GEOCON 2019: Geoscience for a resilient and sustainable

R. N. de Lara*, E.Y. Mula**, and M.A. Zepeda, D. Sc.* *General Geology Section and ** Geological Laboratory Services Section, Lands Geological Survey Division, Mines and Geosciences Bureau

1 • Introduction • Statement of the Problem • Significance of the Study • Objectives • Methodology • Conceptual Framework • Results and Discussion • Conclusion and Recommendation

GEOCON 2019: Geoscience for a resilient and sustainable 2 Philippines Introduction

BACKGROUND OF THE STUDY • Cenozoic Stratigraphy Project of the Philippines (research component of the National Geological Mapping Program) - Stimulated by the demand for precise geologic maps - Highlights the role of paleontology and other basic science researches in enhancing Quadrangle Geological Mapping - Way of addressing popular defects in the existing geologic maps through long-term mapping and rock sample analysis

GEOCON 2019: Geoscience for a resilient and sustainable Philippines 3 Introduction

Basin - filled with 8,000 meters thick sedimentary sequence (Saldivar-Sali, 1978) - Structurally controlled by the major branches of the northern segment of the Philippine Fault (Vigan-Aggao Fault) (Maleterre, 1989; Pinet, 1990)

GEOCON 2019: Geoscience for a resilient and sustainable Contour interval: 500 m, eliminating valleys less than 2.5 km across; solid lines are major fault trace of Philippines the Philippine fault after Allen (1962). (Retrieved from “A Report on Tectonic Landforms along the Philippine Fault Zone in the Northern Luzon Philippines by Nakata et al., 1977)

6 Introduction

• Location of the study area - Sta. Ignacia Quadrangle, Province - Covers the municipalities of and Mayantoc, and portions of San Jose, , and San Clemente

GEOCON 2019: Geoscience for a resilient and sustainable Philippines

7 N/P DE LEON AND MILITANTE- AGE DIVINO-SANTIAGO (1963) PEÑA (2008) ZONES MATIAS (1992) Statement of the HOLO. N23 PLEISTO. N22 Problem N21 L N20

E N19 Tarlac Formation PLIOCENE N18 Tarlac Formation Previous workers on N17 L Tarlac Formation Malinta Formation the stratigraphic N16 Malinta Formation N15 sequence of western N14 N13 M N12

Central Luzon Basin MIOCENE Malinta Formation N11 Moriones Formation Moriones Formation had conflicting age N10 assignments of four (4) N9 N8 Moriones Formation sedimentary units, N7 E N6 namely, Aksitero, N5 N4

L P22/N3

Moriones, Malinta, and NE P21/N2 Tarlac formations M

OLIGOCENE P20/N1

E P18/19 Aksitero Formation

P17 GEOCON 2019: Geoscience for a resilient and sustainable Philippines L P16 8 P15

P14

P13

M P12 EOCENE P11

P10

P9

P8 E P7

P6 Significance of the Study

The results of this study would serve as a new source of information and refinement of the Cenozoic stratigraphy of Sta. Ignacia Quadrangle. Moreover, this would be of immense help to future researchers in reconstructing and understanding the geologic history of the area.

GEOCON 2019: Geoscience for a resilient and sustainable 9 Philippines Objectives

This study mainly focuses on the re-evaluation of the age and stratigraphic relationships of these formations based on fossil evidence

GEOCON 2019: Geoscience for a resilient and sustainable 10 Philippines Methodology

1. Data Compilation 2. Base Map Generation 3. Field Investigation and Sampling 4. Laboratory Analysis 5. Data Synthesis

GEOCON 2019: Geoscience for a resilient and sustainable Philippines 11 Conceptual Framework

SAMPLE PALEONTOLOGICAL SAMPLING PREPARATION ANALYSIS

• Collection of sedimentary • Samples submitted to the • Picking of fossils samples (logging of laboratory for washing, • Identification of fossils coordinates, description, polished blocks, or thin • Age and Paleoenvironment proper labeling) section

DATA FIELD RE-EVALUATION OF THE COMPILATION INVESTIGATION CENOZOIC STRATIGRAPHY OF STA. IGNACIA • Review of Related QUADRANGLE Literature • Base map Generation

LITHOLOGIC DATA MAPPING INTEGRATION

LITHOLOGIC DESCRIPTION • Integrating the gathered • Lithological characteristics field data into the initial • Megascopic analysis geologic map based on field • Sedimentary structures validation results • Fossils present GEOCON 2019: Geoscience for a resilient and sustainable 12 Philippines GEOCON 2019: Geoscience for a resilient and sustainable 13 Philippines Results and Discussion

• Lithology a b AKSITERO FORMATION - Oldest sedimentary formation considered as the carapace of the Ophiolite - Pale yellow to yellowish-white fine-grained limestone

(MYWell--MBbedded,-003).indurated,(a) Highlycalcareous,indurated, wellgreenish-bedded,siltstonefossiliferouswithin thelimestoneBarangaywhichBigbigaextends, Mayontocapproximately. It is probably30 metersalso partwithinof GEOCON 2019: Geoscience for a resilient and sustainable Barangaythe AksiteroBigbigaFormation, Mayontoc(GPS.: TheN15°limestone31’57.7”/Eunit120°striking22’27.6”)NE. and dipping SE is probably the lower Bigbiga Limestone unit Philippines of the Aksitero Formation (GPS: N15°32’8.8”/E120°22’25.4”). (b) Closer view of the fossiliferous limestone of the Aksitero Formation.

14 Results and Discussion

• Lithology MORIONES FORMATION - Unconformably overlying Aksitero Formation - Interbedded sandstone, shale, Sandstone and conglomerate with minor limestone

(CM-KBCA-001). An outcrop of thick conglomerate cropping out within the rough road of Maasin, San (TAR(SI-BIG-KA--17003B)).ASedimentarynewly exposedsequenceexcavatedobservedpotion innearSansoterothe piggeryshowingBrgy.alternatingBigbiga, Mayantocthin to medium, Tarlac consistingbeds of of (TARClemente-BIG-22. ItB)consistsAn interlayeringchiefly ofofgrayish,sandstone,pebblesiltstone,to cobble,and angularshale intoansuboutcroproundedseenclastsalongofthewellriverbankinduratedof fineBayating- graytuffaceous-colored fossiliferoussiltstone andshalesandstone. (GPS N 15topped° 30' 37by.879a "conglomerateE 120° 23' 5.506bed").. The conglomerate is composed of GEOCON 2019: Geoscience for a resilient and sustainable Rivergrainedsandstonein Brgysandstone. Bigbigamatrixin, Mayantocaandbrownish,limestone, Tarlacsilty,clasts.sheared(GPS. TheNmatrix15beds° 31strike(GPS' 22.789:NN40"15EW°39120and’28° .23dip5”/E' 2611120.NE904°19.")(GPS’.53.9”)N. 15⁰ 31’ 37.20” E 120⁰ Philippines 24’ 28.80”)

15 Results and Discussion

• Lithology MALINTA FORMATION - Conformably overlies the Moriones Formation - Interbedded sequence of well-bedded, fine- to coarse- grained lapilli tuff, shale, sandstone, and minor tuffaceous conglomerate

An outcrop located in Purok 1 of Barangay Maminyog in the Municipality of Mayantoc. The upper portion consists (TARThin -bedBR-of13siltstone) Thin bedinterbeddedof siltstonebetweeninterbeddedtwo sandstonebetweenbedstwo. Thesandstonebeddingbedsplanes. ThearebeddinggenerallyplanesstrikingareN15generallyE and of friable tuffaceous sandstone while the lower portion is made up of highly indurated tuffaceous sandstone. (GPS dippingstriking 50N15NWE .and(GPSdippingN 15⁰5033NW’ 50. .(GPS40” EN12015⁰⁰2633’’ 2050..4040”)” E 120⁰ 26’ 20.40”) GEOCON 2019: Geoscience for a resilient and sustainable N 15⁰ 35’ 38.40” E 120⁰ 21’ 7.20”). Philippines 16 Results and Discussion

a • Lithology b TARLAC FORMATION - Conformably overlies the Malinta Formation - Thinly stratified, calcareous, light gray to greenish gray shale and sandstone - Most widespread sedimentary rock in the study area

(a) An(a) 3Bed-m highof granule outcrop- to locatedpebble-sized in Brgytuffaceous. Timmaguabsandstone, Sta.approximately Ignacia, Tarlac50 meters (GPSaway N 15from° 34'Piglos 28.288"River .E GEOCON 2019: Geoscience for a resilient and sustainable (b) Closer view of the sandstone sample (GPS N 15⁰ 34’ 13.394” E 120⁰ 27’ 27.678”) 120° 26' 16.009"). Philippines (b) Closer view of the outcrop: 1- fine-grained sandstone; 2- shale; 3 - coarse-grained sandstone 17 N/P AGE

Fossil Assemblage ZONES

MY-MB-003

Globorotalia opima nana opima Globorotalia tripartita Globigerina HOLO. N23 • PLEISTO. Aksitero Formation N22

N21 Sample MY-MB-003 L N20

E N19 PLIOCENE N18

N17 - Highly indurated, well- L N16 bedded, fossiliferous limestone N15 N14 (striking NE and dipping SE) N13 M

N12 MIOCENE extending approximately 30 N11 N10 meters in Brgy. Bigbiga, N9 N8 1 mm Mayantoc, Tarlac Globorotalia opima nana N7 E N6

N5 Globogerina tripartita Globogerina tripartita Presence of: N4 L

NE P22/N3

✓ Globorotalia opima nana P21/N2 M

✓ Globogerina tripartita OLIGOCENE P20/N1 E P18/19

P17

L P16

GEOCON 2019: Geoscience for a resilient and sustainable 1 mm P15 0.5 mm Philippines P14 18

P13

M P12 EOCENE P11

P10

P9

P8 E P7

P6 Fossil Assemblage N/P AGE

ZONES

SI-KA-003

Orbulina universa Orbulina trilobus Globigerinoides globosa Globoquadrina dehiscens Globoquadrina HOLO. N23

PLEISTO. • Moriones Formation N22

N21 Sample SI-KA-003 L N20

E N19 PLIOCENE N18

- Alternating thin to medium N17 L N16 beds of tuffaceous siltstone and N15 sandstone (striking N40W and N14 N13 M N12 dipping 11NE) overlain by a MIOCENE N11

N10 conglomerate bed (limestone N9 clasts set in a sandy matrix) N8 N7 Orbulina universa Globoquadrina sp. E N6

N5 Presence of: N4 L

NE P22/N3

✓ Orbulina universa P21/N2 M

✓ Globogerinoides trilobus OLIGOCENE P20/N1 ✓ Globoquadrina globosa E P18/19 GEOCON 2019: Geoscience for a resilient and sustainable P17 20 Philippines ✓ Globoquadrina dehiscens L P16

P15

P14

P13

M P12 EOCENE P11

P10

P9

P8 E P7

P6 Fossil Assemblage N/P AGE

ZONES

CM-KBCA-001

Globigerinoides trilobus Globigerinoides globosa Globoquadrina • Moriones Formation universa Orbulina HOLO. N23

PLEISTO. Sample CM-KBCA-001 N22 N21 - An outcrop of conglomerate L N20 cropping out along a rough E N19 Sandstone PLIOCENE road in Brgy. Maasin, San N18 N17 L Clemente N16 - Consists chielfy of pebble- to N15 N14 cobble-sized, angular to sub- N13 M N12 angular clasts of well- MIOCENE indurated fine-grained grayish N11 Presence of: N10 sandstone in a sheared ✓ Orbulina universa N9 brownish silty matrix ✓ Globogerinoides trilobus N8 ✓ Globoquadrina globosa N7 E N6 GEOCON 2019: Geoscience for a resilient and sustainable Philippines N5 21 N4 Fossil Assemblage N/P AGE

ZONES

TAR-BIG-17B TAR-BIG-22B

Orbulina universa Orbulina globosa Globoquadrina dehiscens Globoquadrina disjuncta Sphaeroidinella universa Orbulina globosa Globoquadrina dehiscens Globoquadrina seminulina Sphaeroidinellopsis • Moriones Formation HOLO. N23 PLEISTO. N22

Sample TAR-BIG-17B N21 L N20

- Gray colored highly E N19 PLIOCENE fossiliferous shale found in N18 N17 L Brgy. Bigbiga, Mayantoc N16 N15 Sample TAR-BIG-22B N14 N13 M N12 - Interbedds of sandstone, MIOCENE N11 siltstone and shale along the Abundance of: N10 right bank of Bayating River ✓ Orbulina universa N9 ✓ Globoquadrina globosa N8 in Brgy. Bigbiga, Mayantoc ✓ Globoquadrina dehiscens N7 E ✓ Sphaeroidinella disjuncta N6

✓ Sphaeroidinellopsis N5

seminulina N4 L

NE P22/N3

P21/N2 GEOCON 2019: Geoscience for a resilient and sustainable M

Philippines OLIGOCENE P20/N1 22

E P18/19 Fossil Assemblage N/P AGE ZONES

• Malinta Formation TAR-BR-13

Orbulina universa Orbulina trilobus Globigerinoides altispira Globoquadrina globosa Globoquadrina acostaensis Globorotalia dehiscens Globoquadrina disjuncta Sphaeroidinellopsis seminulina Sphaeroidinella Sample TAR-BR-13 HOLO. N23 PLEISTO. N22 - Interbeds of siltstone N21 L N20

and sandstone E N19

Globorotalia acostaensis PLIOCENE (striking N15E and Orbulina universa N18 N17 L dipping 50NW) N16 N15 Presence of: N14 N13 ✓ Orbulina universa M N12 ✓ Globigerinoides trilobus MIOCENE N11

✓ Globoquadrina altispira N10 Globoquadrina sp. Sphaeroidinellopsis seminulina ✓ Globoquadrina globosa N9 ✓ Globorotalia acostaensis N8 ✓ N7 Globoquadrina dehiscens E ✓ Sphaeroidinellopsis disjuncta N6 ✓ N5 Sphaeroidinella seminulina N4 L

NE P22/N3 GEOCON 2019: Geoscience for a resilient and sustainable P21/N2 23 Philippines M

OLIGOCENE P20/N1 N/P Fossil Assemblage AGE

ZONES

TAR-CAL-11A

Orbulina bilobata Orbulina trilobus Globigerinoides merotumida Globorotalia plesiotumida Globorotalia subdehiscens Sphaeroidinellopsis • Tarlac Formation universa Orbulina HOLO. N23

PLEISTO. Sample TAR-CAL-11A N22 N21 - Thick medium- to coarse- Orbulina universa Orbulina bilobata L N20 E N19

grained sandstone beds PLIOCENE N18

N17 ranging from brownish to L dark gray color with thin N16 N15

interbeds of highly N14

Globigerinoides trilobus Sphaeroidinellopsis subdehiscens N13 jointed and fissile M

N12 MIOCENE brwonish gray shale N11

Presence of: N10 ✓ Orbulina universa N9 ✓ Orbulina bilobata N8 N7 ✓ Globigerinoides trilobus E Globorotalia merotumida N6

✓ Globorotalia merotumida N5 ✓ Globorotalia plesiotumida N4 L ✓ Sphaeroidinellopsis subdehiscens NE P22/N3 P21/N2 ✓ Sphaeroidinellopsis penedehiscens M GEOCON 2019: Geoscience for a resilient and sustainable OLIGOCENE P20/N1 24 Philippines E P18/19 AKSITERO MORIONES FORMATION MALINTA FORMATION TARLAC FORMATION

N/P DE LEON AND MILITANTE- AGE DIVINO-SANTIAGO (1963) PEÑA (2008) THIS STUDY ZONES MATIAS (1992)

N/P HOLO. N23 AGE

ZONES

SI-KA-003

TAR-BR-13

MY-MB-003

TAR-BIG-17B TAR-BIG-22B TAR-CAL-11A

CM-KBCA-001 PLEISTO. N22

N21

Globorotalia opima nana opima Globorotalia tripartita Globigerina universa Orbulina trilobus Globigerinoides globosa Globoquadrina dehiscens Globoquadrina universa Orbulina trilobus Globigerinoides globosa Globoquadrina universa Orbulina globosa Globoquadrina dehiscens Globoquadrina disjuncta Sphaeroidinella universa Orbulina globosa Globoquadrina dehiscens Globoquadrina seminulina Sphaeroidinellopsis universa Orbulina trilobus Globigerinoides altispira Globoquadrina globosa Globoquadrina acostaensis Globorotalia dehiscens Globoquadrina disjuncta Sphaeroidinellopsis seminulina Sphaeroidinella universa Orbulina bilobata Orbulina trilobus Globigerinoides merotumida Globorotalia plesiotumida Globorotalia subdehiscens Sphaeroidinellopsis HOLO. N23 L N20

PLEISTO. N22 E N19 Tarlac Formation

PLIOCENE Tarlac Formation N21 N18 Tarlac Formation L N20 N17 L Tarlac Formation Malinta Formation Malinta Formation

E N19 N16 Malinta Formation PLIOCENE N18 N15

N17 L N14 N16 N13 M N15 N12 Moriones Formation

MIOCENE Malinta Formation N14 N11 Moriones Formation Moriones Formation N13 N10 M

N12 N9 MIOCENE N11 N8 N10 Moriones Formation N9 N7 E N6 N8 N5 N7 E N4 N6 L P22/N3

N5 NE

N4 P21/N2 M L

OLIGOCENE P20/N1 NE P22/N3

P21/N2 E P18/19 Aksitero Formation M Aksitero Formation

OLIGOCENE P20/N1 P17 E P18/19 L P16

P17 P15 L P16 P14 P15 P13 P14 M P12

P13 EOCENE P11 M P12

EOCENE P10 P11 P9 P10 P8 P9 E P7 P8 E P6 P7

P6

GEOCON 2019: Geoscience for a resilient and sustainable 25 Philippines 26 GEOCON 2019: Geoscience for a resilient and sustainable Philippines Conclusion

• The AKSITERO FORMATION – considered base of the sequence is dated Late Eocene to Late Oligocene (P14-P22) based on the occurrence of Globorotalia opima nana and Globigerina tripartita • The MORIONES FORMATION – faunal assemblages showed an abundance of Globoquadrina dehiscens, Globoquadrina globosa, and Sphaeroidinellopsis disjuncta which is indicative of a Middle Miocene age (N9-N16) • The MALINTA FORMATION – an age of Late Miocene (N16) is assigned based on the first appearance of Globorotalia acostaensis and the last appearance of Globoquadrina globosa • The TARLAC FORMATION – an age of late Late Miocene to Early Pliocene (N17-N19) based on the stratigraphic range of Sphaeroidinellopsis subdehiscens, Sphaeroidinellopsis penedehiscens, Globorotalia plesiotumida and Globorotalia merotumida

GEOCON 2019: Geoscience for a resilient and sustainable 27 Philippines Recommendation

• A research on Cenozoic stratigraphy should be employed after a semi- detailed geologic quadrangle mapping escpecially in areas where there are formations with conflicting or no definitive age assignments • A more detailed biostratigraphic zonation is necessaary for a more definitive age assignment • In-depth trainings on establishing synchronized biostratigraphic schemes for micro- and macrofossil studies calibrated by isotopic or radiometric techniques should be conducted

GEOCON 2019: Geoscience for a resilient and sustainable 29 Philippines References • Amato, F. L. (1965). Stratigraphic Paleontology in the Philippines. The Philippine Geologist, 19, 1-24. • Bandy, O. L. and Arnal, R. E. (1960). Concepts of foraminiferal paleontology. Petroleum Geologist, 44(12), 1921-1932. • Bolli, H. M., Saunders, J. B., & Perch-Nielses, K. (1985). Plankton Stratigraphy Vol. 1. New York, NY: Press Syndicate of the University of Cambridge. • Corby, G. W., Kleinpell, R. M., Poenoe, W. P., Merchant, R., William, H., Teves, J., Grey, R., Daleon, B., Mamacay, F., Villongco, A., Herrera, M., Guillen, J., Hollister, J. S., Johnson, H. N., Billings, M. H., Fryxell, E. M., Taylor, E. F., Nelson, C. N., Birch, D. C., Reed, R. W. and Marquez, R., (1951). Geology and Oil Possibilities of the Philippines. Technical Bulletin 21, Bureau of Mines, DENR. • De Leon & Militante-Matias (1992). Calcareous nannofossil biostratigraphy of the western part of Tarlac Province Central Luzon Basin. Geological Society of the Philippines, Vol. 47. • Dela Cruz, J. A. (2017). Stratigraphic relationship of the San Sotero Limestone to the MorionesFormation in Brgy. San Sotero, Sta. Ignacia, Tarlac. Undergraduate Thesis, School of Civil, Environmental, and Geological Engineering, Mapua University. • Dela Torre, A. P. and Chua, M. R. (2018). Re-evaluation of the stratigraphic sequence along the eastern portion of Sta. Ignacia Quadrangle, Sta. Ignacia, Tarlac Province. Undergraduate Thesis, School of Civil, Environmental, and Geological Engineering, Mapua University. • Garrison, R. et al., (1979). Petrology, sedimentology, and diagenesis of hemipelagic limestone and tuffaceousturbidites in the Aksitero Formation, Central Luzon, Philippines. Washington: United States Geological Survey Professional Paper; 1112. • Mines and Geosciences Bureau (2010). Geology of the Philippines, Second Edition, 18-55; 77-82. • Nakata, T., Sangawa, A., and Hirano, S. (1977). A report on tectonic landforms along the Philippine Fault Zone in the Northern Luzon, Philippines. • Peña, R. E. (2008). Lexicon of Philippine Stratigraphy. The Geological Society of the Philippines, Inc. • Postuma, J. A. (1971). Manual of Planktonic Foraminifera. Amsterdam, The Netherlands: Elsevier Publishing Company. • Santiago, P. D. (1963, September). Planktonic foraminiferal species from west side of Tarlac province, Luzon Central Valley. The Philippine Geologist, 17(3), 69-99. • Stainforth, R. M., Lamb, J. L., Luterbacher, H., Beard, J. H., and Jeffords, R. M. (1975). Cenozoic planktonic foraminiferal zonation characteristics of index forms. The University of Kansas Paleontological Institute: EXXON Company, U.S.A. • Yumul, G. P., Dimalanta, C. B., Maglambayan, V. B., and Marquez, E. J. (2008). Tectonic setting of a composite terrane: A review of the Philippine island arc system. Geosciences Journal, 12(1), 7-17.

GEOCON 2019: Geoscience for a resilient and sustainable Philippines 30 Thank you for listening!

Department of Environment and Natural Resources Mines and Geosciences Bureau North Avenue, Diliman, Quezon City, Philippines [email protected] General Geology Section: (02) 8667-67-00 local 177

GEOCON 2019: Geoscience for a resilient and sustainable 31 Philippines