A First Comprehensive Census of Fungi in Soil Reveals Both Hyperdiversity
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Where Less May Be More: How the Rare Biosphere Pulls Ecosystems Strings
The ISME Journal (2017) 11, 853–862 OPEN © 2017 International Society for Microbial Ecology All rights reserved 1751-7362/17 www.nature.com/ismej MINI REVIEW Where less may be more: how the rare biosphere pulls ecosystems strings Alexandre Jousset1, Christina Bienhold2,3, Antonis Chatzinotas4,5, Laure Gallien6,7, Angélique Gobet8, Viola Kurm9, Kirsten Küsel10,5, Matthias C Rillig11,12, Damian W Rivett13, Joana F Salles14, Marcel GA van der Heijden15,16,17, Noha H Youssef18, Xiaowei Zhang19, Zhong Wei20 and WH Gera Hol9 1Utrecht University, Department of Biology, Institute of Environmental Biology, Ecology and Biodiversity Group, Utrecht, The Netherlands; 2Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research, Bremerhaven, Germany; 3Max Planck Institute for Marine Microbiology, Bremen, Germany; 4Helmholtz Centre for Environmental Research – UFZ, Leipzig, Germany; 5German Centre for Integrative Biodiversity Research (iDiv), Halle-Jena-Leipzig, Leipzig, Germany; 6Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Birmensdorf, Switzerland; 7Center for Invasion Biology, Department of Botany & Zoology, Stellenbosch University, Matieland, South Africa; 8Sorbonne Universités, UPMC Université Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, F-29688, Roscoff Cedex, France; 9Netherlands Institute of Ecology, Department of Terrestrial Ecology, Wageningen, The Netherlands; 10Friedrich Schiller University Jena, Institute of Ecology, Jena, Germany; 11Freie Universtät Berlin, -
Amplification by PCR Artificially Reduces the Proportion of the Rare Biosphere in Microbial Communities
Amplification by PCR Artificially Reduces the Proportion of the Rare Biosphere in Microbial Communities Juan M. Gonzalez1*, Maria C. Portillo1, Pedro Belda-Ferre2, Alex Mira2 1 Institute of Natural Resources and Agrobiology, Spanish Council for Research, IRNAS-CSIC, Sevilla, Spain, 2 Genomics and Health Department, Center for Advanced Research in Public Health (CSISP), Valencia, Spain Abstract The microbial world has been shown to hold an unimaginable diversity. The use of rRNA genes and PCR amplification to assess microbial community structure and diversity present biases that need to be analyzed in order to understand the risks involved in those estimates. Herein, we show that PCR amplification of specific sequence targets within a community depends on the fractions that those sequences represent to the total DNA template. Using quantitative, real-time, multiplex PCR and specific Taqman probes, the amplification of 16S rRNA genes from four bacterial species within a laboratory community were monitored. Results indicate that the relative amplification efficiency for each bacterial species is a nonlinear function of the fraction that each of those taxa represent within a community or multispecies DNA template. Consequently, the low-proportion taxa in a community are under-represented during PCR-based surveys and a large number of sequences might need to be processed to detect some of the bacterial taxa within the ‘rare biosphere’. The structure of microbial communities from PCR-based surveys is clearly biased against low abundant taxa which are required to decipher the complete extent of microbial diversity in nature. Citation: Gonzalez JM, Portillo MC, Belda-Ferre P, Mira A (2012) Amplification by PCR Artificially Reduces the Proportion of the Rare Biosphere in Microbial Communities. -
The Rare Bacterial Biosphere
MA04CH18-Pedros-Alio ARI 3 November 2011 17:43 The Rare Bacterial Biosphere Carlos Pedros-Ali´ o´ Institut de Ciencies` del Mar, CSIC, 08003 Barcelona, Spain; email: [email protected] Annu. Rev. Mar. Sci. 2012. 4:449–66 Keywords First published online as a Review in Advance on bacterial diversity, next-generation sequencing, dispersal, dormancy, loss September 19, 2011 mechanisms The Annual Review of Marine Science is online at marine.annualreviews.org Abstract This article’s doi: All communities are dominated by a few species that account for most of the 10.1146/annurev-marine-120710-100948 biomass and carbon cycling. On the other hand, a large number of species Copyright c 2012 by Annual Reviews. are represented by only a few individuals. In the case of bacteria, these rare All rights reserved species were until recently invisible. Owing to their low numbers, conven- 1941-1405/12/0115-0449$20.00 tional molecular techniques could not retrieve them. Isolation in pure culture was the only way to identify some of them, but current culturing techniques Annu. Rev. Marine. Sci. 2012.4:449-466. Downloaded from www.annualreviews.org are unable to isolate most of the bacteria in nature. The recent development by CSIC - Consejo Superior de Investigaciones Cientificas on 12/19/11. For personal use only. of fast and cheap high-throughput sequencing has begun to allow access to the rare species. In the case of bacteria, the exploration of this rare bio- sphere has several points of interest. First, it will eventually produce a reason- able estimate of the total number of bacterial taxa in the oceans; right now, we do not even know the right order of magnitude. -
1 Marine Microbial Diversity and Genomics Frank Oliver Glöckner Seas and Oceans Cover Over 70% of the Earth's Surface And
Marine Microbial Diversity and Genomics Frank Oliver Glöckner Seas and oceans cover over 70% of the Earth’s surface and account for 97 percent of the biosphere. Marine ecosystems provide energy resources, and the basis for maritime transport, and recreation. The oceans contain the highest biological diversity on Earth; marine organisms live throughout the water column, to an extreme depth of up to 11 km, and in ocean sediments up to a further 400 mbelow the seafloor. Marine microorganisms in particular play a central role in the global cycling of matters and energy, for they are both a driver and indicator of global climate change. Furthermore, they are an inevitable genetic resource for new enzymes and reactions which can be used for pharmaceutical and industrial applications. Current estimates show that a millilitre of sea water hosts around 1 million cells. In sediments total cell numbers of up to 1 billion per gram can be reached. Microorganisms' total biomass represented as fixed carbon is currently estimated to be more than 300 gigatonnes (14). But apart from the huge total numbers, their diversity is also quite impressive. Although no exact numbers exist, our studies infer that around 1000 different active microorganisms persist per millilitre (1). Additionally, oceans act as a seed bank hosting a “rare biosphere” of hundreds of thousands of distinct microorganisms which become active in response to seasonal or environmental changes (9, 11). The more than 500 microbial genome projects carried out over the last 10 years have shown that each bacterium contributes around 4000 genes (http://www.genomesonline.org/). -
Description and Identification of Ostryopsis Davidiana Ectomycorrhizae in Inner Mongolia Mountain Forest of China
Österr. Z. Pilzk. 26 (2017) – Austrian J. Mycol. 26 (2017) 17 Description and identification of Ostryopsis davidiana ectomycorrhizae in Inner Mongolia mountain forest of China QING-ZHI YAO1 WEI YAN2 HUI-YING ZHAO1 JIE WEI2 1 Life Science College 2 Forestry College Inner Mongolia Agriculture University Huhhot, 010018, P. R. China Email: [email protected] Accepted 27. March 2017. © Austrian Mycological Society, published online 23. August 2017 YAO, Q.-Z., YAN, W., ZHAO, H.-Y., WEI, J., 2017: Description and identification of Ostryopsis davidi- ana ectomycorrhizae in Inner Mongolia mountain forest of China. – Austrian J. Mycol. 26: 17–25. Key words: ECM, Mountain forest, Ostryopsis davidiana, morpho-anatomical features. Abstract: The ectomycorrhizal (ECM) fungal composition and anatomical structures of root samples of the shrub Ostryopsis davidiana were examined. The root samples were collected from two plots in the Daqing Mountain and Han Mountain around Hohhot, Inner Mongolia of China. Basing on mor- pho-anatomical features of the samples, we have got totally 12 ECM morphotypes. Twelve fungal taxa were identified via sequencing of the internal transcribed spacer region of their nuclear rDNA. Nine species are Basidiomycotina, incl. Thelephoraceae (Tomentella), Cortinariaceae (Inocybe and Cortinarius), Tremellaceae (Sebacina), Russulaceae (Lactarius), and Tricholomataceae (Tricholoma), three Ascomycotina, incl. Elaphomycetaceae (Cenococcum), Tuberaceae (Tuber), and Pyronema- taceae (Wilcoxina). Cenococcum geophilum was the dominant species in O. davidiana. The three To- mentella and the two Inocybe ECMF of O. davidiana are very common in Inner Mongolia. Zusammenfassung: Die Pilzdiversität der Ektomykorrhiza (ECM) und deren anatomische Strukturen von Wurzelproben des Strauches Ostryopsis davidiana wurden untersucht. Die Wurzelproben wurden aus zwei Untersuchungsflächen im Daqing Berg und Han Berg nahe Hohhot, Innere Mongolei, China, gesammelt. -
9B Taxonomy to Genus
Fungus and Lichen Genera in the NEMF Database Taxonomic hierarchy: phyllum > class (-etes) > order (-ales) > family (-ceae) > genus. Total number of genera in the database: 526 Anamorphic fungi (see p. 4), which are disseminated by propagules not formed from cells where meiosis has occurred, are presently not grouped by class, order, etc. Most propagules can be referred to as "conidia," but some are derived from unspecialized vegetative mycelium. A significant number are correlated with fungal states that produce spores derived from cells where meiosis has, or is assumed to have, occurred. These are, where known, members of the ascomycetes or basidiomycetes. However, in many cases, they are still undescribed, unrecognized or poorly known. (Explanation paraphrased from "Dictionary of the Fungi, 9th Edition.") Principal authority for this taxonomy is the Dictionary of the Fungi and its online database, www.indexfungorum.org. For lichens, see Lecanoromycetes on p. 3. Basidiomycota Aegerita Poria Macrolepiota Grandinia Poronidulus Melanophyllum Agaricomycetes Hyphoderma Postia Amanitaceae Cantharellales Meripilaceae Pycnoporellus Amanita Cantharellaceae Abortiporus Skeletocutis Bolbitiaceae Cantharellus Antrodia Trichaptum Agrocybe Craterellus Grifola Tyromyces Bolbitius Clavulinaceae Meripilus Sistotremataceae Conocybe Clavulina Physisporinus Trechispora Hebeloma Hydnaceae Meruliaceae Sparassidaceae Panaeolina Hydnum Climacodon Sparassis Clavariaceae Polyporales Gloeoporus Steccherinaceae Clavaria Albatrellaceae Hyphodermopsis Antrodiella -
Epipactis Helleborine Shows Strong Mycorrhizal Preference Towards Ectomycorrhizal Fungi with Contrasting Geographic Distributions in Japan
Mycorrhiza (2008) 18:331–338 DOI 10.1007/s00572-008-0187-0 ORIGINAL PAPER Epipactis helleborine shows strong mycorrhizal preference towards ectomycorrhizal fungi with contrasting geographic distributions in Japan Yuki Ogura-Tsujita & Tomohisa Yukawa Received: 10 April 2008 /Accepted: 1 July 2008 /Published online: 26 July 2008 # Springer-Verlag 2008 Abstract Epipactis helleborine (L.) Crantz, one of the Keywords Wilcoxina . Pezizales . Habitat . most widespread orchid species, occurs in a broad range of Plant colonization habitats. This orchid is fully myco-heterotrophic in the germination stage and partially myco-heterotrophic in the adult stage, suggesting that a mycorrhizal partner is one of Introduction the key factors that determines whether E. helleborine successfully colonizes a specific environment. We focused on The habitats of plants range widely even within a single the coastal habitat of Japanese E. helleborine and surveyed species, and plants use various mechanisms to colonize and the mycorrhizal fungi from geographically different coastal survive in a specific environment (Daubenmire 1974; populations that grow in Japanese black pine (Pinus Larcher 2003). Since mycorrhizal fungi enable plants to thunbergii Parl.) forests of coastal sand dunes. Mycorrhizal access organic and inorganic sources of nutrition that are fungi and plant haplotypes were then compared with those difficult for plants to gain by themselves (Smith and Read from inland populations. Molecular phylogenetic analysis of 1997; Aerts 2002), mycorrhizal associations are expected to large subunit rRNA sequences of fungi from its roots play a crucial role in plant colonization. Although it seems revealed that E. helleborine is mainly associated with several certain that the mycorrhizal association is one of the key ectomycorrhizal taxa of the Pezizales, such as Wilcoxina, mechanisms for plants to colonize a new environment, our Tuber,andHydnotrya. -
Monograph on Dematiaceous Fungi
Monograph On Dematiaceous fungi A guide for description of dematiaceous fungi fungi of medical importance, diseases caused by them, diagnosis and treatment By Mohamed Refai and Heidy Abo El-Yazid Department of Microbiology, Faculty of Veterinary Medicine, Cairo University 2014 1 Preface The first time I saw cultures of dematiaceous fungi was in the laboratory of Prof. Seeliger in Bonn, 1962, when I attended a practical course on moulds for one week. Then I handled myself several cultures of black fungi, as contaminants in Mycology Laboratory of Prof. Rieth, 1963-1964, in Hamburg. When I visited Prof. DE Varies in Baarn, 1963. I was fascinated by the tremendous number of moulds in the Centraalbureau voor Schimmelcultures, Baarn, Netherlands. On the other hand, I was proud, that El-Sheikh Mahgoub, a Colleague from Sundan, wrote an internationally well-known book on mycetoma. I have never seen cases of dematiaceous fungal infections in Egypt, therefore, I was very happy, when I saw the collection of mycetoma cases reported in Egypt by the eminent Egyptian Mycologist, Prof. Dr Mohamed Taha, Zagazig University. To all these prominent mycologists I dedicate this monograph. Prof. Dr. Mohamed Refai, 1.5.2014 Heinz Seeliger Heinz Rieth Gerard de Vries, El-Sheikh Mahgoub Mohamed Taha 2 Contents 1. Introduction 4 2. 30. The genus Rhinocladiella 83 2. Description of dematiaceous 6 2. 31. The genus Scedosporium 86 fungi 2. 1. The genus Alternaria 6 2. 32. The genus Scytalidium 89 2.2. The genus Aurobasidium 11 2.33. The genus Stachybotrys 91 2.3. The genus Bipolaris 16 2. -
Fungi of the Fortuna Forest Reserve: Taxonomy and Ecology with Emphasis on Ectomycorrhizal Communities
bioRxiv preprint doi: https://doi.org/10.1101/2020.04.16.045724; this version posted April 18, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC 4.0 International license. Fungi of the Fortuna Forest Reserve: Taxonomy and ecology with emphasis on ectomycorrhizal communities Adriana Corrales1 and Clark L. Ovrebo2 1 Department of Biology, Faculty of Natural Sciences, Universidad del Rosario. Bogota, 111221, Colombia. 2 Department of Biology, University of Central Oklahoma. Edmond, OK. USA. ABSTRACT Panamanian montane forests harbor a high diversity of fungi, particularly of ectomycorrhizal (ECM) fungi, however their taxonomy and diversity patterns remain for the most part unexplored. Here we present state of the art fungal taxonomy and diversity patterns at Fortuna Forest Reserve based on morphological and molecular identification of over 1,000 fruiting body collections of macromycetes made over a period of five years. We compare these new results with previously published work based on environmental sampling of Oreomunnea mexicana root tips. We compiled a preliminary list of species and report 22 new genera and 29 new fungal species for Panama. Based on fruiting body collection data we compare the species composition of ECM fungal communities associated with Oreomunnea stands across sites differing in soil fertility and amount of rainfall. We also examine the effect of a long-term nitrogen addition treatment on the fruiting body production of ECM fungi. Finally, we discuss the biogeographic importance of Panama collections which fill in the knowledge gap of ECM fungal records between Costa Rica and Colombia. -
Re-Thinking the Classification of Corticioid Fungi
mycological research 111 (2007) 1040–1063 journal homepage: www.elsevier.com/locate/mycres Re-thinking the classification of corticioid fungi Karl-Henrik LARSSON Go¨teborg University, Department of Plant and Environmental Sciences, Box 461, SE 405 30 Go¨teborg, Sweden article info abstract Article history: Corticioid fungi are basidiomycetes with effused basidiomata, a smooth, merulioid or Received 30 November 2005 hydnoid hymenophore, and holobasidia. These fungi used to be classified as a single Received in revised form family, Corticiaceae, but molecular phylogenetic analyses have shown that corticioid fungi 29 June 2007 are distributed among all major clades within Agaricomycetes. There is a relative consensus Accepted 7 August 2007 concerning the higher order classification of basidiomycetes down to order. This paper Published online 16 August 2007 presents a phylogenetic classification for corticioid fungi at the family level. Fifty putative Corresponding Editor: families were identified from published phylogenies and preliminary analyses of unpub- Scott LaGreca lished sequence data. A dataset with 178 terminal taxa was compiled and subjected to phy- logenetic analyses using MP and Bayesian inference. From the analyses, 41 strongly Keywords: supported and three unsupported clades were identified. These clades are treated as fam- Agaricomycetes ilies in a Linnean hierarchical classification and each family is briefly described. Three ad- Basidiomycota ditional families not covered by the phylogenetic analyses are also included in the Molecular systematics classification. All accepted corticioid genera are either referred to one of the families or Phylogeny listed as incertae sedis. Taxonomy ª 2007 The British Mycological Society. Published by Elsevier Ltd. All rights reserved. Introduction develop a downward-facing basidioma. -
The Effect of Decayed Or Downed Wood on the Structure and Function of Ectomycorrhizal Fungal Communities at a High Elevation Forest
The effect of decayed or downed wood on the structure and function of ectomycorrhizal fungal communities at a high elevation forest by Jennifer Karen Marie Walker B.Sc., The University of Northern British Columbia, 2003 M.Sc., The University of Northern British Columbia, 2006 A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in The College of Graduate Studies (Biology) THE UNIVERSITY OF BRITISH COLUMBIA (Okanagan) March 2012 !Jennifer Karen Marie Walker, 2012 Abstract Shifts in ectomycorrhizal (ECM) fungal community composition occur after clearcut logging, resulting in the loss of forest-associated fungi and potential ecosystem function. Coarse woody debris (CWD) includes downed wood generated during logging; decayed downed wood is a remnant of the original forest, and important habitat for ECM fungi. Over the medium term, while logs remain hard, it is not known if they influence ECM fungal habitat. I tested for effects of downed wood on ECM fungal communities by examining ECM roots and fungal hyphae of 10-yr-old saplings in CWD retention and removal plots in a subalpine ecosystem. I then tested whether downed and decayed wood provided ECM fungal habitat by planting nonmycorrhizal spruce seedlings in decayed wood, downed wood, and mineral soil microsites in the clearcuts and adjacent forest plots, and harvested them 1 and 2 years later. I tested for differences in the community structure of ECM root tips (Sanger sequencing) among all plots and microsites, and of ECM fungal hyphae (pyrosequencing) in forest microsites. I assayed the activities of eight extracellular enzymes in order to compare community function related to nutrient acquisition. -
MUSHROOMS of the OTTAWA NATIONAL FOREST Compiled By
MUSHROOMS OF THE OTTAWA NATIONAL FOREST Compiled by Dana L. Richter, School of Forest Resources and Environmental Science, Michigan Technological University, Houghton, MI for Ottawa National Forest, Ironwood, MI March, 2011 Introduction There are many thousands of fungi in the Ottawa National Forest filling every possible niche imaginable. A remarkable feature of the fungi is that they are ubiquitous! The mushroom is the large spore-producing structure made by certain fungi. Only a relatively small number of all the fungi in the Ottawa forest ecosystem make mushrooms. Some are distinctive and easily identifiable, while others are cryptic and require microscopic and chemical analyses to accurately name. This is a list of some of the most common and obvious mushrooms that can be found in the Ottawa National Forest, including a few that are uncommon or relatively rare. The mushrooms considered here are within the phyla Ascomycetes – the morel and cup fungi, and Basidiomycetes – the toadstool and shelf-like fungi. There are perhaps 2000 to 3000 mushrooms in the Ottawa, and this is simply a guess, since many species have yet to be discovered or named. This number is based on lists of fungi compiled in areas such as the Huron Mountains of northern Michigan (Richter 2008) and in the state of Wisconsin (Parker 2006). The list contains 227 species from several authoritative sources and from the author’s experience teaching, studying and collecting mushrooms in the northern Great Lakes States for the past thirty years. Although comments on edibility of certain species are given, the author neither endorses nor encourages the eating of wild mushrooms except with extreme caution and with the awareness that some mushrooms may cause life-threatening illness or even death.