E2f1 E2f2 E2f3 E2f4 E2f5 E2f6 E2f7 E2f8

Total Page:16

File Type:pdf, Size:1020Kb

E2f1 E2f2 E2f3 E2f4 E2f5 E2f6 E2f7 E2f8 BIOLOGICAL FUNCTION OF E2F7 AND E2F8 IS ESSENTIAL FOR EMBRYO DEVELOPMENT DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of the Ohio State University By Jing Li, M.S. ***** The Ohio State University 2009 Approved by Dissertation Committee: Gustavo Leone, Ph.D., Advisor Susan Cole, Ph.D. ________________________________ Paul Herman, Ph.D. Advisor Tim Huang, Ph.D. Graduate Program in Molecular Genetics Copyright Jing Li 2009 ABSTRACT The novel E2F7 and E2F8 family members are thought to function as transcriptional repressors important for the control of cell proliferation in vitro. However, as the most recently indentified and least studied E2F members, their biological functions in vivo remain unknown. Here we have analyzed the consequences of inactivating E2f7 and E2f8 in mice. While loss of either E2f7 or E2f8 did not significantly affect mouse development, their combined ablation resulted in massive apoptosis, dilated blood vessels and severe placental defects, culminating in embryonic lethality by day 11.5. E2F7 and E2F8 formed homo-dimers and hetero-dimers that could recruit various co-repressor complexes to E2F binding sites of target promoters, including E2f1. Consistent with their important role in transcriptional repression, mouse embryonic fibroblasts (MEFs) deficient for E2f7 and E2f8 expressed abnormally high levels of E2f1 and other E2F-target mRNAs. These double knockout MEFs proliferated surprisingly well, but accumulated high levels of p53 protein and were hypersensitive to DNA damage-induced cell death. Importantly, loss of either E2f1 or p53 suppressed the massive apoptosis observed in double mutant embryos but failed to rescue their embryonic lethality. ii In order to identify the leading cause of fetal death, the critical tissues, related cellular processes and molecular mechanisms of E2F7 and E2F8 function, we utilized conditional knockout strategies to show that extra-embryonic function of E2F7 and E2F8 is both necessary and sufficient for embryo development, and thus define the placental abnormalities as the leading cause of embryonic lethality in E2f7-/-E2f8-/- embryos. Consistent with this genetic finding, cellular examination of double mutant placentas revealed ectopic DNA replication and inappropriate mitosis in certain cell lineages of placenta. We also provided two distinct molecular mechanisms of E2F7 and E2F8 function to explain these cellular phenotypes. On one hand, E2F7 and E2F8 could directly repress a novel transcription network that is critical for controlling DNA replication. On the other hand, E2F7 and E2F8 could indirectly regulate the expression of mitotic cyclins and therefore coordinate mitosis progression. We believe disruption of these pathways in E2f7-/-E2f8-/- placentas culminates in G1- S and G2-M specific defects and, presumably, leads to the profound placental abnormality and its associated fetal death. In summary, this study clearly provides the first in vivo evidence for the biological functions of E2F7 and E2F8. We demonstrate, as a unique repressive arm of the E2F program, E2F7 and E2F8 are not only critical for the control of apoptotic in the fetus, but also essential for the regulation of cell cycle progression in the placenta. We conclude that the synergistic function of E2F7 and E2F8 is essential for embryo development. iii DEDICATION To my mother and father with deep respect and love, and to all those whose constant support has helped me go through my graduate study. iv ACKNOWLEDGMENTS I would like to thank my advisor Dr. Gustavo Leone for his consistent support, the enthusiasm and knowledge he brought to me during my Ph.D. study. This study would have not been accomplished without his guidance. I am also grateful for having Dr. Susan Cole, Dr. Paul Herman, and Dr. Tim Huang in my committee. Their continuous mentorship and support in all my scientific endeavors are highly appreciated. The past and present members of the Leone lab are equally precious for me during my graduate study. I would like to give my thanks to Dr. Alain de Bruin, Dr. Pamela Wenzel, Shantanu Singh, Madhu Ouseph, Dr. Anthony Trimboli, Dr. Hui Wang, Dr. Leon Chong, Dr. Enrico Caserta, Dr. Soo-in Bae, and Lisa Rawahneh, not only for their advices and assistance during my graduate research, but also for the valuable discussions which have helped me become a better scientist. I can not thank enough my undergraduate students, Ran Cong, Grant Comstock and Branxton Forde. It was such a pleasant experience working with them, as a mentor, or more as a friend. v I sincerely thank my friends Xin Li, Fu Li, Hongtao Jia, Ainan Bao, Sudu Sharma, Judy Kuo and many others, who have always been there whenever I need advice or help. Last but not least, I will forever treasure the support and encouragement provided by my parents. Every accomplishment that I have ever achieved belongs to them. vi VITA 1996 – 2000……………………………………...B.S. Bioengineering Shanghai University 2000 – 2003……………………………………...M.S. Human Genetics Shanghai University 2003 – 2004……………………………………...University Fellow The Ohio State University 2004 – 2005……………………………………...Graduate Teaching Assistant The Ohio State University 2005 – 2009……………………………………..Graduate Research Assistant The Ohio State University PUBLICATIONS 1. Li, J., Chen, Y.G. and Kong, X.Y. 2001. New progress of serial analysis of gene expression. Sheng Wu Gong Cheng Xue Bao 17: 613-616. 2. Li, J., Hu, L.D., Wang, W.J., Chen, Y.G. and Kong, X.Y. 2003. Linkage analysis of the candidate genes of familial restless legs syndrome. Yi Chuan Xue Bao 30: 325-329. 3. Chang, Q., Pang, J.C., Li, J., Hu, L., Kong, X. and Ng, H.K. 2004. Molecular analysis of PinX1 in medulloblastomas. Int. J. Cancer 109: 309-314. 4. Maiti, B., Li, J., de Bruin, A., Gordon, F., Timmers, C., Opavsky, R., Patil, K., Tuttle, J., Cleghorn, W. and Leone, G. 2005. Cloning and characterization of mouse E2F8, a novel mammalian E2F family member capable of blocking cellular proliferation. J. Biol. Chem. 280: 18211-18220. vii 5. Li, J., Ran, C., Li, E., Gordon, F., Comstock, G., Siddiqui, H., Cleghorn, W., Chen, H.Z., Kornacker, K., Liu, C.G., Pandit, S.K., Khanizadeh, M., Weinstein, M., Leone, G. and de Bruin, A. 2008. Synergistic function of E2F7 and E2F8 is essential for cell survival and embryonic development. Dev. Cell. 14: 62- 75. 6. Lammens, T.*, Li, J.*, Leone, G. and De Veylder, L. 2009. Atypical E2Fs: new players in the E2F transcription factor family. Trends in Cell Biology 19: 111-118. *Co-first author. 7. Li, J., Ouseph, M., Comstock, G., Thompson, J., Forde, B., Chong, J. and Leone, G. E2F7 and E2F8 control proliferation and govern placental function during development. Dev. Cell. (In preparation). FIELDS OF STUDY Major Field: Molecular Genetics viii TABLE OF CONTENTS Page Abstract……………………………………………………………………….. ii Dedication……………………………………….................………………… iv Acknowledgements………………………………………………………….. v Vita…………………………………………………………………………….. vii List of Tables………………………………………………………………..... xv List of Figures………………………………………………………………… xvi List of Abbreviations…………………………………………………………. xix Chapters: 1 Introduction…………………………………………………………..….. 1 1.1 Cell cycle regulation……………………………………………………. 1 1.2 The E2F family of transcription factors………………………………. 2 1.3 Atypical E2Fs: new players in the E2F family…………………….…. 4 1.3.1 Molecular features of atypical E2F proteins……………..….... 5 1.3.2 Transcriptional regulation of atypical E2f expression……….. 7 1.3.3 Atypical E2F proteins and cell size control…………………… 10 ix 1.3.4 Atypical E2F proteins and cell cycle control………………..… 10 1.3.5 Atypical E2F proteins and DNA damage response………..… 13 2 Synergistic function of E2F7 and E2F8 is essential for embryonic development and cell survival…………………………………………. 19 2.1 Introduction……………………………………………………………… 19 2.2 Results…………………………………………………………………… 22 2.2.1 E2F7 and E2F8 are essential for embryonic viability………... 22 2.2.2 Genetic ablation of E2f7 and E2f8 in vivo induces massive apoptosis in the fetus…………………………………………………… 23 2.2.3 E2F7 and E2F8 form homo-dimers and hetero-dimers……... 24 2.2.4 E2f1 is a direct target of E2F7 and E2F8……………………... 25 2.2.5 E2f1 expression is deregulated in E2f7-/-E2f8-/- MEFs………. 26 2.2.6 E2f7-/-E2f8-/- cells are hypersensitive to DNA damage……… 28 2.2.7 Induction of apoptosis in E2f7-/-E2f8-/- embryos is dependent on E2F1 and p53………………………………………………………... 29 2.3 Discussion……………………………………………………………….. 30 2.4 Materials and Methods…………………………………………………. 34 2.4.1 Generation of E2f7 and E2f8 knockout mice…………………. 34 2.4.2 Quantitive reverse transcriptase PCR (RT-PCR)……............. 35 2.4.3 Affimetrix microarray analysis………………………………….. 35 2.4.4 Co-immunoprecipitation (Co-IP) assay…..……………….…... 36 2.4.5 Chromatin immunoprecipitation (ChIP) and sequential ChIP assays……………………………………………………………………. 36 x 2.4.6 Western blot and antibodies……………………………………. 38 2.4.7 Cell culture and viability assay…………………………………. 38 2.4.8 FACS analysis…………………………………………………… 38 2.4.9 BrdU and TUNEL assays…………………………...………… 39 3 Extra-embryonic function of E2F7 and E2F8 is essential for fetal survival…………………………………………………………………… 60 3.1 Introduction…………………………………….………………………… 60 3.2 Results…………………………………………………………………… 62 3.2.1 Loss of E2f7 and E2f8 leads to profound placental defects… 62 3.2.2 Wild type placenta is sufficient to support mutant fetuses to birth……………………………………………………………………….. 64 3.2.3 E2f7 and E2f8 are essential in the placenta………………….. 65 3.2.4 Loss of E2f7 and E2f8 in the placenta
Recommended publications
  • Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A.
    [Show full text]
  • The Role of E2F7 and E2F8 in Squamous Differentiation, UV- and Chemotherapy-Induced Responses in Keratinocytes
    The role of E2F7 and E2F8 in squamous differentiation, UV- and chemotherapy-induced responses in keratinocytes Mehlika Hazar Rethinam MScBiotech (Hons) A thesis submitted for the degree of Doctor of Philosophy at The University of Queensland in 2014 UQ Diamantina Institute i Abstract Among keratinocyte-derived squamous cell carcinoma (SCC), cutaneous SCC (CSCC) is the second most common cutaneous cancer type and the most common of the potentially fatal skin cancers. Approximately 90% of head and neck cancers are SCC (HNSCC) and HNSCC worldwide is the sixth most common cancer type afflicting mankind. While resectable disease may be treated by surgery with radiation or chemoradiation, there are still no curative options for advanced, unresectable disease. However, chemotherapy alone may offer a hope for unresectable, disseminated SCC, where 50-60% of patients have disease recurrence within 2 years and approximately 30% of these develop metastatic disease. The mainstay of chemotherapeutic treatment in SCC is the platinum-based drug, cisplatin, 5-fluorouracil (5- FU), taxanes, and anti-EGFR monoclonal antibody such as Cetuximab. Nonetheless, despite advances in treatment techniques, the 5-year survival rate still remains at around 55%. Therefore, there remains a lack of options for recurrent or metastatic disease. The E2F family of transcription factors has emerged as key regulators of proliferation, differentiation and response to stress and apoptotic stimuli in keratinocytes. Consistent with these roles, dysregulation of E2F expression/activity is a common occurrence in cancer and SCC in particular. Thus, better understanding of the E2F family of proteins is essential to establish how these processes are disrupted during SCC genesis.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • E2f8 Mediates Tumor Suppression in Postnatal Liver Development
    Downloaded from http://www.jci.org on January 18, 2017. https://doi.org/10.1172/JCI85506 The Journal of Clinical Investigation RESEARCH ARTICLE E2f8 mediates tumor suppression in postnatal liver development Lindsey N. Kent,1,2,3 Jessica B. Rakijas,1,2,3 Shusil K. Pandit,4 Bart Westendorp,4 Hui-Zi Chen,1,2,3,5 Justin T. Huntington,1,2,3,6 Xing Tang,1,2,3 Sooin Bae,1,2,3 Arunima Srivastava,1,2,3,7 Shantibhusan Senapati,1,2,3 Christopher Koivisto,1,2,3 Chelsea K. Martin,1,2,3 Maria C. Cuitino,1,2,3 Miguel Perez,1,2,3 Julian M. Clouse,1,2,3 Veda Chokshi,1,2,3 Neelam Shinde,1,2,3 Raleigh Kladney,1,2,3 Daokun Sun,1,2,3 Antonio Perez-Castro,1,2,3 Ramadhan B. Matondo,4 Sathidpak Nantasanti,4 Michal Mokry,8 Kun Huang,9 Raghu Machiraju,7 Soledad Fernandez,9 Thomas J. Rosol,10 Vincenzo Coppola,1,3 Kamal S. Pohar,11 James M. Pipas,12 Carl R. Schmidt,6 Alain de Bruin,4,13 and Gustavo Leone1,2,3 1Department of Cancer Biology and Genetics, College of Medicine, 2Department of Molecular Genetics, College of Biological Sciences, and 3Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA. 4Department of Pathobiology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, Netherlands. 5Division of Medical Oncology, Department of Internal Medicine, 6Department of Surgery, College of Medicine, and 7Department of Computer Science and Engineering, College of Engineering, The Ohio State University, Columbus, Ohio, USA. 8Department of Pediatrics, Wilhelmina Children’s Hospital, University Medical Center Utrecht, Utrecht, Netherlands.
    [Show full text]
  • The Capacity of Long-Term in Vitro Proliferation of Acute Myeloid
    The Capacity of Long-Term in Vitro Proliferation of Acute Myeloid Leukemia Cells Supported Only by Exogenous Cytokines Is Associated with a Patient Subset with Adverse Outcome Annette K. Brenner, Elise Aasebø, Maria Hernandez-Valladares, Frode Selheim, Frode Berven, Ida-Sofie Grønningsæter, Sushma Bartaula-Brevik and Øystein Bruserud Supplementary Material S2 of S31 Table S1. Detailed information about the 68 AML patients included in the study. # of blasts Viability Proliferation Cytokine Viable cells Change in ID Gender Age Etiology FAB Cytogenetics Mutations CD34 Colonies (109/L) (%) 48 h (cpm) secretion (106) 5 weeks phenotype 1 M 42 de novo 241 M2 normal Flt3 pos 31.0 3848 low 0.24 7 yes 2 M 82 MF 12.4 M2 t(9;22) wt pos 81.6 74,686 low 1.43 969 yes 3 F 49 CML/relapse 149 M2 complex n.d. pos 26.2 3472 low 0.08 n.d. no 4 M 33 de novo 62.0 M2 normal wt pos 67.5 6206 low 0.08 6.5 no 5 M 71 relapse 91.0 M4 normal NPM1 pos 63.5 21,331 low 0.17 n.d. yes 6 M 83 de novo 109 M1 n.d. wt pos 19.1 8764 low 1.65 693 no 7 F 77 MDS 26.4 M1 normal wt pos 89.4 53,799 high 3.43 2746 no 8 M 46 de novo 26.9 M1 normal NPM1 n.d. n.d. 3472 low 1.56 n.d. no 9 M 68 MF 50.8 M4 normal D835 pos 69.4 1640 low 0.08 n.d.
    [Show full text]
  • The E–Id Protein Axis Modulates the Activities of the PI3K–AKT–Mtorc1
    Downloaded from genesdev.cshlp.org on October 6, 2021 - Published by Cold Spring Harbor Laboratory Press The E–Id protein axis modulates the activities of the PI3K–AKT–mTORC1– Hif1a and c-myc/p19Arf pathways to suppress innate variant TFH cell development, thymocyte expansion, and lymphomagenesis Masaki Miyazaki,1,8 Kazuko Miyazaki,1,8 Shuwen Chen,1 Vivek Chandra,1 Keisuke Wagatsuma,2 Yasutoshi Agata,2 Hans-Reimer Rodewald,3 Rintaro Saito,4 Aaron N. Chang,5 Nissi Varki,6 Hiroshi Kawamoto,7 and Cornelis Murre1 1Department of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA; 2Department of Biochemistry and Molecular Biology, Shiga University of Medical School, Shiga 520-2192, Japan; 3Division of Cellular Immunology, German Cancer Research Center, D-69120 Heidelberg, Germany; 4Department of Medicine, University of California at San Diego, La Jolla, California 92093, USA; 5Center for Computational Biology, Institute for Genomic Medicine, University of California at San Diego, La Jolla, California 92093, USA; 6Department of Pathology, University of California at San Diego, La Jolla, California 92093, USA; 7Department of Immunology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan It is now well established that the E and Id protein axis regulates multiple steps in lymphocyte development. However, it remains unknown how E and Id proteins mechanistically enforce and maintain the naı¨ve T-cell fate. Here we show that Id2 and Id3 suppressed the development and expansion of innate variant follicular helper T (TFH) cells. Innate variant TFH cells required major histocompatibility complex (MHC) class I-like signaling and were associated with germinal center B cells.
    [Show full text]
  • A Flexible Microfluidic System for Single-Cell Transcriptome Profiling
    www.nature.com/scientificreports OPEN A fexible microfuidic system for single‑cell transcriptome profling elucidates phased transcriptional regulators of cell cycle Karen Davey1,7, Daniel Wong2,7, Filip Konopacki2, Eugene Kwa1, Tony Ly3, Heike Fiegler2 & Christopher R. Sibley 1,4,5,6* Single cell transcriptome profling has emerged as a breakthrough technology for the high‑resolution understanding of complex cellular systems. Here we report a fexible, cost‑efective and user‑ friendly droplet‑based microfuidics system, called the Nadia Instrument, that can allow 3′ mRNA capture of ~ 50,000 single cells or individual nuclei in a single run. The precise pressure‑based system demonstrates highly reproducible droplet size, low doublet rates and high mRNA capture efciencies that compare favorably in the feld. Moreover, when combined with the Nadia Innovate, the system can be transformed into an adaptable setup that enables use of diferent bufers and barcoded bead confgurations to facilitate diverse applications. Finally, by 3′ mRNA profling asynchronous human and mouse cells at diferent phases of the cell cycle, we demonstrate the system’s ability to readily distinguish distinct cell populations and infer underlying transcriptional regulatory networks. Notably this provided supportive evidence for multiple transcription factors that had little or no known link to the cell cycle (e.g. DRAP1, ZKSCAN1 and CEBPZ). In summary, the Nadia platform represents a promising and fexible technology for future transcriptomic studies, and other related applications, at cell resolution. Single cell transcriptome profling has recently emerged as a breakthrough technology for understanding how cellular heterogeneity contributes to complex biological systems. Indeed, cultured cells, microorganisms, biopsies, blood and other tissues can be rapidly profled for quantifcation of gene expression at cell resolution.
    [Show full text]
  • Animal Cells Anterior Epidermis Anterior Epidermis A-Neural
    Anterior Epidermis Anterior Epidermis KH2012 TF common name Log2FC -Log(pvalue) Log2FC -Log(pvalue) DE in Imai Matched PWM PWM Cluster KH2012 TF common name Log2FC -Log(pvalue) Log2FC -Log(pvalue) DE in Imai Matched PWM PWM Cluster gene model Sibling Cluster Sibling Cluster Parent Cluster Parent Cluster z-score z-score gene model Sibling Cluster Sibling Cluster Parent Cluster Parent Cluster z-score z-score KH2012:KH.C11.485 Irx-B 1.0982 127.5106 0.9210 342.5323 Yes No PWM Hits No PWM Hits KH2012:KH.C1.159 E(spl)/hairy-a 1.3445 65.6302 0.6908 14.3413 Not Analyzed -15.2125 No PWM Hits KH2012:KH.L39.1 FoxH-b 0.6677 45.8148 1.1074 185.2909 No -3.3335 5.2695 KH2012:KH.C1.99 SoxB1 1.2482 73.2413 0.3331 9.3534 Not Analyzed No PWM match No PWM match KH2012:KH.C1.159 E(spl)/hairy-a 0.6233 47.2239 0.4339 77.0192 Yes -10.496 No PWM Hits KH2012:KH.C11.485 Irx-B 1.2355 72.8859 0.1608 0.0137 Not Analyzed No PWM Hits No PWM Hits KH2012:KH.C7.43 AP-2-like2 0.4991 31.7939 0.4775 68.8091 Yes 10.551 21.586 KH2012:KH.C1.1016 GCNF 0.8556 36.2030 1.3828 100.1236 Not Analyzed No PWM match No PWM match KH2012:KH.C1.99 SoxB1 0.4913 33.7808 0.3406 39.0890 No No PWM match No PWM match KH2012:KH.L108.4 CREB/ATF-a 0.6859 37.8207 0.3453 15.8154 Not Analyzed 6.405 8.6245 KH2012:KH.C7.157 Emc 0.4139 19.2080 1.1001 173.3024 Yes No PWM match No PWM match KH2012:KH.S164.12 SoxB2 0.6194 22.8414 0.6433 35.7335 Not Analyzed 8.722 17.405 KH2012:KH.C4.366 ERF2 -0.4878 -32.3767 -0.1770 -0.2316 No -10.324 9.7885 KH2012:KH.L4.17 Zinc Finger (C2H2)-18 0.6166 24.8925 0.2386 5.3130
    [Show full text]
  • 1 AGING Supplementary Table 2
    SUPPLEMENTARY TABLES Supplementary Table 1. Details of the eight domain chains of KIAA0101. Serial IDENTITY MAX IN COMP- INTERFACE ID POSITION RESOLUTION EXPERIMENT TYPE number START STOP SCORE IDENTITY LEX WITH CAVITY A 4D2G_D 52 - 69 52 69 100 100 2.65 Å PCNA X-RAY DIFFRACTION √ B 4D2G_E 52 - 69 52 69 100 100 2.65 Å PCNA X-RAY DIFFRACTION √ C 6EHT_D 52 - 71 52 71 100 100 3.2Å PCNA X-RAY DIFFRACTION √ D 6EHT_E 52 - 71 52 71 100 100 3.2Å PCNA X-RAY DIFFRACTION √ E 6GWS_D 41-72 41 72 100 100 3.2Å PCNA X-RAY DIFFRACTION √ F 6GWS_E 41-72 41 72 100 100 2.9Å PCNA X-RAY DIFFRACTION √ G 6GWS_F 41-72 41 72 100 100 2.9Å PCNA X-RAY DIFFRACTION √ H 6IIW_B 2-11 2 11 100 100 1.699Å UHRF1 X-RAY DIFFRACTION √ www.aging-us.com 1 AGING Supplementary Table 2. Significantly enriched gene ontology (GO) annotations (cellular components) of KIAA0101 in lung adenocarcinoma (LinkedOmics). Leading Description FDR Leading Edge Gene EdgeNum RAD51, SPC25, CCNB1, BIRC5, NCAPG, ZWINT, MAD2L1, SKA3, NUF2, BUB1B, CENPA, SKA1, AURKB, NEK2, CENPW, HJURP, NDC80, CDCA5, NCAPH, BUB1, ZWILCH, CENPK, KIF2C, AURKA, CENPN, TOP2A, CENPM, PLK1, ERCC6L, CDT1, CHEK1, SPAG5, CENPH, condensed 66 0 SPC24, NUP37, BLM, CENPE, BUB3, CDK2, FANCD2, CENPO, CENPF, BRCA1, DSN1, chromosome MKI67, NCAPG2, H2AFX, HMGB2, SUV39H1, CBX3, TUBG1, KNTC1, PPP1CC, SMC2, BANF1, NCAPD2, SKA2, NUP107, BRCA2, NUP85, ITGB3BP, SYCE2, TOPBP1, DMC1, SMC4, INCENP. RAD51, OIP5, CDK1, SPC25, CCNB1, BIRC5, NCAPG, ZWINT, MAD2L1, SKA3, NUF2, BUB1B, CENPA, SKA1, AURKB, NEK2, ESCO2, CENPW, HJURP, TTK, NDC80, CDCA5, BUB1, ZWILCH, CENPK, KIF2C, AURKA, DSCC1, CENPN, CDCA8, CENPM, PLK1, MCM6, ERCC6L, CDT1, HELLS, CHEK1, SPAG5, CENPH, PCNA, SPC24, CENPI, NUP37, FEN1, chromosomal 94 0 CENPL, BLM, KIF18A, CENPE, MCM4, BUB3, SUV39H2, MCM2, CDK2, PIF1, DNA2, region CENPO, CENPF, CHEK2, DSN1, H2AFX, MCM7, SUV39H1, MTBP, CBX3, RECQL4, KNTC1, PPP1CC, CENPP, CENPQ, PTGES3, NCAPD2, DYNLL1, SKA2, HAT1, NUP107, MCM5, MCM3, MSH2, BRCA2, NUP85, SSB, ITGB3BP, DMC1, INCENP, THOC3, XPO1, APEX1, XRCC5, KIF22, DCLRE1A, SEH1L, XRCC3, NSMCE2, RAD21.
    [Show full text]
  • Supplemental Table S1 (A): Microarray Datasets Characteristics
    Supplemental table S1 (A): Microarray datasets characteristics Title Summary Samples Literature ref. GEO ref. Acquisition of granule Gene expression profiling of 27 (1) GSE 11859 neuron precursor identity cerebellar tumors generated and Hedgehog‐induced from various early and late medulloblastoma in mice. stage CNS progenitor cells Medulloblastomas derived Study of mouse 5 (2) GSE 7212 from Cxcr6 mutant mice medulloblastoma in response respond to treatment with to inhibitor of Smoothened a Smoothened inhibitor Expression profiles of Identification of distinct classes 10 (3) GSE 9299 mouse medulloblastoma of up‐regulated or down‐ 339 & 340 regulated genes during Hh dependent tumorigenesis Genetic alterations in Identification of differently 10 (4) GSE 6463 mouse medulloblastomas expressed genes among CGNPs 339 & and generation of tumors and CGNPs transfected with 340 from cerebellar granule retroviruses that express nmyc neuron precursors or cyclin‐d1 Patched heterozygous Analysis of granule cell 14 (5) GSE 2426 model of medulloblastoma precursors, pre‐neoplastic cells, GDS1110 and tumor cells 1. Schuller U, Heine VM, Mao J, Kho AT, Dillon AK, Han YG, et al. Acquisition of granule neuron precursor identity is a critical determinant of progenitor cell competence to form Shh‐induced medulloblastoma. Cancer Cell 2008;14:123‐134. 2. Sasai K, Romer JT, Kimura H, Eberhart DE, Rice DS, Curran T. Medulloblastomas derived from Cxcr6 mutant mice respond to treatment with a smoothened inhibitor. Cancer Res 2007;67:3871‐3877. 3. Mao J, Ligon KL, Rakhlin EY, Thayer SP, Bronson RT, Rowitch D, et al. A novel somatic mouse model to survey tumorigenic potential applied to the Hedgehog pathway. Cancer Res 2006;66:10171‐10178.
    [Show full text]
  • Mir-205: a Potential Biomedicine for Cancer Therapy
    cells Review miR-205: A Potential Biomedicine for Cancer Therapy Neeraj Chauhan 1,2 , Anupam Dhasmana 1,2, Meena Jaggi 1,2, Subhash C. Chauhan 1,2 and Murali M. Yallapu 1,2,* 1 Department of Immunology and Microbiology, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA; [email protected] (N.C.); [email protected] (A.D.); [email protected] (M.J.); [email protected] (S.C.C.) 2 South Texas Center of Excellence in Cancer Research, School of Medicine, University of Texas Rio Grande Valley, McAllen, TX 78504, USA * Correspondence: [email protected]; Tel.: +1-(956)-296-1734 Received: 3 June 2020; Accepted: 21 August 2020; Published: 25 August 2020 Abstract: microRNAs (miRNAs) are a class of small non-coding RNAs that regulate the expression of their target mRNAs post transcriptionally. miRNAs are known to regulate not just a gene but the whole gene network (signaling pathways). Accumulating evidence(s) suggests that miRNAs can work either as oncogenes or tumor suppressors, but some miRNAs have a dual nature since they can act as both. miRNA 205 (miR-205) is one such highly conserved miRNA that can act as both, oncomiRNA and tumor suppressor. However, most reports confirm its emerging role as a tumor suppressor in many cancers. This review focuses on the downregulated expression of miR-205 and discusses its dysregulation in breast, prostate, skin, liver, gliomas, pancreatic, colorectal and renal cancers. This review also confers its role in tumor initiation, progression, cell proliferation, epithelial to mesenchymal transition, and tumor metastasis.
    [Show full text]
  • Estradiol-Regulated Micrornas Control Estradiol Response in Breast Cancer Cells Poornima Bhat-Nakshatri1, Guohua Wang2, Nikail R
    4850–4861 Nucleic Acids Research, 2009, Vol. 37, No. 14 Published online 14 June 2009 doi:10.1093/nar/gkp500 Estradiol-regulated microRNAs control estradiol response in breast cancer cells Poornima Bhat-Nakshatri1, Guohua Wang2, Nikail R. Collins1, Michael J. Thomson3, Tim R. Geistlinger4, Jason S. Carroll4, Myles Brown4, Scott Hammond3, Edward F. Srour2, Yunlong Liu2 and Harikrishna Nakshatri1,5,* 1Department of Surgery, 2Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, 3Department of Cell and Developmental Biology, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, 4Department of Medical Oncology, Dana-Farber Medical School, Harvard Medical School, Boston, MA and 5Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, IN, USA Received May 4, 2009; Revised May 22, 2009; Accepted May 24, 2009 ABSTRACT INTRODUCTION Estradiol (E2) regulates gene expression at the Estradiol (E2) controls several biological processes by transcriptional level by functioning as a ligand for functioning as a ligand for nuclear receptors estrogen estrogen receptor alpha (ERa) and estrogen receptor receptor alpha (ERa) and beta (ERb) (1). ERs may par- beta (ERb). E2-inducible proteins c-Myc and E2Fs are ticipate in the genomic (transcriptional) and non-genomic required for optimal ERa activity and secondary actions of E2 (1,2). The genomic action involves binding of ERa to the regulatory regions of target genes either estrogen responses, respectively. We show that directly or through protein–protein interaction. DNA- E2 induces 21 microRNAs and represses seven bound ERa then recruits various co-regulatory molecules microRNAs in MCF-7 breast cancer cells; these to induce chromatin modifications that either increase or microRNAs have the potential to control 420 decrease the level of target gene transcription.
    [Show full text]