Harmonic Analysis Lecture Notes University of Illinois at Urbana–Champaign Richard S. Laugesen * May 18, 2017 arXiv:0903.3845v2 [math.CA] 17 May 2017 *Copyright c 2017, Richard S. Laugesen (
[email protected]). This work is licensed under the Creative Commons Attribution-NonCommercial- NoDerivs 4.0 International License. To view a copy of this license, visit https://creativecommons.org/licenses/by-nc-nd/4.0/. 2 Preface A textbook presents more than any professor can cover in class. In contrast, these lecture notes present exactly* what I covered in Harmonic Analysis (Math 545) at the University of Illinois, Urbana–Champaign, in Fall 2008. The first part of the course emphasizes Fourier series, since so many aspects of harmonic analysis arise already in that classical context. The Hilbert transform is treated on the circle, for example, where it is used to prove Lp convergence of Fourier series. Maximal functions and Calder´on– Zygmund decompositions are treated in Rd, so that they can be applied again in the second part of the course, where the Fourier transform is studied. Real methods are used throughout. In particular, complex methods such as Poisson integrals and conjugate functions are not used to prove bounded- ness of the Hilbert transform. Distribution functions and interpolation are covered in the Appendices. I inserted these topics at the appropriate places in my lectures (after Chap- ters 4 and 12, respectively). The references at the beginning of each chapter provide guidance to stu- dents who wish to delve more deeply, or roam more widely, in the subject. Those references do not necessarily contain all the material in the chapter.