMATION RATE AND EVOLUTION WITH REDSHIFT M. TAKAMIYA1,2 Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637; and Gemini 8 m Telescopes Project, 670 North Aohoku Place, Hilo, HI 96720 Received 1998 August 4; accepted 1998 December 21 ABSTRACT The evolution of the structure of galaxies as a function of redshift is investigated using two param- eters: the metric radius of the galaxy(Rg) and the power at high spatial frequencies in the disk of the galaxy (s). A direct comparison is made between nearby (z D 0) and distant(0.2 [ z [ 1) galaxies by following a Ðxed range in rest frame wavelengths. The data of the nearby galaxies comprise 136 broad- band images at D4500A observed with the 0.9 m telescope at Kitt Peak National Observatory (23 galaxies) and selected from the catalog of digital images of Frei et al. (113 galaxies). The high-redshift sample comprises 94 galaxies selected from the Hubble Deep Field (HDF) observations with the Hubble Space Telescope using the Wide Field Planetary Camera 2 in four broad bands that range between D3000 and D9000A (Williams et al.). The radius is measured from the intensity proÐle of the galaxy using the formulation of Petrosian, and it is argued to be a metric radius that should not depend very strongly on the angular resolution and limiting surface brightness level of the imaging data. It is found that the metric radii of nearby and distant galaxies are comparable to each other. -
April Constellations of the Month
April Constellations of the Month Leo Small Scope Objects: Name R.A. Decl. Details M65! A large, bright Sa/Sb spiral galaxy. 7.8 x 1.6 arc minutes, magnitude 10.2. Very 11hr 18.9m +13° 05’ (NGC 3623) high surface brighness showing good detail in medium sized ‘scopes. M66! Another bright Sb galaxy, only 21 arc minutes from M65. Slightly brighter at mag. 11hr 20.2m +12° 59’ (NGC 3627) 9.7, measuring 8.0 x 2.5 arc minutes. M95 An easy SBb barred spiral, 4 x 3 arc minutes in size. Magnitude 10.5, with 10hr 44.0m +11° 42’ a bright central core. The bar and outer ring of material will require larger (NGC 3351) aperature and dark skies. M96 Another bright Sb spiral, about 42 arc minutes east of M95, but larger and 10hr 46.8m +11° 49’ (NGC 3368) brighter. 6 x 4 arc minutes, magnitude 10.1. Located about 48 arc minutes NNE of M96. This small elliptical galaxy measures M105 only 2 x 2.1 arc minutes, but at mag. 10.3 has very high surface brightness. 10hr 47.8m +12° 35’ (NGC 3379) Look for NGC 3384! (110NGC) and NGC 3389 (mag 11.0 and 12.2) which form a small triangle with M105. NGC 3384! 10hr 48.3m +12° 38’ See comment for M105. The brightest galaxy in Leo, this Sb/Sc spiral galaxy shines at mag. 9.5. Look for NGC 2903!! 09hr 32.2m +21° 30’ a hazy patch 11 x 4.7 arc minutes in size 1.5° south of l Leonis. -
SUPERMASSIVE BLACK HOLES and THEIR HOST SPHEROIDS III. the MBH − Nsph CORRELATION
The Astrophysical Journal, 821:88 (8pp), 2016 April 20 doi:10.3847/0004-637X/821/2/88 © 2016. The American Astronomical Society. All rights reserved. SUPERMASSIVE BLACK HOLES AND THEIR HOST SPHEROIDS. III. THE MBH–nsph CORRELATION Giulia A. D. Savorgnan Centre for Astrophysics and Supercomputing, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia; [email protected] Received 2015 December 6; accepted 2016 March 6; published 2016 April 13 ABSTRACT The Sérsic R1 n model is the best approximation known to date for describing the light distribution of stellar spheroidal and disk components, with the Sérsic index n providing a direct measure of the central radial concentration of stars. The Sérsic index of a galaxy’s spheroidal component, nsph, has been shown to tightly correlate with the mass of the central supermassive black hole, MBH.TheMnBH– sph correlation is also expected from other two well known scaling relations involving the spheroid luminosity, Lsph:theLsph–n sph and the MLBH– sph. Obtaining an accurate estimate of the spheroid Sérsic index requires a careful modeling of a galaxy’s light distribution and some studies have failed to recover a statistically significant MnBH– sph correlation. With the aim of re-investigating the MnBH– sph and other black hole mass scaling relations, we performed a detailed (i.e., bulge, disks, bars, spiral arms, rings, halo, nucleus, etc.) decomposition of 66 galaxies, with directly measured black hole masses, that had been imaged at 3.6 μm with Spitzer.Inthispaper,the third of this series, we present an analysis of the Lsph–n sph and MnBH– sph diagrams. -
Classification of Galaxies Using Fractal Dimensions
UNLV Retrospective Theses & Dissertations 1-1-1999 Classification of galaxies using fractal dimensions Sandip G Thanki University of Nevada, Las Vegas Follow this and additional works at: https://digitalscholarship.unlv.edu/rtds Repository Citation Thanki, Sandip G, "Classification of galaxies using fractal dimensions" (1999). UNLV Retrospective Theses & Dissertations. 1050. http://dx.doi.org/10.25669/8msa-x9b8 This Thesis is protected by copyright and/or related rights. It has been brought to you by Digital Scholarship@UNLV with permission from the rights-holder(s). You are free to use this Thesis in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s) directly, unless additional rights are indicated by a Creative Commons license in the record and/ or on the work itself. This Thesis has been accepted for inclusion in UNLV Retrospective Theses & Dissertations by an authorized administrator of Digital Scholarship@UNLV. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. -
April 14 2018 7:00Pm at the April 2018 Herrett Center for Arts & Science College of Southern Idaho
Snake River Skies The Newsletter of the Magic Valley Astronomical Society www.mvastro.org Membership Meeting President’s Message Tim Frazier Saturday, April 14th 2018 April 2018 7:00pm at the Herrett Center for Arts & Science College of Southern Idaho. It really is beginning to feel like spring. The weather is more moderate and there will be, hopefully, clearer skies. (I write this with some trepidation as I don’t want to jinx Public Star Party Follows at the it in a manner similar to buying new equipment will ensure at least two weeks of Centennial Observatory cloudy weather.) Along with the season comes some great spring viewing. Leo is high overhead in the early evening with its compliment of galaxies as is Coma Club Officers Berenices and Virgo with that dense cluster of extragalactic objects. Tim Frazier, President One of my first forays into the Coma-Virgo cluster was in the early 1960’s with my [email protected] new 4 ¼ inch f/10 reflector and my first star chart, the epoch 1960 version of Norton’s Star Atlas. I figured from the maps I couldn’t miss seeing something since Robert Mayer, Vice President there were so many so closely packed. That became the real problem as they all [email protected] appeared as fuzzy spots and the maps were not detailed enough to distinguish one galaxy from another. I still have that atlas as it was a precious Christmas gift from Gary Leavitt, Secretary my grandparents but now I use better maps, larger scopes and GOTO to make sure [email protected] it is M84 or M86. -
SAC's 110 Best of the NGC
SAC's 110 Best of the NGC by Paul Dickson Version: 1.4 | March 26, 1997 Copyright °c 1996, by Paul Dickson. All rights reserved If you purchased this book from Paul Dickson directly, please ignore this form. I already have most of this information. Why Should You Register This Book? Please register your copy of this book. I have done two book, SAC's 110 Best of the NGC and the Messier Logbook. In the works for late 1997 is a four volume set for the Herschel 400. q I am a beginner and I bought this book to get start with deep-sky observing. q I am an intermediate observer. I bought this book to observe these objects again. q I am an advance observer. I bought this book to add to my collect and/or re-observe these objects again. The book I'm registering is: q SAC's 110 Best of the NGC q Messier Logbook q I would like to purchase a copy of Herschel 400 book when it becomes available. Club Name: __________________________________________ Your Name: __________________________________________ Address: ____________________________________________ City: __________________ State: ____ Zip Code: _________ Mail this to: or E-mail it to: Paul Dickson 7714 N 36th Ave [email protected] Phoenix, AZ 85051-6401 After Observing the Messier Catalog, Try this Observing List: SAC's 110 Best of the NGC [email protected] http://www.seds.org/pub/info/newsletters/sacnews/html/sac.110.best.ngc.html SAC's 110 Best of the NGC is an observing list of some of the best objects after those in the Messier Catalog. -
Arxiv:Astro-Ph/0310277V1 9 Oct 2003 Tdb H Soito Fuieste O Eerhi Astr in Foundation
The Globular Cluster Systems of the Early-type Galaxies NGC 3379, NGC 4406, and NGC 4594 and Implications for Galaxy Formation Katherine L. Rhode1,2 Department of Astronomy, Yale University, New Haven, CT 06520 [email protected] Stephen E. Zepf1 Department of Physics & Astronomy, Michigan State University, East Lansing, MI 48824 [email protected] ABSTRACT We have investigated the global properties of the globular cluster (GC) systems of three early-type galaxies: the Virgo cluster elliptical NGC 4406, the field elliptical NGC 3379, and the field S0 galaxy NGC 4594. These galaxies were observed as part of a wide-field CCD survey of the GC populations of a large sample of normal galaxies beyond the Local Group. Images obtained with the Mosaic detector on the Kitt Peak 4-m telescope provide radial coverage to at least 24′, or ∼70−100 kpc. We use BV R photometry and image classification to select GC candidates and thereby reduce con- tamination from non-GCs, and HST WFPC2 data to help quantify the contamination that remains. The GC systems of all three galaxies have color distributions with at least two peaks and show modest negative color gradients. The proportions of blue GCs range from 60−70% of the total populations. The GC specific frequency (SN ) of arXiv:astro-ph/0310277v1 9 Oct 2003 NGC 4406 is 3.5±0.5, ∼20% lower than past estimates and nearly identical to SN for the other Virgo cluster elliptical included in our survey, NGC 4472. SN for NGC 3379 and NGC 4594 are 1.2±0.3 and 2.1±0.3, respectively; these are similar to past values but the errors have been reduced by a factor of 2−3. -
00E the Construction of the Universe Symphony
The basic construction of the Universe Symphony. There are 30 asterisms (Suites) in the Universe Symphony. I divided the asterisms into 15 groups. The asterisms in the same group, lay close to each other. Asterisms!! in Constellation!Stars!Objects nearby 01 The W!!!Cassiopeia!!Segin !!!!!!!Ruchbah !!!!!!!Marj !!!!!!!Schedar !!!!!!!Caph !!!!!!!!!Sailboat Cluster !!!!!!!!!Gamma Cassiopeia Nebula !!!!!!!!!NGC 129 !!!!!!!!!M 103 !!!!!!!!!NGC 637 !!!!!!!!!NGC 654 !!!!!!!!!NGC 659 !!!!!!!!!PacMan Nebula !!!!!!!!!Owl Cluster !!!!!!!!!NGC 663 Asterisms!! in Constellation!Stars!!Objects nearby 02 Northern Fly!!Aries!!!41 Arietis !!!!!!!39 Arietis!!! !!!!!!!35 Arietis !!!!!!!!!!NGC 1056 02 Whale’s Head!!Cetus!! ! Menkar !!!!!!!Lambda Ceti! !!!!!!!Mu Ceti !!!!!!!Xi2 Ceti !!!!!!!Kaffalijidhma !!!!!!!!!!IC 302 !!!!!!!!!!NGC 990 !!!!!!!!!!NGC 1024 !!!!!!!!!!NGC 1026 !!!!!!!!!!NGC 1070 !!!!!!!!!!NGC 1085 !!!!!!!!!!NGC 1107 !!!!!!!!!!NGC 1137 !!!!!!!!!!NGC 1143 !!!!!!!!!!NGC 1144 !!!!!!!!!!NGC 1153 Asterisms!! in Constellation Stars!!Objects nearby 03 Hyades!!!Taurus! Aldebaran !!!!!! Theta 2 Tauri !!!!!! Gamma Tauri !!!!!! Delta 1 Tauri !!!!!! Epsilon Tauri !!!!!!!!!Struve’s Lost Nebula !!!!!!!!!Hind’s Variable Nebula !!!!!!!!!IC 374 03 Kids!!!Auriga! Almaaz !!!!!! Hoedus II !!!!!! Hoedus I !!!!!!!!!The Kite Cluster !!!!!!!!!IC 397 03 Pleiades!! ! Taurus! Pleione (Seven Sisters)!! ! ! Atlas !!!!!! Alcyone !!!!!! Merope !!!!!! Electra !!!!!! Celaeno !!!!!! Taygeta !!!!!! Asterope !!!!!! Maia !!!!!!!!!Maia Nebula !!!!!!!!!Merope Nebula !!!!!!!!!Merope -
Open Thesis10.Pdf
The Pennsylvania State University The Graduate School The Eberly College of Science POPULATION SYNTHESIS AND ITS CONNECTION TO ASTRONOMICAL OBSERVABLES A Thesis in Astronomy and Astrophysics Michael S. Sipior c 2003 Michael S. Sipior Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy May 2003 We approve the thesis of Michael S. Sipior Date of Signature Michael Eracleous Assistant Professor of Astronomy and Astrophysics Thesis Advisor Chair of Committee Steinn Sigurdsson Assistant Professor of Astronomy and Astrophysics Gordon P. Garmire Evan Pugh Professor of Astronomy and Astrophysics W. Niel Brandt Associate Professor of Astronomy and Astrophysics L. Samuel Finn Professor of Physics Peter I. M´esz´aros Distinguished Professor of Astronomy and Astrophysics Head of the Department of Astronomy and Astrophysics Abstract In this thesis, I present a model used for binary population synthesis, and 8 use it to simulate a starburst of 2 10 M over a duration of 20 Myr. This × population reaches a maximum 2{10 keV luminosity of 4 1040 erg s−1, ∼ × attained at the end of the star formation episode, and sustained for a pe- riod of several hundreds of Myr by succeeding populations of XRBs with lighter companion stars. An important property of these results is the min- imal dependence on poorly-constrained values of the initial mass function (IMF) and the average mass ratio between accreting and donating stars in XRBs. The peak X-ray luminosity is shown to be consistent with recent observationally-motivated correlations between the star formation rate and total hard (2{10 keV) X-ray luminosity. -
Making a Sky Atlas
Appendix A Making a Sky Atlas Although a number of very advanced sky atlases are now available in print, none is likely to be ideal for any given task. Published atlases will probably have too few or too many guide stars, too few or too many deep-sky objects plotted in them, wrong- size charts, etc. I found that with MegaStar I could design and make, specifically for my survey, a “just right” personalized atlas. My atlas consists of 108 charts, each about twenty square degrees in size, with guide stars down to magnitude 8.9. I used only the northernmost 78 charts, since I observed the sky only down to –35°. On the charts I plotted only the objects I wanted to observe. In addition I made enlargements of small, overcrowded areas (“quad charts”) as well as separate large-scale charts for the Virgo Galaxy Cluster, the latter with guide stars down to magnitude 11.4. I put the charts in plastic sheet protectors in a three-ring binder, taking them out and plac- ing them on my telescope mount’s clipboard as needed. To find an object I would use the 35 mm finder (except in the Virgo Cluster, where I used the 60 mm as the finder) to point the ensemble of telescopes at the indicated spot among the guide stars. If the object was not seen in the 35 mm, as it usually was not, I would then look in the larger telescopes. If the object was not immediately visible even in the primary telescope – a not uncommon occur- rence due to inexact initial pointing – I would then scan around for it. -
What a Quasar Eats for Breakfast a Talk by Dr David Floyd University Of
What a Quasar eats for Breakfast A talk by Dr David Floyd University of Melbourne and Anglo-Australian Observatory astronomer Dr David Floyd and colleagues have probed into a region inaccessible to telescopes until now, and claim to have observed how a black holes eats matter. In other words, using a state-of-the-art technique called gravitational microlensing, scientists have for the first time been able to observe matter falling into super-massive black holes (see Microlensing). According to Dr Floyd it heralds a new era in exploring black holes. So, David says, what is a black hole? It is a region of space having gravitational fields so intense that nothing can escape from it; not even radiation. The idea (or the possibility of such an object) first surfaced in 1784 in a paper by John Michell (1724-1793), who proposed the possibility (the inevitability) of what he called ?Dark Stars” as a consequence of Newton’s Gravity and corpuscular theory of light. Pierre Laplace (1749-1827) picked up the idea for his Guide to Astronomy book, but deleted it again in later editions, because the idea was ridiculed. The General Theory of Relativity by Albert Einstein (1879-1955) predicted the existence of both singularities and the holes in space that contain them, but Einstein too, believed them to be just a mathematical curiosity and not to exist in reality. Using Einstein’s new Field Equations Karl Schwarzschild (1873-1916) calculated the exact mathematical geometry of space-time around a spherical mass (see Schwarzschild). He showed that for any given mass there is a critical size below which space-time closes around and pinches it off from the rest of the universe, an Event Horizon. -
Planetary Nebulae in Galaxies Beyond the Local Group
PLANETARY NEBULAE IN GALAXIES BEYOND THE LOCAL GROUP H. C. Ford and R. Ciardullo, Space Telescope Science Institute Homewood Campus, Baltimore, MD 21218 G. H. Jacoby Kitt Peak National Observatory, Tucson, AZ 85726 X. Hui Boston University, Boston, MA 02215 ABSTRACT. Planetary nebulae can be used to estimate the distances to galaxies and to measure stellar dynamics in faint halos. We discuss surveys which have netted a total of 665 candidate planetary nebulae in NGC 5128 (Cen A), NGC 5102, NGC 3031 (M81), NGC 3115, three galaxies in the Leo Group (NGC 3379, NGC 3384, NGC 3377), NGC 5866, and finally, in NGC 4486 (M87). Radial velocities of planetaries in M32 have shown that its halo velocity dispersion is most likely isotropic. Radial velocities of planetaries in M31 show that ~ 2/3 of the nebu- lae with projected radii between 15 and 30 kpc are members of a rotating thick disk with slight asymmetric drift, while ~ 1/3 belong to a slowly rotating halo. Velocities of 116 nebulae in NGC 5128 reveal pronounced rotation and a slowly declining velocity dispersion in the halo out to 20 kpc. The [O III] Λ5007 luminos- ity functions (PNLFs) in NGC 5128, M81, and the three Leo Galaxies have the same shape over the first magnitude. The highly consistent distances derived from the brightnesses of the jtfl nebula and the median nebula in different fields in the same galaxy and from different galaxies in the same group lend strong support to the suggestion that planetaries are an accurate standard candle in old stellar pop- ulations.