Whole-Exome Sequencing, Proteome Landscape, and Immune Cell Migration Patterns in a Clinical Context of Menkes Disease
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Cytogenomic SNP Microarray - Fetal ARUP Test Code 2002366 Maternal Contamination Study Fetal Spec Fetal Cells
Patient Report |FINAL Client: Example Client ABC123 Patient: Patient, Example 123 Test Drive Salt Lake City, UT 84108 DOB 2/13/1987 UNITED STATES Gender: Female Patient Identifiers: 01234567890ABCD, 012345 Physician: Doctor, Example Visit Number (FIN): 01234567890ABCD Collection Date: 00/00/0000 00:00 Cytogenomic SNP Microarray - Fetal ARUP test code 2002366 Maternal Contamination Study Fetal Spec Fetal Cells Single fetal genotype present; no maternal cells present. Fetal and maternal samples were tested using STR markers to rule out maternal cell contamination. This result has been reviewed and approved by Maternal Specimen Yes Cytogenomic SNP Microarray - Fetal Abnormal * (Ref Interval: Normal) Test Performed: Cytogenomic SNP Microarray- Fetal (ARRAY FE) Specimen Type: Direct (uncultured) villi Indication for Testing: Patient with 46,XX,t(4;13)(p16.3;q12) (Quest: EN935475D) ----------------------------------------------------------------- ----- RESULT SUMMARY Abnormal Microarray Result (Male) Unbalanced Translocation Involving Chromosomes 4 and 13 Classification: Pathogenic 4p Terminal Deletion (Wolf-Hirschhorn syndrome) Copy number change: 4p16.3p16.2 loss Size: 5.1 Mb 13q Proximal Region Deletion Copy number change: 13q11q12.12 loss Size: 6.1 Mb ----------------------------------------------------------------- ----- RESULT DESCRIPTION This analysis showed a terminal deletion (1 copy present) involving chromosome 4 within 4p16.3p16.2 and a proximal interstitial deletion (1 copy present) involving chromosome 13 within 13q11q12.12. This -
RSU1) in Cancer Cell Metastasis: a Tale of a Tumor Suppressor
International Journal of Molecular Sciences Review Ras Suppressor-1 (RSU1) in Cancer Cell Metastasis: A Tale of a Tumor Suppressor Maria Louca 1, Triantafyllos Stylianopoulos 1 and Vasiliki Gkretsi 2,* 1 Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, 1678 Nicosia, Cyprus; [email protected] (M.L.); [email protected] (T.S.) 2 Biomedical Sciences Program, Department of Life Sciences, School of Sciences, European University Cyprus, 1516 Nicosia, Cyprus * Correspondence: [email protected]; Tel.: +357-22-559-630 Received: 18 May 2020; Accepted: 5 June 2020; Published: 7 June 2020 Abstract: Cancer is a multifactorial disease responsible for millions of deaths worldwide. It has a strong genetic background, as mutations in oncogenes or tumor suppressor genes contribute to the initiation of cancer development. Integrin signaling as well as the signaling pathway of Ras oncogene, have been long implicated both in carcinogenesis and disease progression. Moreover, they have been involved in the promotion of metastasis, which accounts for the majority of cancer-related deaths. Ras Suppressor-1 (RSU1) was identified as a suppressor of Ras-induced transformation and was shown to localize to cell-extracellular matrix adhesions. Recent findings indicate that its expression is elevated in various cancer types, while its role in regulating metastasis-related cellular processes remains largely unknown. Interestingly, there is no in vivo work in the field to date, and thus, all relevant knowledge stems from in vitro studies. In this review, we summarize recent studies using breast, liver and brain cancer cell lines and highlight the role of RSU1 in regulating cancer cell invasion. -
Long Noncoding Intronic Rnas Are Differentially Expressed in Primary
Tahira et al. Molecular Cancer 2011, 10:141 http://www.molecular-cancer.com/content/10/1/141 RESEARCH Open Access Long noncoding intronic RNAs are differentially expressed in primary and metastatic pancreatic cancer Ana C Tahira1, Márcia S Kubrusly2, Michele F Faria1, Bianca Dazzani1, Rogério S Fonseca1, Vinicius Maracaja-Coutinho1, Sergio Verjovski-Almeida1, Marcel CC Machado2 and Eduardo M Reis1* Abstract Background: Pancreatic ductal adenocarcinoma (PDAC) is known by its aggressiveness and lack of effective therapeutic options. Thus, improvement in current knowledge of molecular changes associated with pancreatic cancer is urgently needed to explore novel venues of diagnostics and treatment of this dismal disease. While there is mounting evidence that long noncoding RNAs (lncRNAs) transcribed from intronic and intergenic regions of the human genome may play different roles in the regulation of gene expression in normal and cancer cells, their expression pattern and biological relevance in pancreatic cancer is currently unknown. In the present work we investigated the relative abundance of a collection of lncRNAs in patients’ pancreatic tissue samples aiming at identifying gene expression profiles correlated to pancreatic cancer and metastasis. Methods: Custom 3,355-element spotted cDNA microarray interrogating protein-coding genes and putative lncRNA were used to obtain expression profiles from 38 clinical samples of tumor and non-tumor pancreatic tissues. Bioinformatics analyses were performed to characterize structure and conservation of lncRNAs expressed in pancreatic tissues, as well as to identify expression signatures correlated to tissue histology. Strand-specific reverse transcription followed by PCR and qRT-PCR were employed to determine strandedness of lncRNAs and to validate microarray results, respectively. -
Oncogenomics of C-Myc Transgenic Mice Reveal Novel Regulators of Extracellular Signaling, Angiogenesis and Invasion with Clinica
www.impactjournals.com/oncotarget/ Oncotarget, 2017, Vol. 8, (No. 60), pp: 101808-101831 Research Paper Oncogenomics of c-Myc transgenic mice reveal novel regulators of extracellular signaling, angiogenesis and invasion with clinical significance for human lung adenocarcinoma Yari Ciribilli1,2 and Jürgen Borlak2 1Centre for Integrative Biology (CIBIO), University of Trento, 38123 Povo (TN), Italy 2Centre for Pharmacology and Toxicology, Hannover Medical School, 30625 Hannover, Germany Correspondence to: Jürgen Borlak, email: [email protected] Keywords: c-Myc transgenic mouse model of lung cancer, papillary adenocarcinomas, whole genome scans, c-Myc regulatory gene networks, c-Myc targeted regulators of extracellular signaling Received: June 26, 2017 Accepted: September 21, 2017 Published: October 23, 2017 Copyright: Ciribilli et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License 3.0 (CC BY 3.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. ABSTRACT The c-Myc transcription factor is frequently deregulated in cancers. To search for disease diagnostic and druggable targets a transgenic lung cancer disease model was investigated. Oncogenomics identified c-Myc target genes in lung tumors. These were validated by RT-PCR, Western Blotting, EMSA assays and ChIP-seq data retrieved from public sources. Gene reporter and ChIP assays verified functional importance of c-Myc binding sites. The clinical significance was established by RT-qPCR in tumor and matched healthy control tissues, by RNA-seq data retrieved from the TCGA Consortium and by immunohistochemistry recovered from the Human Protein Atlas repository. In transgenic lung tumors 25 novel candidate genes were identified. -
Multi-Targeted Mechanisms Underlying the Endothelial Protective Effects of the Diabetic-Safe Sweetener Erythritol
Multi-Targeted Mechanisms Underlying the Endothelial Protective Effects of the Diabetic-Safe Sweetener Erythritol Danie¨lle M. P. H. J. Boesten1*., Alvin Berger2.¤, Peter de Cock3, Hua Dong4, Bruce D. Hammock4, Gertjan J. M. den Hartog1, Aalt Bast1 1 Department of Toxicology, Maastricht University, Maastricht, The Netherlands, 2 Global Food Research, Cargill, Wayzata, Minnesota, United States of America, 3 Cargill RandD Center Europe, Vilvoorde, Belgium, 4 Department of Entomology and UCD Comprehensive Cancer Center, University of California Davis, Davis, California, United States of America Abstract Diabetes is characterized by hyperglycemia and development of vascular pathology. Endothelial cell dysfunction is a starting point for pathogenesis of vascular complications in diabetes. We previously showed the polyol erythritol to be a hydroxyl radical scavenger preventing endothelial cell dysfunction onset in diabetic rats. To unravel mechanisms, other than scavenging of radicals, by which erythritol mediates this protective effect, we evaluated effects of erythritol in endothelial cells exposed to normal (7 mM) and high glucose (30 mM) or diabetic stressors (e.g. SIN-1) using targeted and transcriptomic approaches. This study demonstrates that erythritol (i.e. under non-diabetic conditions) has minimal effects on endothelial cells. However, under hyperglycemic conditions erythritol protected endothelial cells against cell death induced by diabetic stressors (i.e. high glucose and peroxynitrite). Also a number of harmful effects caused by high glucose, e.g. increased nitric oxide release, are reversed. Additionally, total transcriptome analysis indicated that biological processes which are differentially regulated due to high glucose are corrected by erythritol. We conclude that erythritol protects endothelial cells during high glucose conditions via effects on multiple targets. -
SARS-Cov-2 Entry Protein TMPRSS2 and Its Homologue, TMPRSS4
bioRxiv preprint doi: https://doi.org/10.1101/2021.04.26.441280; this version posted April 26, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 SARS-CoV-2 Entry Protein TMPRSS2 and Its 2 Homologue, TMPRSS4 Adopts Structural Fold Similar 3 to Blood Coagulation and Complement Pathway 4 Related Proteins ∗,a ∗∗,b b 5 Vijaykumar Yogesh Muley , Amit Singh , Karl Gruber , Alfredo ∗,a 6 Varela-Echavarría a 7 Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México b 8 Institute of Molecular Biosciences, University of Graz, Graz, Austria 9 Abstract The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) utilizes TMPRSS2 receptor to enter target human cells and subsequently causes coron- avirus disease 19 (COVID-19). TMPRSS2 belongs to the type II serine proteases of subfamily TMPRSS, which is characterized by the presence of the serine- protease domain. TMPRSS4 is another TMPRSS member, which has a domain architecture similar to TMPRSS2. TMPRSS2 and TMPRSS4 have been shown to be involved in SARS-CoV-2 infection. However, their normal physiological roles have not been explored in detail. In this study, we analyzed the amino acid sequences and predicted 3D structures of TMPRSS2 and TMPRSS4 to under- stand their functional aspects at the protein domain level. Our results suggest that these proteins are likely to have common functions based on their conserved domain organization. -
Systematic Data-Querying of Large Pediatric Biorepository Identifies Novel Ehlers-Danlos Syndrome Variant Akshatha Desai1, John J
Desai et al. BMC Musculoskeletal Disorders (2016) 17:80 DOI 10.1186/s12891-016-0936-8 RESEARCH ARTICLE Open Access Systematic data-querying of large pediatric biorepository identifies novel Ehlers-Danlos Syndrome variant Akshatha Desai1, John J. Connolly1, Michael March1, Cuiping Hou1, Rosetta Chiavacci1, Cecilia Kim1, Gholson Lyon1, Dexter Hadley1 and Hakon Hakonarson1,2* Abstract Background: Ehlers Danlos Syndrome is a rare form of inherited connective tissue disorder, which primarily affects skin, joints, muscle, and blood cells. The current study aimed at finding the mutation that causing EDS type VII C also known as “Dermatosparaxis” in this family. Methods: Through systematic data querying of the electronic medical records (EMRs) of over 80,000 individuals, we recently identified an EDS family that indicate an autosomal dominant inheritance. The family was consented for genomic analysis of their de-identified data. After a negative screen for known mutations, we performed whole genome sequencing on the male proband, his affected father, and unaffected mother. We filtered the list of non- synonymous variants that are common between the affected individuals. Results: The analysis of non-synonymous variants lead to identifying a novel mutation in the ADAMTSL2 (p. Gly421Ser) gene in the affected individuals. Sanger sequencing confirmed the mutation. Conclusion: Our work is significant not only because it sheds new light on the pathophysiology of EDS for the affected family and the field at large, but also because it demonstrates the utility of unbiased large-scale clinical recruitment in deciphering the genetic etiology of rare mendelian diseases. With unbiased large-scale clinical recruitment we strive to sequence as many rare mendelian diseases as possible, and this work in EDS serves as a successful proof of concept to that effect. -
Identification of Novel Alternative Splice Isoforms of Circulating Proteins in a Mouse Model of Human Pancreatic Cancer
Research Article Identification of Novel Alternative Splice Isoforms of Circulating Proteins in a Mouse Model of Human Pancreatic Cancer Rajasree Menon,1 Qing Zhang,3 Yan Zhang,1 Damian Fermin,1 Nabeel Bardeesy,4 Ronald A. DePinho,5 Chunxia Lu,2 Samir M. Hanash,3 Gilbert S. Omenn,1 and David J. States1 1Center for Computational Medicine and Biology and 2Pediatric Endocrinology, University of Michigan, Ann Arbor, Michigan; 3Fred Hutchinson Cancer Research Center, Seattle, Washington; and 4Center for Cancer Research, Massachusetts General Hospital; 5Center for Applied Cancer Science, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts Abstract database are scored as high, medium, or low confidence, reflecting the amount of cumulative evidence in support of the existence of a To assess the potential of tumor-associated, alternatively particular alternatively spliced sequence. Evidence is collected from spliced gene products as a source of biomarkers in biological clustering of ESTs, mRNA sequences, and gene model predictions. fluids, we have analyzed a large data set of mass spectra We modified the ECgene database to include three-frame trans- derived from the plasma proteome of a mouse model of lations of the cDNA sequences (5) to determine the occurrence of human pancreatic ductal adenocarcinoma. MS/MS spectra novel splice variant proteins. An important development in recent were interrogated for novel splice isoforms using a non- years is the substantial improvement in tandem mass spectrometry redundant database containing an exhaustive three-frame instrumentation for proteomics, allowing in-depth analysis and translation of Ensembl transcripts and gene models from confident identifications even for proteins coded by mRNA ECgene. -
Microrna-1182 and Let-7A Exert Synergistic Inhibition on Invasion
Pan et al. Cancer Cell Int (2021) 21:161 https://doi.org/10.1186/s12935-021-01797-z Cancer Cell International PRIMARY RESEARCH Open Access MicroRNA-1182 and let-7a exert synergistic inhibition on invasion, migration and autophagy of cholangiocarcinoma cells through down-regulation of NUAK1 Xin Pan*, Gang Wang and Baoming Wang Abstract Background: Cholangiocarcinoma (CCA) is the second most common primary liver malignancy worldwide. Several microRNAs (miRNAs) have been implicated as potential tumor suppressors in CCA. This study aims to explore the potential efects of miR-1182 and let-7a on CCA development. Methods: Bioinformatics analysis was conducted to screen diferentially expressed genes in CCA, Western blot analysis detected NUAK1 protein expression and RT-qPCR detected miR-1182, let-7a and NUAK1 expression in CCA tissues and cell lines. Dual luciferase reporter gene assay and RIP were applied to validate the relationship between miR-1182 and NUAK1 as well as between let-7a and NUAK1. Functional experiment was conducted to investigate the role of miR-1182, let-7a and NUAK1 in cell migration, proliferation and autophagy. Then, the CCA cells that received various treatments were implanted to mice to establish animal model, followed by tumor observation and HE staining to evaluate lung metastasis. Results: CCA tissues and cells were observed to have a high expression of NUAK1 and poor expression of miR-1182 and let-7a. NUAK1 was indicated as a target gene of miR-1182 and let-7a. Importantly, upregulation of either miR-1182 or let-7a induced autophagy, and inhibited cell progression and in vivo tumor growth and lung metastasis; moreover, combined treatment of miR-1182 and let-7a overexpression presented with enhanced inhibitory efect on NUAK1 expression and CCA progression, but such synergistic efect could be reversed by overexpression of NUAK1. -
Itraq Quantitative Proteomic Analysis of Vitreous from Patients with Retinal Detachment
International Journal of Molecular Sciences Article iTRAQ Quantitative Proteomic Analysis of Vitreous from Patients with Retinal Detachment Fátima Milhano Santos 1,2,3 ID , Leonor Mesquita Gaspar 1,2, Sergio Ciordia 4, Ana Sílvia Rocha 1,2, João Paulo Castro e Sousa 1,5, Alberto Paradela 4, Luís António Passarinha 1,3 ID and Cândida Teixeira Tomaz 1,2,* ID 1 CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6201-506 Covilhã, Portugal; [email protected] (F.M.S.); [email protected] (L.M.G.); [email protected] (A.S.R.); [email protected] (J.P.C.e.S.); [email protected] (L.A.P.) 2 Chemistry Department, Faculty of Sciences, University of Beira Interior, 6201-001 Covilhã, Portugal 3 Laboratory of Pharmacology and Toxicology—UBIMedical, University of Beira Interior, 6200-284 Covilhã, Portugal 4 Unidad de Proteomica, Centro Nacional de Biotecnología, CSIC, Calle Darwin 3, Campus de Cantoblanco, 28049 Madrid, Spain; [email protected] (S.C.); [email protected] (A.P.) 5 Hospital Center Leiria-Pombal, 3100-462 Pombal, Portugal * Correspondence: [email protected]; Tel.: +351-275-242-021 Received: 8 February 2018; Accepted: 8 April 2018; Published: 11 April 2018 Abstract: Rhegmatogenous retinal detachment (RRD) is a potentially blinding condition characterized by a physical separation between neurosensory retina and retinal pigment epithelium. Quantitative proteomics can help to understand the changes that occur at the cellular level during RRD, providing additional information about the molecular mechanisms underlying its pathogenesis. In the present study, iTRAQ labeling was combined with two-dimensional LC-ESI-MS/MS to find expression changes in the proteome of vitreous from patients with RRD when compared to control samples. -
(P -Value<0.05, Fold Change≥1.4), 4 Vs. 0 Gy Irradiation
Table S1: Significant differentially expressed genes (P -Value<0.05, Fold Change≥1.4), 4 vs. 0 Gy irradiation Genbank Fold Change P -Value Gene Symbol Description Accession Q9F8M7_CARHY (Q9F8M7) DTDP-glucose 4,6-dehydratase (Fragment), partial (9%) 6.70 0.017399678 THC2699065 [THC2719287] 5.53 0.003379195 BC013657 BC013657 Homo sapiens cDNA clone IMAGE:4152983, partial cds. [BC013657] 5.10 0.024641735 THC2750781 Ciliary dynein heavy chain 5 (Axonemal beta dynein heavy chain 5) (HL1). 4.07 0.04353262 DNAH5 [Source:Uniprot/SWISSPROT;Acc:Q8TE73] [ENST00000382416] 3.81 0.002855909 NM_145263 SPATA18 Homo sapiens spermatogenesis associated 18 homolog (rat) (SPATA18), mRNA [NM_145263] AA418814 zw01a02.s1 Soares_NhHMPu_S1 Homo sapiens cDNA clone IMAGE:767978 3', 3.69 0.03203913 AA418814 AA418814 mRNA sequence [AA418814] AL356953 leucine-rich repeat-containing G protein-coupled receptor 6 {Homo sapiens} (exp=0; 3.63 0.0277936 THC2705989 wgp=1; cg=0), partial (4%) [THC2752981] AA484677 ne64a07.s1 NCI_CGAP_Alv1 Homo sapiens cDNA clone IMAGE:909012, mRNA 3.63 0.027098073 AA484677 AA484677 sequence [AA484677] oe06h09.s1 NCI_CGAP_Ov2 Homo sapiens cDNA clone IMAGE:1385153, mRNA sequence 3.48 0.04468495 AA837799 AA837799 [AA837799] Homo sapiens hypothetical protein LOC340109, mRNA (cDNA clone IMAGE:5578073), partial 3.27 0.031178378 BC039509 LOC643401 cds. [BC039509] Homo sapiens Fas (TNF receptor superfamily, member 6) (FAS), transcript variant 1, mRNA 3.24 0.022156298 NM_000043 FAS [NM_000043] 3.20 0.021043295 A_32_P125056 BF803942 CM2-CI0135-021100-477-g08 CI0135 Homo sapiens cDNA, mRNA sequence 3.04 0.043389246 BF803942 BF803942 [BF803942] 3.03 0.002430239 NM_015920 RPS27L Homo sapiens ribosomal protein S27-like (RPS27L), mRNA [NM_015920] Homo sapiens tumor necrosis factor receptor superfamily, member 10c, decoy without an 2.98 0.021202829 NM_003841 TNFRSF10C intracellular domain (TNFRSF10C), mRNA [NM_003841] 2.97 0.03243901 AB002384 C6orf32 Homo sapiens mRNA for KIAA0386 gene, partial cds. -
High-Throughput Characterization of Blood Serum Proteomics of IBD Patients with Respect to Aging and Genetic Factors
RESEARCH ARTICLE High-Throughput Characterization of Blood Serum Proteomics of IBD Patients with Respect to Aging and Genetic Factors Antonio F. Di Narzo1,2, Shannon E. Telesco3, Carrie Brodmerkel3, Carmen Argmann1,2, Lauren A. Peters2,4, Katherine Li3, Brian Kidd1,2, Joel Dudley1,2, Judy Cho1,2, Eric E. Schadt1,2, Andrew Kasarskis1,2, Radu Dobrin3*, Ke Hao1,2* 1 Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America, 2 Icahn Institute of Genomics and Multiscale Biology, Icahn School of a1111111111 Medicine at Mount Sinai, New York, New York, United States of America, 3 Janssen R&D, LLC, Spring a1111111111 House, Pennsylvania, United States of America, 4 Graduate School of Biomedical Sciences, Icahn School of a1111111111 Medicine at Mount Sinai, New York, New York, United States of America a1111111111 a1111111111 * [email protected] (RD); [email protected] (KH) Abstract OPEN ACCESS To date, no large scale, systematic description of the blood serum proteome has been per- Citation: Di Narzo AF, Telesco SE, Brodmerkel C, formed in inflammatory bowel disease (IBD) patients. By using microarray technology, a Argmann C, Peters LA, Li K, et al. (2017) High- more complete description of the blood proteome of IBD patients is feasible. It may help to Throughput Characterization of Blood Serum achieve a better understanding of the disease. We analyzed blood serum profiles of 1128 Proteomics of IBD Patients with Respect to Aging and Genetic Factors. PLoS Genet 13(1): e1006565. proteins in IBD patients of European descent (84 Crohn's Disease (CD) subjects and 88 doi:10.1371/journal.pgen.1006565 Ulcerative Colitis (UC) subjects) as well as 15 healthy control subjects, and linked protein Editor: Gregory S.