Elementary Mathematics Teacher Subject Matter Knowledge and Its Relationship to Teaching and Learning

Total Page:16

File Type:pdf, Size:1020Kb

Elementary Mathematics Teacher Subject Matter Knowledge and Its Relationship to Teaching and Learning AN ABSTRACT OF THE DISSERTATION OF William F. Buckreis for the degree of Doctor of Philosophy in Mathematics Education presented on August 30, 1999. Title: Elementary Mathematics Teacher Subject Matter Knowledge and Its Relationship to Teaching and Learning. Abstract approved: Redacted for Privacy V Margaret L. Niess The purpose of this investigation was to explore how differences in an elementary mathematics teacher's subject matter knowledge structure impact classroom teaching and student learning. The study included two phases. Phase 1 focused on the selection of a single case. An open-ended questionnaire and interview were used to identify the subject matter knowledge structure for addition, subtraction, multiplication, and division of three elementary teachers. One teacher was selected who demonstrated clearly different levels of knowledge for multiplication and division. An additional interview provided information on the teacher's specific climate for teaching mathematics and details about the unit on multiplication and division to be observed. Phase 2 included daily classroom observations for approximately one hour each day of a seven-week unit on multiplication and division. Informal interviews were conducted with the teacher throughout the unit to better understand the lessons and allow the teacher an opportunity to clarify statements and actions. A final teacher interview occurred after the last classroom observation. At the conclusion of the observations, the students were assessed to determine their knowledge of multiplication and division based on the teacher's unit objectives. And six students, representing the range of class performance, were interviewed to provide additional insights into the students' learning. The teacher's subject matter knowledge of multiplication was strong but her knowledge of division was faulty and incomplete on several topics including the different meanings of division, the conceptual underpinnings of division procedures, the relationships between symbolic division and real life problems, and the idea of divisibility. Although the translation of the teacher's subject matter knowledge was complex, it seemed to be directly related to classroom teaching and students' learning. The teacher's narrow understandings were associated with an incomplete developing of the full range of division situations. Although the students had significantly more success on the post assessment problems involving multiplication than on those involving division (understandable since the teacher spent more time teaching multiplication than division), a more worrisome concern was that the students in this study exhibited serious misconceptions associated with the meanings of division, division computation, and notions of divisibility. ELEMENTARY MATHEMATICS TEACHER SUBJECT MATTER KNOWLEDGE AND ITS RELATIONSHIP TO TEACHING AND LEARNING By William F. Buckreis A Dissertation Submitted to Oregon State University in partial fulfillment of the requirements for the degree of Doctor of Philosophy Completed August 30, 1999 Commencement June 2000 Doctor of Philosophy dissertation of William F. Buckreis presented August 30, 1999 APPROVED Redacted for Privacy Major Professor, representing Mathematics Education Redacted for Privacy Chair of Department of Science and Mathematics Education Redacted for Privacy Dean of Graduate School I understand that my dissertation will become part of the permanent collection of Oregon State University libraries. My signature below authorizes release of my dissertation to any reader upon request. Redacted for Privacy William F. Buckreis, Author ACKNOWLEDGEMENTS I wish to express my sincere gratitude to those who have provided their help and encouragement throughout this study. First, completing this study would not have been possible without the support and encouragement of my committee. I wish to extend my gratitude to each member: Dr. Maggie Niess, Dr. Norm Lederman, Dr. Tom Dick, Dr. Dianne Erickson, and Dr. David Griffiths. I am especially grateful to Maggie Niess for her wisdom, guidance, patience, and belief in me. I could not have done it without her. Next, I would like to thank Meg McGee (the teacher in the study) for allowing me to assess her knowledge, observe her class, and learn so much about teaching and learning from her and the students. Thanks, also, for making it an enjoyable experience. Finally, and most importantly, I would like to express my deepest gratitude and love to my wife, Marie, and son, Sean. I am richly blessed to have them in my life. Their continuous loving support and encouragement provided me the strength and courage I needed to keep going when times were tough. Without them, this dissertation would never have been possible. lowe them so much. Thanks, Marie and Sean! T ABLE OF CONTENTS CHAPTER I: THE PROBLEM ........................................................... 1 Introduction ........................................................................ 1 Statement of the Problem .........................................................5 Significance of the Study ................. ".......................................7 CHAPTER II: REVIEW OF THE LITERATURE .....................................9 Introduction ........................................................................9 Subject Matter Knowledge of Mathematics ................................... 10 Subject Matter Knowledge in Classroom Teaching ..........................31 Discussion and Conclusions....................................................38 Recommendations ..............................................................40 CHAPTER III: DESIGN AND METHOD............................................ .42 Introduction.......................................................................42 Subjects ...........................................................................43 Method ............................................................................44 Phase 1: Selecting the Single Case ................................... .44 Phase 2: Classroom Observations ....................................45 T ABLE OF CONTENTS (Continued) Sources of Data ..................................................................47 QuestionnairelInterview................................................47 Semi-structured Interview .............................................49 Classroom Observations ............................................... 50 Classroom Documents .................................................5 1 Researcher's Journal ................................................... 51 Informal Interviews.....................................................52 Post Assessment ........................................................ 52 Researcher ............................................................... 54 Analysis of Data..................................................................57 Analysis of Questionnaire Data........................................57 Analysis of Classroom Observation Data ............................ 58 Analysis of Post Assessment Data....................................60 Research Questions .....................................................61 CHAPTER IV: ANALYSIS OF DATA ................................................63 Introduction.......................................................................63 Meg: Teaching is Eclectic .......................................................65 Academic and Professional Profile ...................................65 Self-Described Subject Matter Knowledge ..........................71 Classroom Profile.......................................................85 Multiplication Development... ..........................................92 Division Development ................................................ 107 Student Learning Profile.... , ......................................... l16 Summary ........................................................................ 135 TABLE OF CONTENTS (Continued) CHAPTER V: DISCUSSION AND CONCLUSIONS............................. 144 Introduction ..................................................................... 144 Meg's Subject Matter Knowledge Structure ................................ 145 Subject Matter Knowledge and Its Relationship to Teaching and Learning ..................................................... 149 Teaching and Learning................................................ 150 Time..................................................................... 155 Summary .......................... ".................................... 156 Limitations of the Study ........................................................ 157 Implications and Recommendations for Mathematics Teacher Education .................................................................... 159 REFERENCES .......................................................................... 164 APPENDICES ........................................................................... 169 List of Figures R~ ~ 1. Researcher's Subject Matter Know ledge Structure ........................56 2. Meg's Subject Matter Knowledge Structure ................................72 3. Relationship Between Addition and Subtraction ...........................74 4. Addition Algorithm ............................................................75 5. Subtraction Algorithm .........................................................75 6. Addition and Subtraction of Fractions.......................................76 7. Multiplication as Repeated Addition
Recommended publications
  • Db Math Marco Zennaro Ermanno Pietrosemoli Goals
    dB Math Marco Zennaro Ermanno Pietrosemoli Goals ‣ Electromagnetic waves carry power measured in milliwatts. ‣ Decibels (dB) use a relative logarithmic relationship to reduce multiplication to simple addition. ‣ You can simplify common radio calculations by using dBm instead of mW, and dB to represent variations of power. ‣ It is simpler to solve radio calculations in your head by using dB. 2 Power ‣ Any electromagnetic wave carries energy - we can feel that when we enjoy (or suffer from) the warmth of the sun. The amount of energy received in a certain amount of time is called power. ‣ The electric field is measured in V/m (volts per meter), the power contained within it is proportional to the square of the electric field: 2 P ~ E ‣ The unit of power is the watt (W). For wireless work, the milliwatt (mW) is usually a more convenient unit. 3 Gain and Loss ‣ If the amplitude of an electromagnetic wave increases, its power increases. This increase in power is called a gain. ‣ If the amplitude decreases, its power decreases. This decrease in power is called a loss. ‣ When designing communication links, you try to maximize the gains while minimizing any losses. 4 Intro to dB ‣ Decibels are a relative measurement unit unlike the absolute measurement of milliwatts. ‣ The decibel (dB) is 10 times the decimal logarithm of the ratio between two values of a variable. The calculation of decibels uses a logarithm to allow very large or very small relations to be represented with a conveniently small number. ‣ On the logarithmic scale, the reference cannot be zero because the log of zero does not exist! 5 Why do we use dB? ‣ Power does not fade in a linear manner, but inversely as the square of the distance.
    [Show full text]
  • The Five Fundamental Operations of Mathematics: Addition, Subtraction
    The five fundamental operations of mathematics: addition, subtraction, multiplication, division, and modular forms Kenneth A. Ribet UC Berkeley Trinity University March 31, 2008 Kenneth A. Ribet Five fundamental operations This talk is about counting, and it’s about solving equations. Counting is a very familiar activity in mathematics. Many universities teach sophomore-level courses on discrete mathematics that turn out to be mostly about counting. For example, we ask our students to find the number of different ways of constituting a bag of a dozen lollipops if there are 5 different flavors. (The answer is 1820, I think.) Kenneth A. Ribet Five fundamental operations Solving equations is even more of a flagship activity for mathematicians. At a mathematics conference at Sundance, Robert Redford told a group of my colleagues “I hope you solve all your equations”! The kind of equations that I like to solve are Diophantine equations. Diophantus of Alexandria (third century AD) was Robert Redford’s kind of mathematician. This “father of algebra” focused on the solution to algebraic equations, especially in contexts where the solutions are constrained to be whole numbers or fractions. Kenneth A. Ribet Five fundamental operations Here’s a typical example. Consider the equation y 2 = x3 + 1. In an algebra or high school class, we might graph this equation in the plane; there’s little challenge. But what if we ask for solutions in integers (i.e., whole numbers)? It is relatively easy to discover the solutions (0; ±1), (−1; 0) and (2; ±3), and Diophantus might have asked if there are any more.
    [Show full text]
  • Operations with Algebraic Expressions: Addition and Subtraction of Monomials
    Operations with Algebraic Expressions: Addition and Subtraction of Monomials A monomial is an algebraic expression that consists of one term. Two or more monomials can be added or subtracted only if they are LIKE TERMS. Like terms are terms that have exactly the SAME variables and exponents on those variables. The coefficients on like terms may be different. Example: 7x2y5 and -2x2y5 These are like terms since both terms have the same variables and the same exponents on those variables. 7x2y5 and -2x3y5 These are NOT like terms since the exponents on x are different. Note: the order that the variables are written in does NOT matter. The different variables and the coefficient in a term are multiplied together and the order of multiplication does NOT matter (For example, 2 x 3 gives the same product as 3 x 2). Example: 8a3bc5 is the same term as 8c5a3b. To prove this, evaluate both terms when a = 2, b = 3 and c = 1. 8a3bc5 = 8(2)3(3)(1)5 = 8(8)(3)(1) = 192 8c5a3b = 8(1)5(2)3(3) = 8(1)(8)(3) = 192 As shown, both terms are equal to 192. To add two or more monomials that are like terms, add the coefficients; keep the variables and exponents on the variables the same. To subtract two or more monomials that are like terms, subtract the coefficients; keep the variables and exponents on the variables the same. Addition and Subtraction of Monomials Example 1: Add 9xy2 and −8xy2 9xy2 + (−8xy2) = [9 + (−8)] xy2 Add the coefficients. Keep the variables and exponents = 1xy2 on the variables the same.
    [Show full text]
  • The Role of the Interval Domain in Modern Exact Real Airthmetic
    The Role of the Interval Domain in Modern Exact Real Airthmetic Andrej Bauer Iztok Kavkler Faculty of Mathematics and Physics University of Ljubljana, Slovenia Domains VIII & Computability over Continuous Data Types Novosibirsk, September 2007 Teaching theoreticians a lesson Recently I have been told by an anonymous referee that “Theoreticians do not like to be taught lessons.” and by a friend that “You should stop competing with programmers.” In defiance of this advice, I shall talk about the lessons I learned, as a theoretician, in programming exact real arithmetic. The spectrum of real number computation slow fast Formally verified, Cauchy sequences iRRAM extracted from streams of signed digits RealLib proofs floating point Moebius transformtions continued fractions Mathematica "theoretical" "practical" I Common features: I Reals are represented by successive approximations. I Approximations may be computed to any desired accuracy. I State of the art, as far as speed is concerned: I iRRAM by Norbert Muller,¨ I RealLib by Branimir Lambov. What makes iRRAM and ReaLib fast? I Reals are represented by sequences of dyadic intervals (endpoints are rationals of the form m/2k). I The approximating sequences need not be nested chains of intervals. I No guarantee on speed of converge, but arbitrarily fast convergence is possible. I Previous approximations are not stored and not reused when the next approximation is computed. I Each next approximation roughly doubles the amount of work done. The theory behind iRRAM and RealLib I Theoretical models used to design iRRAM and RealLib: I Type Two Effectivity I a version of Real RAM machines I Type I representations I The authors explicitly reject domain theory as a suitable computational model.
    [Show full text]
  • Division by Fractions 6.1.1 - 6.1.4
    DIVISION BY FRACTIONS 6.1.1 - 6.1.4 Division by fractions introduces three methods to help students understand how dividing by fractions works. In general, think of division for a problem like 8..,.. 2 as, "In 8, how many groups of 2 are there?" Similarly, ½ + ¼ means, "In ½ , how many fourths are there?" For more information, see the Math Notes boxes in Lessons 7.2 .2 and 7 .2 .4 of the Core Connections, Course 1 text. For additional examples and practice, see the Core Connections, Course 1 Checkpoint 8B materials. The first two examples show how to divide fractions using a diagram. Example 1 Use the rectangular model to divide: ½ + ¼ . Step 1: Using the rectangle, we first divide it into 2 equal pieces. Each piece represents ½. Shade ½ of it. - Step 2: Then divide the original rectangle into four equal pieces. Each section represents ¼ . In the shaded section, ½ , there are 2 fourths. 2 Step 3: Write the equation. Example 2 In ¾ , how many ½ s are there? In ¾ there is one full ½ 2 2 I shaded and half of another Thatis,¾+½=? one (that is half of one half). ]_ ..,_ .l 1 .l So. 4 . 2 = 2 Start with ¾ . 3 4 (one and one-half halves) Parent Guide with Extra Practice © 2011, 2013 CPM Educational Program. All rights reserved. 49 Problems Use the rectangular model to divide. .l ...:... J_ 1 ...:... .l 1. ..,_ l 1 . 1 3 . 6 2. 3. 4. 1 4 . 2 5. 2 3 . 9 Answers l. 8 2. 2 3. 4 one thirds rm I I halves - ~I sixths fourths fourths ~I 11 ~'.¿;¡~:;¿~ ffk] 8 sixths 2 three fourths 4.
    [Show full text]
  • Chapter 2. Multiplication and Division of Whole Numbers in the Last Chapter You Saw That Addition and Subtraction Were Inverse Mathematical Operations
    Chapter 2. Multiplication and Division of Whole Numbers In the last chapter you saw that addition and subtraction were inverse mathematical operations. For example, a pay raise of 50 cents an hour is the opposite of a 50 cents an hour pay cut. When you have completed this chapter, you’ll understand that multiplication and division are also inverse math- ematical operations. 2.1 Multiplication with Whole Numbers The Multiplication Table Learning the multiplication table shown below is a basic skill that must be mastered. Do you have to memorize this table? Yes! Can’t you just use a calculator? No! You must know this table by heart to be able to multiply numbers, to do division, and to do algebra. To be blunt, until you memorize this entire table, you won’t be able to progress further than this page. MULTIPLICATION TABLE ϫ 012 345 67 89101112 0 000 000LEARNING 00 000 00 1 012 345 67 89101112 2 024 681012Copy14 16 18 20 22 24 3 036 9121518212427303336 4 0481216 20 24 28 32 36 40 44 48 5051015202530354045505560 6061218243036424854606672Distribute 7071421283542495663707784 8081624324048566472808896 90918273HAWKESReview645546372819099108 10 0 10 20 30 40 50 60 70 80 90 100 110 120 ©11 0 11 22 33 44NOT 55 66 77 88 99 110 121 132 12 0 12 24 36 48 60 72 84 96 108 120 132 144 Do Let’s get a couple of things out of the way. First, any number times 0 is 0. When we multiply two numbers, we call our answer the product of those two numbers.
    [Show full text]
  • Single Digit Addition for Kindergarten
    Single Digit Addition for Kindergarten Print out these worksheets to give your kindergarten students some quick one-digit addition practice! Table of Contents Sports Math Animal Picture Addition Adding Up To 10 Addition: Ocean Math Fish Addition Addition: Fruit Math Adding With a Number Line Addition and Subtraction for Kids The Froggie Math Game Pirate Math Addition: Circus Math Animal Addition Practice Color & Add Insect Addition One Digit Fairy Addition Easy Addition Very Nutty! Ice Cream Math Sports Math How many of each picture do you see? Add them up and write the number in the box! 5 3 + = 5 5 + = 6 3 + = Animal Addition Add together the animals that are in each box and write your answer in the box to the right. 2+2= + 2+3= + 2+1= + 2+4= + Copyright © 2014 Education.com LLC All Rights Reserved More worksheets at www.education.com/worksheets Adding Balloons : Up to 10! Solve the addition problems below! 1. 4 2. 6 + 2 + 1 3. 5 4. 3 + 2 + 3 5. 4 6. 5 + 0 + 4 7. 6 8. 7 + 3 + 3 More worksheets at www.education.com/worksheets Copyright © 2012-20132011-2012 by Education.com Ocean Math How many of each picture do you see? Add them up and write the number in the box! 3 2 + = 1 3 + = 3 3 + = This is your bleed line. What pretty FISh! How many pictures do you see? Add them up. + = + = + = + = + = Copyright © 2012-20132010-2011 by Education.com More worksheets at www.education.com/worksheets Fruit Math How many of each picture do you see? Add them up and write the number in the box! 10 2 + = 8 3 + = 6 7 + = Number Line Use the number line to find the answer to each problem.
    [Show full text]
  • Fast Integer Division – a Differentiated Offering from C2000 Product Family
    Application Report SPRACN6–July 2019 Fast Integer Division – A Differentiated Offering From C2000™ Product Family Prasanth Viswanathan Pillai, Himanshu Chaudhary, Aravindhan Karuppiah, Alex Tessarolo ABSTRACT This application report provides an overview of the different division and modulo (remainder) functions and its associated properties. Later, the document describes how the different division functions can be implemented using the C28x ISA and intrinsics supported by the compiler. Contents 1 Introduction ................................................................................................................... 2 2 Different Division Functions ................................................................................................ 2 3 Intrinsic Support Through TI C2000 Compiler ........................................................................... 4 4 Cycle Count................................................................................................................... 6 5 Summary...................................................................................................................... 6 6 References ................................................................................................................... 6 List of Figures 1 Truncated Division Function................................................................................................ 2 2 Floored Division Function................................................................................................... 3 3 Euclidean
    [Show full text]
  • Multiplication and Divisions
    Third Grade Math nd 2 Grading Period Power Objectives: Academic Vocabulary: multiplication array Represent and solve problems involving multiplication and divisor commutative division. (P.O. #1) property Understand properties of multiplication and the distributive property relationship between multiplication and divisions. estimation division factor column (P.O. #2) Multiply and divide with 100. (P.O. #3) repeated addition multiple Solve problems involving the four operations, and identify associative property quotient and explain the patterns in arithmetic. (P.O. #4) rounding row product equation Multiplication and Division Enduring Understandings: Essential Questions: Mathematical operations are used in solving problems In what ways can operations affect numbers? in which a new value is produced from one or more How can different strategies be helpful when solving a values. problem? Algebraic thinking involves choosing, combining, and How does knowing and using algorithms help us to be applying effective strategies for answering questions. Numbers enable us to use the four operations to efficient problem solvers? combine and separate quantities. How are multiplication and addition alike? See below for additional enduring understandings. How are subtraction and division related? See below for additional essential questions. Enduring Understandings: Multiplication is repeated addition, related to division, and can be used to solve story problems. For a given set of numbers, there are relationships that
    [Show full text]
  • AUTHOR Multiplication and Division. Mathematics-Methods
    DOCUMENT RESUME ED 221 338 SE 035 008, AUTHOR ,LeBlanc, John F.; And Others TITLE Multiplication and Division. Mathematics-Methods 12rogram Unipt. INSTITUTION Indiana ,Univ., Bloomington. Mathematics Education !Development Center. , SPONS AGENCY ,National Science Foundation, Washington, D.C. REPORT NO :ISBN-0-201-14610-x PUB DATE 76 . GRANT. NSF-GY-9293 i 153p.; For related documents, see SE 035 006-018. NOTE . ,. EDRS PRICE 'MF01 Plus Postage. PC Not Available from EDRS. DESCRIPTORS iAlgorithms; College Mathematics; *Division; Elementary Education; *Elementary School Mathematics; 'Elementary School Teachers; Higher Education; 'Instructional1 Materials; Learning Activities; :*Mathematics Instruction; *Multiplication; *Preservice Teacher Education; Problem Solving; :Supplementary Reading Materials; Textbooks; ;Undergraduate Study; Workbooks IDENTIFIERS i*Mathematics Methods Program ABSTRACT This unit is 1 of 12 developed for the university classroom portign_of the Mathematics-Methods Program(MMP), created by the Indiana pniversity Mathematics EducationDevelopment Center (MEDC) as an innovative program for the mathematics training of prospective elenientary school teachers (PSTs). Each unit iswritten in an activity format that involves the PST in doing mathematicswith an eye towardaiplication of that mathematics in the elementary school. This do ument is one of four units that are devoted tothe basic number wo k in the elementary school. In addition to an introduction to the unit, the text has sections on the conceptual development of nultiplication
    [Show full text]
  • Basic Math Quick Reference Ebook
    This file is distributed FREE OF CHARGE by the publisher Quick Reference Handbooks and the author. Quick Reference eBOOK Click on The math facts listed in this eBook are explained with Contents or Examples, Notes, Tips, & Illustrations Index in the in the left Basic Math Quick Reference Handbook. panel ISBN: 978-0-615-27390-7 to locate a topic. Peter J. Mitas Quick Reference Handbooks Facts from the Basic Math Quick Reference Handbook Contents Click a CHAPTER TITLE to jump to a page in the Contents: Whole Numbers Probability and Statistics Fractions Geometry and Measurement Decimal Numbers Positive and Negative Numbers Universal Number Concepts Algebra Ratios, Proportions, and Percents … then click a LINE IN THE CONTENTS to jump to a topic. Whole Numbers 7 Natural Numbers and Whole Numbers ............................ 7 Digits and Numerals ........................................................ 7 Place Value Notation ....................................................... 7 Rounding a Whole Number ............................................. 8 Operations and Operators ............................................... 8 Adding Whole Numbers................................................... 9 Subtracting Whole Numbers .......................................... 10 Multiplying Whole Numbers ........................................... 11 Dividing Whole Numbers ............................................... 12 Divisibility Rules ............................................................ 13 Multiples of a Whole Number .......................................
    [Show full text]
  • Understanding the Concept of Division
    Understanding the Concept of Division ________________ An Honors thesis presented to the faculty of the Department of Mathematics East Tennessee State University In partial fulfillment of the requirements for the Honors-in-Discipline Program for a Bachelor of Science in Mathematics ________________ By Leanna Horton May, 2007 ________________ George Poole, Ph.D. Advisor approval: ___________________________ ABSTRACT Understanding the Concept of Division by Leanna Horton The purpose of this study was to assess how well elementary students and mathematics educators understand the concept of division. Participants included 210 fourth and fifth grade students, 17 elementary math teachers, and seven collegiate level math faculty. The problems were designed to assess whether or not participants understood when a solution would include a remainder and if they could accurately explain their responses, including giving appropriate units to all numbers in their solution. The responses given by all participants and the methods used by the elementary students were analyzed. The results indicate that a significant number of the student participants had difficulties giving complete, accurate explanations to some of the problems. The results also indicate that both the elementary students and teachers had difficulties understanding when a solution will include a remainder and when it will include a fraction. The analysis of the methods used indicated that the use of long division or pictures produced the most accurate solutions. 2 CONTENTS Page ABSTRACT………………………………………………………………………… 2 LIST OF TABLES………………………………………………………………….. 6 LIST OF FIGURES………………………………………………………………… 7 1 Introduction…………………………………………………………………. 8 Purpose……………………………………………………………… 8 Literature Review…………………………………………………… 9 Teachers..…………………………………………………….. 9 Students…………………………………………………….. 10 Math and Gender……………………………………………. 13 Word Problems……………………………………………………… 14 Number of Variables……………………………………….. 15 Types of Variables………………………………………….
    [Show full text]