Hypovolemic Shock - a Review J

Total Page:16

File Type:pdf, Size:1020Kb

Hypovolemic Shock - a Review J Review Article Hypovolemic shock - A review J. A.Shagana1, M. Dhanraj1, Ashish R. Jain1*, T. Nir osa2 ABSTRACT Shock is described traditionally as tissue hypoxia due to inadequate perfusion which is classified as hypovolemic, cardiogenic, obstructive, and distributive. Hypovolemic shock is an important life-threatening emergency. In hypovolemic shock, there is decreased circulating blood volume due to the loss of intravascular fluid. Hemorrhagic shock is the most common form of hypovolemic shock and must be recognized early which prevent progression, morbidity, and mortality. Hence, this article will discuss about the causes, clinical features, diagnosis, and treatment of hypovolemic shock. KEY WORDS: Blood pressure, Cardiac output, Circulating blood volume, Hypovolemic shock and organ dysfunction INTRODUCTION The systemic vascular resistance (SVR) is typically increased in an effort to compensate for the diminished Shock is defined as the state in which profound and CO and maintain perfusion to vital organs. The early widespread reduction of effective tissue perfusion stage of recognition and intervention will help to leads first to reversible, and then if prolonged, prevent death.[4] to irreversible cellular injury. It is classified as hypovolemic/hemorrhagic shock, cardiogenic ETIOLOGY shock, obstructive shock, and distributive shock.[1]. Hypovolemic shock is defined as the rapid fluid loss or Hypovolemic shock is caused by sudden blood or fluid blood loss which results in multiple organ dysfunction losses within your body. The most common clinical due to inadequate circulating blood volume and causes of hypovolemic shock are hemorrhage, vomiting, perfusion. It is caused by a loss of intravascular diarrhea, severe burns, and excessive sweating.[5] Since fluid which is usually whole blood or plasma. Whole arterial blood pressure (BP) is dependent on the CO blood loss from an open wound is an obvious cause and SVR, marked reduction in either of these variables for hypovolemic shock. An intravascular volume without a compensatory elevation results in systemic depletion may occur with any condition which leads to hypotension. In hypovolemic shock, the volume excessive extracellular fluid loss with or without loss loss is exogenous or endogenous. Restoration blood of plasma protein.[2] Hypovolemic shock is secondary volume is both simple and effective if applied before to hemorrhagic shock (rapid blood loss) which is irreversible tissue damage occurs.[6] The external fluid rare but cause serious complications and mostly losses and the internal sequestration will cause reduced occurs in obstetrical situations. Hypovolemic shock venous return and decreased CO. This leads to set of is associated with disorders that cause an underlying reflex responses designed to maintain the oxygen hemodynamic defect of a low intravascular volume to critical organs such as brain and heart. However, and a reduction in myocardial contractility.[3] It is a these responses may limit perfusion of other organs consequence of decreased preload due to intravascular such as gut as to produce necrosis. The consequences volume loss. The decreased preload diminishes stroke of reduced tissue perfusion are similar in all forms of volume, resulting in decreased cardiac output (CO). shock.[7] SYMPTOMS Access this article online The symptoms can vary with the previous level of Website: jprsolutions.info ISSN: 0975-7619 organ function, compensatory mechanisms, severity of 1Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha University, Chennai, Tamil Nadu, India, 2Department of Public Health Dentistry, Saveetha Dental College and Hospital, Saveetha, University, Chennai, Tamil Nadu, India *Corresponding author: Dr. Ashish R. Jain, Department of Prosthodontics, Saveetha Dental College and Hospital, Saveetha University, Poonamalle High Road, Chennai - 600 127, Phone: +91-9884233423. E-mail: [email protected] Received on: 09-02-2018; Revised on: 06-04-2018; Accepted on: 17-05-2018 1102 Drug Invention Today | Vol 10 • Issue 7 • 2018 J. A. Shagana, et al. organ dysfunctions, and the cause of shock syndrome. chemoreceptors as well as hypoperfusion of the The symptoms of hypovolemic shock include pallor, medullary respiratory center results in increased minute tachycardia, hypotension, dyspnea, diaphoresis, volume (tachypnea and hyperpnea), hypocapnia, and tachypnea, cyanosis, faint heart sounds, agitation, primary respiratory alkalosis. With increased minute mental status changes, pinpoint pupils, cool and clammy volume and decreased CO, the V/Q ratio is increased. skin, lactic acidosis, and poor urine output.[8] Right-heart Coupled with an increased workload, respiratory, catheterization will usually reveal a low central venous and diaphragmatic muscle impairment caused by pressure (CVP), pulmonary artery occlusion pressure hypoperfusion may lead to early respiratory failure. (PAOP), CO, and mixed venous oxygen content. If shock is not promptly reversed and the initiating During spontaneous ventilation, pulsus paradoxus condition controlled, adult respiratory distress may occur, whereas during mechanical ventilation, syndrome may develop.[11] the systolic BP only transiently increases during the inspiratory phase followed by a rapid decrease (with Renal System a systolic pressure variation of >10 mmHg) being It responds to hemorrhagic shock by stimulating an suggested as a method to diagnose hypovolemia in a increase in renin secretion from the juxtaglomerular mechanically ventilated patient with normal pulmonary apparatus. Renin converts angiotensinogen to compliance.[9] The presence of cardiovascular disease, angiotensin I, which subsequently is converted to autonomic neuropathy or anemia, or prior treatment angiotensin II by the lungs and liver. Angiotensin II with β-adrenergic blockers or calcium channel blockers has two main effects, both of which help to reverse may worsen the cardiovascular response to blood loss.[10] hemorrhagic shock, vasoconstriction of arteriolar smooth muscle, and stimulation of aldosterone EFFECTS ON CEREBRAL secretion by the adrenal cortex. Aldosterone is AND OTHER REGIONAL responsible for active sodium reabsorption and subsequent water conservation.[11] CIRCULATIONS Neuroendocrine System Cerebral Circulation In neuroendocrine system, an increase in circulating Although central nervous system neurons are extremely antidiuretic hormone is responds to shock which is sensitive to ischemia, the vascular supply is highly released from the posterior pituitary gland in response resistant to extrinsic regulatory mechanisms. Patients to a decrease in BP (as detected by baroreceptors) and without a primary cerebrovascular impairment support a decrease in the sodium concentration (as detected by their cerebral function well until the mean arterial osmoreceptors). It leads to an increased reabsorption pressure falls below approximately 50–60 mmHg. of water and salt (NaCl) by the distal tubule, the At this point, irreversible ischemic injury may occur collecting ducts, and the loop of Henle.[11] to the most sensitive areas of the brain, i.e. cerebral cortex and watershed areas of the spinal cord. 58, 59 INVESTIGATIONS Before such injury, an altered level of consciousness varying from confusion to unconsciousness may be The diagnostic evaluation should occur as same seen depending on the degree of perfusion deficit. as resuscitation if patient is suspected of having Electroencephalographic recordings demonstrate non- shock. Laboratory tests may help identify the cause specific changes compatible with encephalopathy.[11] of shock and early organ failure.[12] They should be performed early in the evaluation of undifferentiated Cardiovascular System shock which include complete blood count with Initially, the cardiovascular system responds to differential, basic chemistry tests (sodium, potassium, hypovolemic shock by increasing the heart rate, chloride, and serum bicarbonate), blood urea constricting peripheral blood vessels, and increasing nitrogen, creatinine, liver function tests, amylase, myocardial contractility. This occurs secondary to an lipase, prothrombin time or international normalized increased release of norepinephrine and decreased ratio, partial thromboplastin time, fibrinogen, fibrin baseline vagal tone regulated by the baroreceptors split products or dimer, cardiac enzymes (troponin in the carotid arch, aortic arch, left atrium, and or creatine phosphokinase isoenzymes), urinalysis pulmonary vessels. Further redistribution of the blood with a detailed sediment analysis, arterial blood gas to the brain, heart, kidneys and the skin, muscle, (ABG), toxicology screen, and lactate level.[13] A and gastrointestinal tract, the cardiovascular system chest radiograph, abdominal radiograph for intestinal responses to shock.[11] obstruction, abdominal computed tomography (CT), head CT scan, electrocardiogram, echocardiogram, Respiratory System or urinalysis may also be helpful.[14] Gram stain of Increased respiratory drive resulting from peripheral material from sites of possible infection (sputum, stimulation of pulmonary receptors and carotid body urine, and wounds) may give early clues to the etiology Drug Invention Today | Vol 10 • Issue 7 • 2018 1103 J. A. Shagana, et al. of infection while cultures are incubating. Blood CONCLUSION should be taken from two distinct venipuncture sites and inoculated into standard blood culture media.[15] In general, people with milder degrees of shock tend to do better
Recommended publications
  • Differentiating Between Anxiety, Syncope & Anaphylaxis
    Differentiating between anxiety, syncope & anaphylaxis Dr. Réka Gustafson Medical Health Officer Vancouver Coastal Health Introduction Anaphylaxis is a rare but much feared side-effect of vaccination. Most vaccine providers will never see a case of true anaphylaxis due to vaccination, but need to be prepared to diagnose and respond to this medical emergency. Since anaphylaxis is so rare, most of us rely on guidelines to assist us in assessment and response. Due to the highly variable presentation, and absence of clinical trials, guidelines are by necessity often vague and very conservative. Guidelines are no substitute for good clinical judgment. Anaphylaxis Guidelines • “Anaphylaxis is a potentially life-threatening IgE mediated allergic reaction” – How many people die or have died from anaphylaxis after immunization? Can we predict who is likely to die from anaphylaxis? • “Anaphylaxis is one of the rarer events reported in the post-marketing surveillance” – How rare? Will I or my colleagues ever see a case? • “Changes develop over several minutes” – What is “several”? 1, 2, 10, 20 minutes? • “Even when there are mild symptoms initially, there is a potential for progression to a severe and even irreversible outcome” – Do I park my clinical judgment at the door? What do I look for in my clinical assessment? • “Fatalities during anaphylaxis usually result from delayed administration of epinephrine and from severe cardiac and respiratory complications. “ – What is delayed? How much time do I have? What is anaphylaxis? •an acute, potentially
    [Show full text]
  • Hypovolemic Shock and Resuscitation Piper Lynn Wall Iowa State University
    Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1997 Hypovolemic shock and resuscitation Piper Lynn Wall Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Animal Sciences Commons, Physiology Commons, Surgery Commons, and the Veterinary Physiology Commons Recommended Citation Wall, Piper Lynn, "Hypovolemic shock and resuscitation " (1997). Retrospective Theses and Dissertations. 11754. https://lib.dr.iastate.edu/rtd/11754 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly fi-om the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter &ce, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overiaps.
    [Show full text]
  • Fluid Resuscitation Therapy for Hemorrhagic Shock
    CLINICAL CARE Fluid Resuscitation Therapy for Hemorrhagic Shock Joseph R. Spaniol vides a review of the 4 types of shock, the 4 classes of Amanda R. Knight, BA hemorrhagic shock, and the latest research on resuscita- tive fluid. The 4 types of shock are categorized into dis- Jessica L. Zebley, MS, RN tributive, obstructive, cardiogenic, and hemorrhagic Dawn Anderson, MS, RN shock. Hemorrhagic shock has been categorized into 4 Janet D. Pierce, DSN, ARNP, CCRN classes, and based on these classes, appropriate treatment can be planned. Crystalloids, colloids, dopamine, and blood products are all considered resuscitative fluid treat- ment options. Each individual case requires various resus- ■ ABSTRACT citative actions with different fluids. Healthcare Hemorrhagic shock is a severe life-threatening emergency professionals who are knowledgeable of the information affecting all organ systems of the body by depriving tissue in this review would be better prepared for patients who of sufficient oxygen and nutrients by decreasing cardiac are admitted with hemorrhagic shock, thus providing output. This article is a short review of the different types optimal care. of shock, followed by information specifically referring to hemorrhagic shock. The American College of Surgeons ■ DISTRIBUTIVE SHOCK categorized shock into 4 classes: (1) distributive; (2) Distributive shock is composed of 3 separate categories obstructive; (3) cardiogenic; and (4) hemorrhagic. based on their clinical outcome. Distributive shock can be Similarly, the classes of hemorrhagic shock are grouped categorized into (1) septic; (2) anaphylactic; and (3) neu- by signs and symptoms, amount of blood loss, and the rogenic shock. type of fluid replacement. This updated review is helpful to trauma nurses in understanding the various clinical Septic shock aspects of shock and the current recommendations for In accordance with the American College of Chest fluid resuscitation therapy following hemorrhagic shock.
    [Show full text]
  • Hypovolemic Shock
    Ask the Expert Emergency Medicine / Critical Care Peer Reviewed Hypovolemic Shock Garret E. Pachtinger, VMD, DACVECC Veterinary Specialty & Emergency Center Levittown, Pennsylvania You have asked… What is hypovolemic shock, and how should I manage it? Retroperitoneal effusion in a dog The expert says… hock, a syndrome in which clinical deterioration can occur quickly, requires careful analy- All forms of shock share sis and rapid treatment. Broad definitions for shock include inadequate cellular energy pro- a common concern: Sduction or the inability of the body to supply cells and tissues with oxygen and nutrients and remove waste products. Shock may result from a variety of underlying conditions and can be inadequate perfusion. classified into the broad categories of septic, hemorrhagic, obstructive, and hypovolemic shock.1-3 Regardless of the underlying cause, all forms of shock share a common concern: inadequate per- fusion.1,2 Perfusion (ie, flow to or through a given structure or tissue bed) is imperative for nutri- ent and oxygen delivery, as well as removal of cellular waste and byproducts of metabolism. Lack of adequate perfusion can result in cell death, morbidity, and, ultimately, mortality. Hypovolemic shock is one of the most common categories of shock seen in clinical veterinary medicine.4 In hypovolemic shock, perfusion is impaired as a result of an ineffective circulating blood volume. During initial circulating volume loss, there are a number of mechanisms to com- pensate for decreases in perfusion, including increased levels of 2,3-Bisphosphoglycerate, result- ing in a rightward shift in the oxyhemoglobin dissociation curve and a decreased blood viscosity.
    [Show full text]
  • Approach to Shock.” These Podcasts Are Designed to Give Medical Students an Overview of Key Topics in Pediatrics
    PedsCases Podcast Scripts This is a text version of a podcast from Pedscases.com on “Approach to Shock.” These podcasts are designed to give medical students an overview of key topics in pediatrics. The audio versions are accessible on iTunes or at www.pedcases.com/podcasts. Approach to Shock Developed by Dr. Dustin Jacobson and Dr Suzanne Beno for PedsCases.com. December 20, 2016 My name is Dustin Jacobson, a 3rd year pediatrics resident from the University of Toronto. This podcast was supervised by Dr. Suzanne Beno, a staff physician in the division of Pediatric Emergency Medicine at the University of Toronto. Today, we’ll discuss an approach to shock in children. First, we’ll define shock and understand it’s pathophysiology. Next, we’ll examine the subclassifications of shock. Last, we’ll review some basic and more advanced treatment for shock But first, let’s start with a case. Jonny is a 6-year-old male who presents with lethargy that is preceded by 2 days of a diarrheal illness. He has not urinated over the previous 24 hours. On assessment, he is tachycardic and hypotensive. He is febrile at 40 degrees Celsius, and is moaning on assessment, but spontaneously breathing. We’ll revisit this case including evaluation and management near the end of this podcast. The term “shock” is essentially a ‘catch-all’ phrase that refers to a state of inadequate oxygen or nutrient delivery for tissue metabolic demand. This broad definition incorporates many causes that eventually lead to this end-stage state. Basic oxygen delivery is determined by cardiac output and content of oxygen in the blood.
    [Show full text]
  • Towards Non-Invasive Monitoring of Hypovolemia in Intensive Care Patients Alexander Roederer University of Pennsylvania, [email protected]
    University of Pennsylvania ScholarlyCommons Departmental Papers (CIS) Department of Computer & Information Science 4-13-2015 Towards Non-Invasive Monitoring of Hypovolemia in Intensive Care Patients Alexander Roederer University of Pennsylvania, [email protected] James Weimer University of Pennsylvania, [email protected] Joseph Dimartino University of Pennsylvania Health System, [email protected] Jacob Gutsche University of Pennsylvania Health System, [email protected] Insup Lee University of Pennsylvania, [email protected] Follow this and additional works at: http://repository.upenn.edu/cis_papers Part of the Computer Engineering Commons, and the Computer Sciences Commons Recommended Citation Alexander Roederer, James Weimer, Joseph Dimartino, Jacob Gutsche, and Insup Lee, "Towards Non-Invasive Monitoring of Hypovolemia in Intensive Care Patients", 6th Workshop on Medical Cyber-Physical Systems (MedicalCPS 2015) . April 2015. 6th Workshop on Medical Cyber-Physical Systems (MedicalCPS 2015) http://workshop.medcps.org/ in conjunction with CPS Week 2015 http://www.cpsweek.org/2015/ Seattle, WA, April 13, 2015 An extended version of this paper is available at http://repository.upenn.edu/cis_papers/787/ This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_papers/781 For more information, please contact [email protected]. Towards Non-Invasive Monitoring of Hypovolemia in Intensive Care Patients Abstract Hypovolemia caused by internal hemorrhage is a major cause of death in critical care patients. However, hypovolemia is difficult to diagnose in a timely fashion, as obvious symptoms do not manifest until patients are already nearing a critical state of shock. Novel non-invasive methods for detecting hypovolemia in the literature utilize the photoplethysmogram (PPG) waveform generated by the pulse-oximeter attached to a finger or ear.
    [Show full text]
  • Hemodynamic Profiles Related to Circulatory Shock in Cardiac Care Units
    REVIEW ARTICLE Hemodynamic profiles related to circulatory shock in cardiac care units Perfiles hemodinámicos relacionados con el choque circulatorio en unidades de cuidados cardiacos Jesus A. Gonzalez-Hermosillo1, Ricardo Palma-Carbajal1*, Gustavo Rojas-Velasco2, Ricardo Cabrera-Jardines3, Luis M. Gonzalez-Galvan4, Daniel Manzur-Sandoval2, Gian M. Jiménez-Rodriguez5, and Willian A. Ortiz-Solis1 1Department of Cardiology; 2Intensive Cardiovascular Care Unit, Instituto Nacional de Cardiología Ignacio Chávez; 3Inernal Medicine, Hospital Ángeles del Pedregal; 4Posgraduate School of Naval Healthcare, Universidad Naval; 5Interventional Cardiology, Instituto Nacional de Cardiología Ignacio Chávez. Mexico City, Mexico Abstract One-third of the population in intensive care units is in a state of circulatory shock, whose rapid recognition and mechanism differentiation are of great importance. The clinical context and physical examination are of great value, but in complex situa- tions as in cardiac care units, it is mandatory the use of advanced hemodynamic monitorization devices, both to determine the main mechanism of shock, as to decide management and guide response to treatment, these devices include pulmonary flotation catheter as the gold standard, as well as more recent techniques including echocardiography and pulmonary ultra- sound, among others. This article emphasizes the different shock mechanisms observed in the cardiac care units, with a proposal for approach and treatment. Key words: Circulatory shock. Hemodynamic monitorization.
    [Show full text]
  • Management of Hypovolaemic Shock in the Trauma Patient (Full Guideline)
    HypovaolaemicShock_FullRCvR.qxd 3/2/07 3:03 PM Page 1 ADULT TRAUMA CLINICAL PRACTICE GUIDELINES :: Management of Hypovolaemic Shock in the Trauma Patient HYPOVOLAEMIC SHOCK GUIDELINE blood O-neg HypovaolaemicShock_FullRCvR.qxd 3/2/07 3:03 PM Page 2 Suggested citation: Ms Sharene Pascoe, Ms Joan Lynch 2007, Adult Trauma Clinical Practice Guidelines, Management of Hypovolaemic Shock in the Trauma Patient, NSW Institute of Trauma and Injury Management. Authors Ms Sharene Pascoe (RN), Rural Critical Care Clinical Nurse Consultant Ms Joan Lynch (RN), Project Manager, Trauma Service, Liverpool Hospital Editorial team NSW ITIM Clinical Practice Guidelines Committee Mr Glenn Sisson (RN), Trauma Clinical Education Manager, NSW ITIM Dr Michael Parr, Intensivist, Liverpool Hospital Assoc. Prof. Michael Sugrue, Trauma Director, Trauma Service, Liverpool Hospital This work is copyright. It may be reproduced in whole or in part for study training purposes subject to the inclusion of an acknowledgement of the source. It may not be reproduced for commercial usage or sale. Reproduction for purposes other than those indicated above requires written permission from the NSW Insititute of Trauma and Injury Management. © NSW Institute of Trauma and Injury Management SHPN (TI) 070024 ISBN 978-1-74187-102-9 For further copies contact: NSW Institute of Trauma and Injury Management PO Box 6314, North Ryde, NSW 2113 Ph: (02) 9887 5726 or can be downloaded from the NSW ITIM website http://www.itim.nsw.gov.au or the NSW Health website http://www.health.nsw.gov.au January 2007 HypovolaemicShock_FullRep.qxd 3/2/07 12:36 PM Page i blood O-neg Important notice! 'Management of Hypovolaemic Shock in the Trauma Patient’ clinical practice guidelines are aimed at assisting clinicians in informed medical decision-making.
    [Show full text]
  • Cardiac Arrest Due to Tension Pneumoperitoneum Caused by Esophagogastric Perforation and Pyloric Stenosis : a Case Report
    Shinshu Med J, 67⑵:113~119, 2019 Cardiac Arrest Due to Tension Pneumoperitoneum Caused by Esophagogastric Perforation and Pyloric Stenosis : A Case Report 1 )* 1) 1) Hiroshi Miyama , Mayumi Okada , Hiroshi Takayama 1) 2) Hiroshi Imamura and Futoshi Muranaka 1) Department of Emergency and Critical Care Medicine, Shinshu University School of Medicine 2) Department of Surgery, Shinshu University School of Medicine Tension pneumothorax is one of the causes of sudden cardiac arrest with evidence of obstructive shock and subcutaneous emphysema. Emergency chest decompression is a treatment of choice in such a situation. Herein, we report a case of an out-of-hospital cardiac arrest due to tension pneumoperitoneum caused by esophagogas- tric perforation. A 40-year-old man with a history of duodenal ulcer and pyloric stenosis complained of sudden- onset abdominal pain and developed cardiac arrest during transportation to our hospital. He had jugular venous distention ; subcutaneous emphysema in the upper body trunk, arms, and neck ; and a markedly distended abdomen. Immediate needle-chest decompression was not effective, but after volume resuscitation, adrenaline administration, and abdominal decompression by nasogastric tube, spontaneous circulation was resumed. Radiological findings revealed tension pneumoperitoneum due to esophagogastric perforation. Emergency laparotomy was performed, and the perforation of the esophagogastric junction was detected. The patient was discharged from the hospital without any disability. Notably, in the treatment of a patient with cardiac arrest having subcutaneous emphysema, the cause of obstructive shock could exist not only in the chest, but also in the abdomen. Shinshu Med J 67 : 113―119, 2019 (Received for publication November 12, 2018 ; accepted in revised January 4, 2019) Key words : cardiac arrest, esophagogastric perforation, tension pneumoperitoneum decompression, successfully improved his circulation.
    [Show full text]
  • Septic, Hypovolemic, Obstructive and Cardiogenic Killers
    S.H.O.C.K Septic, Hypovolemic, Obstructive and Cardiogenic Killers Jason Ferguson, BPA, NRP Public Safety Programs Head, CVCC Amherst County DPS, Paramedic Centra One, Flight Paramedic Objectives • Define Shock • Review patho and basic components of life • Identify the types of shock • Identify treatments Shock Defined • “Rude unhinging of the machinery of life”- Samuel Gross, U.S. Trauma Surgeon, 1962 • “A momentary pause in the act of death”- John Warren, U.S. Surgeon, 1895 • Inadequate tissue perfusion Components of Life Blood Flow Right Lungs Heart Left Body Heart Patho Review • Preload • Afterload • Baroreceptors Perfusion Preservation Basic rules of shock management: • Maintain airway • Maintain oxygenation and ventilation • Control bleeding where possible • Maintain circulation • Adequate heart rate and intravascular volume ITLS Cases Case 1 • 11 month old female “not acting right” • Found in crib this am lethargic • Airway patent • Breathing is increased; LS clr • Circulation- weak distal pulses; pale and cool Case 1 • VS: RR 48, HR 140, O2 98%, Cap refill >2 secs • Foul smelling diapers x 1 day • “I must have changed her two dozen times yesterday” • Not eating or drinking much Case 1 • IV established after 4 attempts • Fluid bolus initiated • Transported to ED • Received 2 liters of fluid over next 24 hours Hypovolemic Shock Hemorrhage Diarrhea/Vomiting Hypovolemia Burns Peritonitis Shock Progression Compensated to decompensated • Initial rise in blood pressure due to shunting • Initial narrowing of pulse pressure • Diastolic raised
    [Show full text]
  • Recognizing and Treating Shock in the Prehospital Setting
    9/3/2020 Recognizing and Treating Shock in the Prehospital Setting 1 9/3/2020 Special Thanks to Our Sponsor 2 9/3/2020 Your Presenters Dr. Raymond L. Fowler, Dr. Melanie J. Lippmann, MD, FACEP, FAEMS MD FACEP James M. Atkins MD Distinguished Professor Associate Professor of Emergency Medicine of Emergency Medical Services, Brown University Chief of the Division of EMS Alpert Medical School Department of Emergency Medicine Attending Physician University of Texas Rhode Island Hospital and The Miriam Hospital Southwestern Medical Center Providence, RI Dallas, TX 3 9/3/2020 Scenario SHOCK INDEX?? Pulse ÷ Systolic 4 9/3/2020 What is Shock? Shock is a progressive state of cellular hypoperfusion in which insufficient oxygen is available to meet tissue demands It is key to understand that when shock occurs, the body is in distress. The shock response is mounted by the body to attempt to maintain systolic blood pressure and brain perfusion during times of physiologic distress. This shock response can accompany a broad spectrum of clinical conditions that stress the body, ranging from heart attacks, to major infections, to allergic reactions. 5 9/3/2020 Causes of Shock Shock may be caused when oxygen intake, absorption, or delivery fails, or when the cells are unable to take up and use the delivered oxygen to generate sufficient energy to carry out cellular functions. 6 9/3/2020 Causes of Shock Hypovolemic Shock Distributive Shock Inadequate circulating fluid leads A precipitous increase in vascular to a diminished cardiac output, capacity as blood vessels dilate and which results in an inadequate the capillaries leak fluid, translates into delivery of oxygen to the too little peripheral vascular resistance tissues and cells and a decrease in preload, which in turn reduces cardiac output 7 9/3/2020 Causes of Shock Cardiogenic Shock Obstructive Shock The heart is unable to circulate Obstruction to the forward flow of sufficient blood to meet the blood exists in the great vessels metabolic needs of the body.
    [Show full text]
  • Shock and Awe: a Dynamic Approach to Resuscitation
    Shock and Awe: A dynamic approach to resuscitation Critical Care Symposium October 28, 2017 Anna Perrello, RPA-C, MPAS Brian Kersten, PharmD, BCCCP, BCPS Disclosures • Brian Kersten o Nothing to disclose • Anna Perrello o Nothing to disclose Objectives • Identify and explain the physiology of various shock states including distributive, cardiogenic, obstructive and hypovolemic. • Discuss advantages and limitations to static and dynamic predictors of volume responsiveness. • Recognize techniques related to visualization of basic structures and medium identification during bedside ultrasonography. • Evaluate treatment options for shock states using dynamic measures for fluid resuscitation Shock • A heterogenous syndrome best defined as circulatory failure o Originates from mismatch between oxygen delivery (DO2) and oxygen consumption (VO2) • Often becomes apparent in setting of arterial hypotension Differentiating Shock Systemic Mixed Wedge Cardiac vascular venous pressure output resistance oxygen Hypovolemic - Hemorrhage ↓ ↓ ↑ ↓ - Dehydration Cardiogenic - Myocardial infarction ↑ ↓ ↑ ↓ - Arrhythmia - Cardiomyopathy Obstructive - Pulmonary embolism ↑↔ ↓ ↑ ↓ - Tension pneumothorax - Cardiac tamponade Distributive - Septic shock - Anaphylaxis ↑↔ ↑ ↓ ↑ - Neurogenic - Myxedema coma - Post-cardiopulmonary bypass Goals of Therapy in Shock • Restore effective tissue perfusion and normalize cellular metabolism by ensuring systemic oxygen delivery by 1. Aggressive and appropriate fluid resuscitation 2. Supporting CO and MAP • Above are titrated to
    [Show full text]