Dual Src and MEK Inhibition Decreases Ovarian Cancer Growth and Targets Tumor Initiating Stem-Like Cells Fiona Simpkins1,2,3, Kibeom Jang1,4, Hyunho Yoon1, Karina E

Total Page:16

File Type:pdf, Size:1020Kb

Dual Src and MEK Inhibition Decreases Ovarian Cancer Growth and Targets Tumor Initiating Stem-Like Cells Fiona Simpkins1,2,3, Kibeom Jang1,4, Hyunho Yoon1, Karina E Published OnlineFirst June 29, 2018; DOI: 10.1158/1078-0432.CCR-17-3697 Cancer Therapy: Preclinical Clinical Cancer Research Dual Src and MEK Inhibition Decreases Ovarian Cancer Growth and Targets Tumor Initiating Stem-Like Cells Fiona Simpkins1,2,3, Kibeom Jang1,4, Hyunho Yoon1, Karina E. Hew1,2, Minsoon Kim1,4, Diana J. Azzam1,4, Jun Sun1, Dekuang Zhao1, Tan A. Ince1,5,6, Wenbin Liu7, Wei Guo7, Zhi Wei8, Gao Zhang9, Gordon B. Mills7, and Joyce M. Slingerland1,4,10 Abstract Purpose: Rational targeted therapies are needed for treat- selumetinib, respectively, showed target kinase inhibition and ment of ovarian cancers. Signaling kinases Src and MAPK are synergistic induction of apoptosis and cell-cycle arrest in vitro, activated in high-grade serous ovarian cancer (HGSOC). and tumor inhibition in xenografts. Gene expression and Here, we tested the frequency of activation of both kinases proteomic analysis confirmed cell-cycle inhibition and in HGSOC and the therapeutic potential of dual kinase autophagy. Dual therapy also potently inhibited tumor- inhibition. initiating cells. Src and MAPK were both activated in tumor- Experimental Design: MEK and Src activation was assayed initiating populations. Combination treatment followed by þ in primary HGSOC from The Cancer Genome Atlas (TGGA). drug washout decreased sphere formation and ALDH1 cells. Effects of dual kinase inhibition were assayed on cell-cycle, In vivo, tumors dissociated after dual therapy showed a marked apoptosis, gene, and proteomic analysis; cancer stem cells; and decrease in ALDH1 staining, sphere formation, and loss of xenografts. tumor-initiating cells upon serial xenografting. Results: Both Src and MAPK are coactivated in 31% of Conclusions: Selumetinib added to saracatinib over- HGSOC, and this associates with worse overall survival on comes EGFR/HER2/ERBB2–mediated bypass activation of multivariate analysis. Frequent dual kinase activation in MEK/MAPK observed with saracatinib alone and targets HGSOC led us to assay the efficacy of combined Src and MEK tumor-initiating ovarian cancer populations, supporting inhibition. Treatment of established lines and primary ovarian further evaluation of combined Src–MEK inhibition in cancer cultures with Src and MEK inhibitors saracatinib and clinical trials. Clin Cancer Res; 1–13. Ó2018 AACR. Introduction 1Braman Family Breast Cancer Institute at Sylvester Comprehensive Cancer Center, University of Miami, Miami, Florida. 2Department of Obstetrics & Ovarian cancer is the most lethal gynecologic cancer (1). Gynecology, University of Miami, Miami, Florida. 3Ovarian Cancer Research Despite introduction of targeted therapies, survival has not sig- Center, Division of Gynecology Oncology, Department of Obstetrics & nificantly improved in the last decade (2). Patients with most Gynecology, University of Pennsylvania, Philadelphia, Pennsylvania. 4Depart- advanced ovarian cancers relapse within two years (1), and ment of Biochemistry and Molecular Biology, University of Miami, Miami, tumors become therapy resistant, underscoring the need for new 5 Florida. Department of Pathology and Laboratory Medicine, University of treatment options. High-grade serous ovarian cancer (HGSOC), Miami, Miami, Florida. 6Interdisciplinary Stem Cell Institute, University of Miami, Miami, Florida. 7Department of Systems Biology, The University of the most common and aggressive subtype, is characterized by Texas MD Anderson Cancer Center, Houston, Texas. 8Department of Com- genomic instability and few targetable genetic mutations (3). We puter Science, New Jersey Institute of Technology, Newark, New Jersey. previously showed that Src (4) and the MAPK (5) are frequently 9Wistar Institute, Philadelphia, Pennsylvania. 10Department of Medicine, activated in HGSOC from The Cancer Genome Atlas (TCGA) by University of Miami, Miami, Florida. reverse-phase proteomic analysis (RPPA), identifying these as Note: Supplementary data for this article are available at Clinical Cancer potential therapeutic targets. Research Online (http://clincancerres.aacrjournals.org/). Saracatinib (AZD0530), a potent Src family kinase inhibitor K. Jang, H. Yoon, and K.E. Hew contributed equally to this article. (6), has preclinical antitumor activity in HGSOC (4). Our prior Corresponding Authors: Joyce M. Slingerland, University of Miami Miller School work showed elevated expression of MAPKpT202pY204 is of Medicine, 1501 Northwest 10th Avenue, BRB 708 (C227), Miami, FL 33136. frequent and is an independent prognostic factor for decreased Phone: 305-243-7265; Fax: 305-243-6170; E-mail: [email protected] survival in HGSOC (5). Selumetinib (AZD6244), a noncom- ; and Fiona Simpkins, Division of Gynecology Oncology, Department of OB-GYN, petitive MEK1/2 inhibitor, has clinical activity in low-grade University of Pennsylvania, 3400 Civic Center Boulevard, South Tower, Suite 10- ovarian cancer (7), suppresses serous and clear cell ovarian 176, Philadelphia, PA 19104. Phone: 215-662-3318; Fax: 215-349-5849; E-mail: cancer xenografts (5, 8), and may prove to have clinical utility [email protected]. in HGSOC (5). doi: 10.1158/1078-0432.CCR-17-3697 Stem-like or tumor-initiating cancer cells are emerging as Ó2018 American Association for Cancer Research. critical mediators of drug resistance (9). The cancer stem cell www.aacrjournals.org OF1 Downloaded from clincancerres.aacrjournals.org on September 26, 2021. © 2018 American Association for Cancer Research. Published OnlineFirst June 29, 2018; DOI: 10.1158/1078-0432.CCR-17-3697 Simpkins et al. Translational Relevance Materials and Methods Cell culture Ovarian cancers present late and rapidly develop chemo- PEO1R, an estrogen receptor (ER)-positive antiestrogen-resis- therapy resistance. Targeted therapies have yielded modest tant variant of PEO1 was cultured as described in ref. 4. Short gains, with short responses often due to bypass pathway tandem repeat (STR) profiling verified the unique identity of this activation. Thus, strategies to target multiple pivotal signaling line. PEO1R-SIR is a stable Src inhibitor resistant variant, derived nodes, such as Src and MEK, which are both activated in by 12 weeks of continuous exposure to 1 mmol/L saracatinib. OCI- HGSOC, are attractive. We found 31% of HGSOC have acti- E1P was cultured from an ER-positive, primary endometrioid vation of both of these kinases. To subvert therapy resistance, ovarian cancer, OCI-C5x from a primary clear cell, OCI-P5x from a we tested antitumor efficacy of combined Src and MEK inhi- primary serous, and OCI-U1a from a HGSOC in OCMI medium bition. Not only did dual therapy in vivo synergistically inhibit and have been extensively characterized as described previously tumor growth, but residual tumors were markedly depleted for þ (27). All were used below passage twelve. OCMI medium was ALDH1 , sphere-forming, and tumor-initiating stem cells in obtained from Interdisciplinary Stem Cell Institute Live Tissue vivo. Selumetinib added to saracatinib inhibits the EGFR-1 and Culture Service Center (LTCC). Cell lines were authenticated EGFR-2–mediated bypass MEK/MAPK activation observed using ATCC guidelines. Asynchronous cultures were treated with with saracatinib alone and appears to effectively target self- vehicle, 1 mmol/L saracatinib, 200 nmol/L selumetinib, or both renewing ovarian cancer subpopulations. These findings will for 48 hours or longer as indicated for drug assays. All in vitro cell stimulate further in vitro experimentation and support initia- assays described below included at least three biologic replicates tion of clinical trials testing dual Src and MEK inhibitor therapy and triplicate technical repeats. for patients with ovarian cancer. Drugs Saracatinib (AZD0530) is a potent inhibitor of Src family kinases and Abl (6). Saracatinib and selumetinib (AZD6244) from AstraZeneca were dissolved in DMSO. Saracatinib did not (CSC) hypothesis proposes tumors are heterogeneous and exceed 1 mmol/L in vitro to avoid off-target effects (4). Optimal contain a subpopulation of self-renewing cells that give rise selumetinib concentrations were titrated in vitro and in vivo in fl to progeny with reduced proliferation (9, 10). Ascites uid xenografts (5). Dual therapy concentrations were titrated in a from patients with ovarian cancer contains sphere-forming preliminary in vivo experiment (not shown). For xenografts, drugs cells (11) and tumor-initiating cells that are demonstrable in were suspended in sterile 0.5% hydroxypropyl methyl cellulose xenograft models (12). Various surface markers identify ovar- with 0.1% polysorbate (Tween 80). ian cancer stem cell–enriched populations (13–16). Aldehyde þ dehydrogenase activity (ALDH1 )identifies a population Cell-cycle analysis enriched for tumor-initiating cells in both ovarian cancer lines þ Cells were bromodeoxyuridine (BrdU)-labeled, stained with (16–18) and primary tumors (19). ALDH1 cells are increased anti-BrdU antibodies, and propidium iodide (PI) and cell cycle in populations surviving platinum chemotherapy, suggesting assayed as described previously (28). CSCs survive to repopulate after treatment (20). Although 50%–70% of patients with advanced HGSOC achieve a com- Effects of siRNA-mediated Src and MEK knockdown on cell plete clinical response to initial cytoreductive surgery and cycle chemotherapy, 70% will suffer recurrence and ultimately die Three different antisense oligos to either SRC (sc-29228 for of the disease (1). Thus, treatments that target resistant CSCs siSRC), or MEK1 (sc-29396 for
Recommended publications
  • Selective Targeting of Cyclin E1-Amplified High-Grade Serous Ovarian Cancer by Cyclin-Dependent Kinase 2 and AKT Inhibition
    Published OnlineFirst September 23, 2016; DOI: 10.1158/1078-0432.CCR-16-0620 Biology of Human Tumors Clinical Cancer Research Selective Targeting of Cyclin E1-Amplified High-Grade Serous Ovarian Cancer by Cyclin- Dependent Kinase 2 and AKT Inhibition George Au-Yeung1,2, Franziska Lang1, Walid J. Azar1, Chris Mitchell1, Kate E. Jarman3, Kurt Lackovic3,4, Diar Aziz5, Carleen Cullinane1,6, Richard B. Pearson1,2,7, Linda Mileshkin2,8, Danny Rischin2,8, Alison M. Karst9, Ronny Drapkin10, Dariush Etemadmoghadam1,2,5, and David D.L. Bowtell1,2,7,11 Abstract Purpose: Cyclin E1 (CCNE1) amplification is associated with Results: We validate CDK2 as a therapeutic target by demon- primary treatment resistance and poor outcome in high-grade strating selective sensitivity to gene suppression. However, we found serous ovarian cancer (HGSC). Here, we explore approaches to that dinaciclib did not trigger amplicon-dependent sensitivity in a target CCNE1-amplified cancers and potential strategies to over- panel of HGSC cell lines. A high-throughput compound screen come resistance to targeted agents. identified synergistic combinations in CCNE1-amplified HGSC, Experimental Design: To examine dependency on CDK2 in including dinaciclib and AKT inhibitors. Analysis of genomic data CCNE1-amplified HGSC, we utilized siRNA and conditional from TCGA demonstrated coamplification of CCNE1 and AKT2. shRNA gene suppression, and chemical inhibition using dina- Overexpression of Cyclin E1 and AKT isoforms, in addition to ciclib, a small-molecule CDK2 inhibitor. High-throughput mutant TP53, imparted malignant characteristics in untransformed compound screening was used to identify selective synergistic fallopian tube secretory cells, the dominant site of origin of HGSC.
    [Show full text]
  • The CDK4/6 Inhibitor LY2835219 Has Potent Activity in Combination with Mtor Inhibitor in Head and Neck Squamous Cell Carcinoma
    www.impactjournals.com/oncotarget/ Oncotarget, Vol. 7, No. 12 The CDK4/6 inhibitor LY2835219 has potent activity in combination with mTOR inhibitor in head and neck squamous cell carcinoma Bo Mi Ku1,*, Seong Yoon Yi3,*, Jiae Koh1, Yeon-Hee Bae1, Jong-Mu Sun2, Se-hoon Lee2, Jin Seok Ahn2, Keunchil Park2, Myung-Ju Ahn2 1 Samsung Biomedical Research Institute, Seoul, Korea 2 Division of Hematology-Oncology, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea 3 Division of Hematology-Oncology, Department of Internal Medicine, Inje University Ilsan Paik Hospital, Gyeonggi-do, Korea *These authors contributed equally to this work Correspondence to: Myung-Ju Ahn, e-mail: [email protected] Keywords: head and neck cancer, CDK4/6 inhibitor, mTOR, cell cycle, targeted therapy Received: September 15, 2015 Accepted: January 23, 2016 Published: February 21, 2016 ABSTRACT Deletion of CDKN2A (p16) or amplification ofCCND1 (cyclin D1) occurs commonly in head and neck squamous cell carcinoma (HNSCC) and induces sustained cyclin- dependent kinase (CDK) 4/6 activation. Here, we report the antiproliferative activity of LY2835219, a selective CDK4/6 inhibitor through inhibition of CDK4/6-dependent Ser780 phosphorylation in retinoblastoma (RB) and induction of cell cycle arrest in HNSCC cells. In addition, we demonstrated the antitumor effects of HNSCC xenografts to LY2835219 in vivo. Given the limited effect in HNSCC as a single-agent treatment with LY2835219, a combinational strategy is required to enhance antitumor activity. At the molecular level, we found that LY2835219 inhibited activation of AKT and ERK, but not mTOR. The combination of LY2835219 with mTOR inhibitor was found to be more effective than either drug alone in vitro and in vivo.
    [Show full text]
  • Identification of Candidate Repurposable Drugs to Combat COVID-19 Using a Signature-Based Approach
    www.nature.com/scientificreports OPEN Identifcation of candidate repurposable drugs to combat COVID‑19 using a signature‑based approach Sinead M. O’Donovan1,10, Ali Imami1,10, Hunter Eby1, Nicholas D. Henkel1, Justin Fortune Creeden1, Sophie Asah1, Xiaolu Zhang1, Xiaojun Wu1, Rawan Alnafsah1, R. Travis Taylor2, James Reigle3,4, Alexander Thorman6, Behrouz Shamsaei4, Jarek Meller4,5,6,7,8 & Robert E. McCullumsmith1,9* The COVID‑19 pandemic caused by the novel SARS‑CoV‑2 is more contagious than other coronaviruses and has higher rates of mortality than infuenza. Identifcation of efective therapeutics is a crucial tool to treat those infected with SARS‑CoV‑2 and limit the spread of this novel disease globally. We deployed a bioinformatics workfow to identify candidate drugs for the treatment of COVID‑19. Using an “omics” repository, the Library of Integrated Network‑Based Cellular Signatures (LINCS), we simultaneously probed transcriptomic signatures of putative COVID‑19 drugs and publicly available SARS‑CoV‑2 infected cell lines to identify novel therapeutics. We identifed a shortlist of 20 candidate drugs: 8 are already under trial for the treatment of COVID‑19, the remaining 12 have antiviral properties and 6 have antiviral efcacy against coronaviruses specifcally, in vitro. All candidate drugs are either FDA approved or are under investigation. Our candidate drug fndings are discordant with (i.e., reverse) SARS‑CoV‑2 transcriptome signatures generated in vitro, and a subset are also identifed in transcriptome signatures generated from COVID‑19 patient samples, like the MEK inhibitor selumetinib. Overall, our fndings provide additional support for drugs that are already being explored as therapeutic agents for the treatment of COVID‑19 and identify promising novel targets that are worthy of further investigation.
    [Show full text]
  • A Novel CDK9 Inhibitor Increases the Efficacy of Venetoclax (ABT-199) in Multiple Models of Hematologic Malignancies
    Leukemia (2020) 34:1646–1657 https://doi.org/10.1038/s41375-019-0652-0 ARTICLE Molecular targets for therapy A novel CDK9 inhibitor increases the efficacy of venetoclax (ABT-199) in multiple models of hematologic malignancies 1 1 2,3 4 1 5 6 Darren C. Phillips ● Sha Jin ● Gareth P. Gregory ● Qi Zhang ● John Xue ● Xiaoxian Zhao ● Jun Chen ● 1 1 1 1 1 1 Yunsong Tong ● Haichao Zhang ● Morey Smith ● Stephen K. Tahir ● Rick F. Clark ● Thomas D. Penning ● 2,7 3 5 1 4 2,7 Jennifer R. Devlin ● Jake Shortt ● Eric D. Hsi ● Daniel H. Albert ● Marina Konopleva ● Ricky W. Johnstone ● 8 1 Joel D. Leverson ● Andrew J. Souers Received: 27 November 2018 / Revised: 18 October 2019 / Accepted: 13 November 2019 / Published online: 11 December 2019 © The Author(s) 2019 Abstract MCL-1 is one of the most frequently amplified genes in cancer, facilitating tumor initiation and maintenance and enabling resistance to anti-tumorigenic agents including the BCL-2 selective inhibitor venetoclax. The expression of MCL-1 is maintained via P-TEFb-mediated transcription, where the kinase CDK9 is a critical component. Consequently, we developed a series of potent small-molecule inhibitors of CDK9, exemplified by the orally active A-1592668, with CDK selectivity profiles 1234567890();,: 1234567890();,: that are distinct from related molecules that have been extensively studied clinically. Short-term treatment with A-1592668 rapidly downregulates RNA pol-II (Ser 2) phosphorylation resulting in the loss of MCL-1 protein and apoptosis in MCL-1- dependent hematologic tumor cell lines. This cell death could be attenuated by either inhibiting caspases or overexpressing BCL-2 protein.
    [Show full text]
  • Cyclacel's CYC065 CDK Inhibitor Demonstrates Synergy With
    Cyclacel’s CYC065 CDK Inhibitor Demonstrates Synergy With Venetoclax By Dual Targeting Of Chronic Lymphocytic Leukemia April 17, 2018 Suppression of both BCl-2 and Mcl-1 anti-apoptotic proteins is a novel strategy in CLL BERKELEY HEIGHTS, N.J., April 17, 2018 (GLOBE NEWSWIRE) -- Cyclacel Pharmaceuticals, Inc. (NASDAQ:CYCC) (NASDAQ:CYCCP) ("Cyclacel" or the "Company"), a biopharmaceutical company developing oral therapies that target various phases of cell cycle control for the treatment of cancer and other serious disorders, today announced the presentation by investigators led by William Plunkett, PhD, Professor and Deputy Chair, Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas, of preclinical data demonstrating strong synergy between Cyclacel’s CDK2/9 inhibitor, CYC065, and the Bcl-2 inhibitor, venetoclax (ABT-199, AbbVie) in chronic lymphocytic leukemia (CLL) samples obtained from patients. The data were presented at the American Association for Cancer Research (AACR) Annual Meeting being held April 14-18, 2018 in Chicago, Illinois. “The MD Anderson data show that the combination of CYC065 and venetoclax is strongly synergistic in primary CLL cells from patients, including those with 17p deletions. In addition, the combination was active in two CLL samples which were resistant to either agent alone. These findings support the hypothesis that dual targeting of the Mcl-1- and Bcl-2-dependent mechanisms could induce synergistic cell death by apoptosis,” said Spiro Rombotis, President and Chief Executive Officer of Cyclacel. “Last weekend during the same AACR conference, we reported that CYC065 durably suppresses Mcl-1, a member of the Bcl-2 family of survival proteins, in patients with advanced solid tumors1.
    [Show full text]
  • Pharmacologic Properties of AG-012986, a Pan-Cyclin- Dependent Kinase Inhibitor with Antitumor Efficacy
    818 Pharmacologic properties of AG-012986, a pan-cyclin- dependent kinase inhibitor with antitumor efficacy Cathy Zhang,1 Karen Lundgren,1 Zhengming Yan,1 optimization of AG-012986 provided guidance for select- Maria E. Arango,1 Sharon Price,1 Andrea Huber,1 ing a treatment schedule to achieve the best antitumor Joseph Higgins,1 Gabriel Troche,1 efficacy while minimizing the risk of adverse side effects. Judith Skaptason,2 Tatiana Koudriakova,2 [Mol Cancer Ther 2008;7(4):818–28] Jim Nonomiya,4 Michelle Yang,5 1 1 1 Patrick O’Connor, Steve Bender, Gerrit Los, Introduction Cristina Lewis,4 and Bart Jessen3 Cyclin-dependent kinases (CDK) and their regulatory Departments of 1Cancer Biology, 2Pharmacokinetics, Dynamics cyclin partners play critical roles in cell cycle control and and Metabolism, 3Drug Safety Research and Development, the regulation of cell transcription. Progression through 4 5 Biochemical Pharmacology, and Medicinal Chemistry, the different stages of cell cycle is governed by the Pfizer Global Research and Development, La Jolla, California activities of the CDK1, CDK2, CDK4, CDK6, and possibly CDK3. CDK4/cyclin D, CDK6/cyclin D, and CDK2/cyclin E Abstract phosphorylate the retinoblastoma (Rb) protein at multiple AG-012986 is a multitargeted cyclin-dependent kinase sites, which results in activation of the E2F family of (CDK) inhibitor active against CDK1, CDK2, CDK4/6, transcription factors and serves as a trigger for cells to CDK5, and CDK9, with selectivity over a diverse panel of advance beyond the G1 checkpoint into S phase (1–3). non-CDK kinases. Here, we report the potent antitumor During S phase, CDK2/cyclin A phosphorylates several efficacies of AG-012986 against multiple tumor lines proteins, including E2F, to regulate progression through in vitro and in vivo.
    [Show full text]
  • Anticancer and Radiosensitizing Effects of the Cyclin-Dependent Kinase Inhibitors, AT7519 and SNS‑032, on Cervical Cancer
    INTERNATIONAL JOURNAL OF ONCOLOGY 53: 703-712, 2018 Anticancer and radiosensitizing effects of the cyclin-dependent kinase inhibitors, AT7519 and SNS-032, on cervical cancer MI AE KANG1*, WONWOO KIM2*, HYE-RAM JO1,3, YOUNG-JOO SHIN4, MOON-HONG KIM5 and JAE-HOON JEONG1,3 1Division of Applied Radiation Bioscience, and 2Radiation Non-Clinic Center, Korea Institute of Radiological and Medical Science, Seoul 01812; 3Radiological and Medico-Oncological Sciences, Korea University of Science and Technology, Daejeon 34113; 4Department of Radiation Oncology, Inje University Sanggye Paik Hospital, Seoul 01757; 5Department of Obstetrics and Gynecology, Korea Institute of Radiological and Medical Sciences, Seoul 01812, Republic of Korea Received January 30, 2018; Accepted May 17, 2018 DOI: 10.3892/ijo.2018.4424 Abstract. Cyclin-dependent kinases (CDK) are considered the utilization of AT7519 and SNS-032 as part of an adjuvant to be potential targets of anticancer drugs that can interrupt treatment may help control cervical cancer progression. the uncontrolled division of cancer cells. In this study, we selected two selective CDK inhibitors, AT7519 and SNS-032, Introduction from current clinical trials and examined their anticancer and radiosensitizing effects in a cervical cancer model. SNS-032 Cyclin-dependent kinases (CDKs) are present in all known was found to be more potent than AT7519, with a lower half eukaryotes, and their regulatory functions during the cell cycle maximal inhibitory concentration (IC50) value. Both AT7519 are evolutionarily conserved. Cyclin-CDK complexes phos- and SNS-032 induced the apoptosis, premature senescence and phorylate specific substrates, according to the requirements cytostasis of cervical cancer cells, which led to the attenuation of a particular cell cycle phase.
    [Show full text]
  • Journal Pre-Proof
    Journal Pre-proof 5th ESO-ESMO international consensus guidelines for advanced breast cancer (ABC † 5) F. Cardoso, S. Paluch-Shimon, E. Senkus, G. Curigliano, M.S. Aapro, F. André, C.H. Barrios, J. Bergh, G.S. Bhattacharyya, L. Biganzoli, F. Boyle, M.-J. Cardoso, L.A. Carey, J. Cortés, N.S. El Saghir, M. Elzayat, A. Eniu, L. Fallowfield, P.A. Francis, K. Gelmon, J. Gligorov, R. Haidinger, N. Harbeck, X. Hu, B. Kaufman, R. Kaur, B.E. Kiely, S.-B. Kim, N.U. Lin, S.A. Mertz, S. Neciosup, B.V. Offersen, S. Ohno, O. Pagani, A. Prat, F. Penault-Llorca, H.S. Rugo, G.W. Sledge, C. Thomssen, D.A. Vorobiof, T. Wiseman, B. Xu, L. Norton, A. Costa, E.P. Winer PII: S0923-7534(20)42460-3 DOI: https://doi.org/10.1016/j.annonc.2020.09.010 Reference: ANNONC 337 To appear in: Annals of Oncology Received Date: 21 August 2020 Revised Date: 15 September 2020 Accepted Date: 16 September 2020 Please cite this article as: Cardoso F, Paluch-Shimon S, Senkus E, Curigliano G, Aapro MS, André F, Barrios CH, Bergh J, Bhattacharyya GS, Biganzoli L, Boyle F, Cardoso MJ, Carey LA, Cortés J, El Saghir NS, Elzayat M, Eniu A, Fallowfield L, Francis PA, Gelmon K, Gligorov J, Haidinger R, Harbeck N, Hu X, Kaufman B, Kaur R, Kiely BE, Kim SB, Lin NU, Mertz SA, Neciosup S, Offersen BV, Ohno S, Pagani O, Prat A, Penault-Llorca F, Rugo HS, Sledge GW, Thomssen C, Vorobiof DA, Wiseman T, Xu B, Norton L, Costa A, Winer EP, 5th ESO-ESMO international consensus guidelines for advanced breast † cancer (ABC 5) , Annals of Oncology (2020), doi: https://doi.org/10.1016/j.annonc.2020.09.010.
    [Show full text]
  • As of May 1, 2018
    Pfizer Pipeline As of May 1, 2018 Disclaimer ● As some programs are still confidential, some candidates may not be identified in this list. In these materials, Pfizer discloses Mechanism of Action (MOA) information for some candidates in Phase 1 and for all candidates from Phase 2 through regulatory approval. With a view to expanding the transparency of our pipeline, Pfizer is including new indications or enhancements, which target unmet medical need or represent significant commercial opportunities. The information contained on these pages is correct as of May 1, 2018. ● Visit Pfizer.com/pipeline, Pfizer’s online database where you can learn more about our portfolio of new medicines and find out more about our Research and Development efforts around the world. 2 Table of Contents Pfizer Pipeline Snapshot 4 Inflammation and Immunology 5 Metabolic Disease and Cardiovascular Risks 6 Oncology 7-9 Rare Diseases 10 Vaccines 11 Biosimilars and Other Areas of Focus 12 Projects Discontinued Since Last Update 13 Backup: Regulatory Designation Definitions 14-15 3 * A portion of the increase in the number of projects in Phase 1 and Phase 2 Pfizer Pipeline Snapshot between the January 30, 2018 and May 1, 2018 updates is attributable to a change in project counting Pfizer Pipeline 10 programs advanced practices. Multiple Snapshot as of indications previously or are new combined and reflected as a Discovery May 1, 2018 single project are now being Projects counted separately. This change has been Phase 1 * Phase 2 * Phase 3 Registration Total implemented to increase 34 22 28 12 96 transparency and provide a more comprehensive view of our early and mid-stage portfolio.
    [Show full text]
  • Cyclin-Dependent Kinase Inhibitors in Brain Cancer: Current State and Future Directions
    Juric et al. Cancer Drug Resist 2020;3:48-62 Cancer DOI: 10.20517/cdr.2019.105 Drug Resistance Review Open Access Cyclin-dependent kinase inhibitors in brain cancer: current state and future directions Viktorija Juric, Brona Murphy Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin D02, Ireland. Correspondence to: Dr. Brona Murphy, Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, 39A York Street, Dublin D02, Ireland. E-mail: [email protected] How to cite this article: Juric V, Murphy B. Cyclin-dependent kinase inhibitors in brain cancer: current state and future directions. Cancer Drug Resist 2020;3:48-62. http://dx.doi.org/10.20517/cdr.2019.105 Received: 5 Nov 2019 First Decision: 4 Dec 2019 Revised: 11 Dec 2019 Accepted: 20 Dec 2019 Published: 19 Mar 2020 Science Editor: Lee M. Graves Copy Editor: Jing-Wen Zhang Production Editor: Jing Yu Abstract Cyclin-dependent kinases (CDKs) are important regulatory enzymes in the normal physiological processes that drive cell-cycle transitions and regulate transcription. Virtually all cancers harbour genomic alterations that lead to the constitutive activation of CDKs, resulting in the proliferation of cancer cells. CDK inhibitors (CKIs) are currently in clinical use for the treatment of breast cancer, combined with endocrine therapy. In this review, we describe the potential of CKIs for the treatment of cancer with specific focus on glioblastoma (GBM), the most common and aggressive primary brain tumour in adults. Despite intense effort to combat GBM with surgery, radiation and temozolomide chemotherapy, the median survival for patients is 15 months and the majority of patients experience disease recurrence within 6-8 months of treatment onset.
    [Show full text]
  • Inhibitors of Cyclin-Dependent Kinases: Types and Their Mechanism of Action
    International Journal of Molecular Sciences Review Inhibitors of Cyclin-Dependent Kinases: Types and Their Mechanism of Action Paweł Łukasik 1, Irena Baranowska-Bosiacka 2, Katarzyna Kulczycka 3 and Izabela Gutowska 1,* 1 Department of Medical Chemistry, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72 Av., 70-111 Szczecin, Poland; [email protected] 2 Department of Biochemistry, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72 Av., 70-111 Szczecin, Poland; [email protected] 3 Department of Pharmaceutical Chemistry, Pomeranian Medical University in Szczecin, Powstancow Wlkp. 72 Av., 70-111 Szczecin, Poland; [email protected] * Correspondence: [email protected] Abstract: Recent studies on cyclin-dependent kinase (CDK) inhibitors have revealed that small molecule drugs have become very attractive for the treatment of cancer and neurodegenerative disorders. Most CDK inhibitors have been developed to target the ATP binding pocket. However, CDK kinases possess a very similar catalytic domain and three-dimensional structure. These features make it difficult to achieve required selectivity. Therefore, inhibitors which bind outside the ATP binding site present a great interest in the biomedical field, both from the fundamental point of view and for the wide range of their potential applications. This review tries to explain whether the ATP competitive inhibitors are still an option for future research, and highlights alternative approaches to discover more selective and potent small molecule inhibitors. Keywords: cyclin-dependent kinase inhibitors; cancer; cell cycle; CDKs; CDK inhibitors Citation: Łukasik, P.; Baranowska-Bosiacka, I.; Kulczycka, K.; Gutowska, I. Inhibitors of Cyclin-Dependent Kinases: Types 1. Cyclin-Dependent Kinases (CDKs) and Their Mechanism of Action.
    [Show full text]
  • Inhibition of CDK4/6 As Therapeutic Approach for Ovarian Cancer Patients: Current Evidences and Future Perspectives
    cancers Review Inhibition of CDK4/6 as Therapeutic Approach for Ovarian Cancer Patients: Current Evidences and Future Perspectives Alessandra Dall’Acqua 1,†, Michele Bartoletti 2,3,† , Nastaran Masoudi-Khoram 1,‡, Roberto Sorio 2, Fabio Puglisi 2,3 , Barbara Belletti 1 and Gustavo Baldassarre 1,* 1 Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, 33081 Aviano, Italy; [email protected] (A.D.); [email protected] (N.M.-K.); [email protected] (B.B.) 2 Medical Oncology and Cancer Prevention Molecular Oncology Unit, Centro di Riferimento Oncologico di Aviano (CRO), IRCCS, National Cancer Institute, 33081 Aviano, Italy; [email protected] (M.B.); [email protected] (R.S.); [email protected] (F.P.) 3 Department of Medicine (DAME), University of Udine, 33100 Udine, Italy * Correspondence: [email protected]; Tel.: +39-0434-659779; Fax: +39-0434-659429 † These authors equally contributed to the work. ‡ Present address: Department of Biophysics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran. Simple Summary: Altered regulation of the cell cycle is a hallmark of cancer. The recent clinical success of the inhibitors of CDK4 and CDK6 has convincingly demonstrated that targeting cell cycle components may represent an effective anti-cancer strategy, at least in some cancer types. However, possible applications of CDK4/6 inhibitors in patients with ovarian cancer is still under evaluation. Citation: Dall’Acqua, A.; Bartoletti, M.; Masoudi-Khoram, N.; Sorio, R.; Here, we describe the possible biological role of CDK4 and CDK6 complexes in ovarian cancer and Puglisi, F.; Belletti, B.; Baldassarre, G. provide the rationale for the use of CDK4/6 inhibitors in this pathology, alone or in combination Inhibition of CDK4/6 as Therapeutic with other drugs.
    [Show full text]