3D Climate Modeling of Close-In Land Planets: Circulation Patterns, Climate Moist Bistability, and Habitability

Total Page:16

File Type:pdf, Size:1020Kb

3D Climate Modeling of Close-In Land Planets: Circulation Patterns, Climate Moist Bistability, and Habitability A&A 554, A69 (2013) Astronomy DOI: 10.1051/0004-6361/201321042 & c ESO 2013 Astrophysics 3D climate modeling of close-in land planets: Circulation patterns, climate moist bistability, and habitability J. Leconte1, F. Forget1, B. Charnay1, R. Wordsworth2, F. Selsis3;4, E. Millour1, and A. Spiga1 1 LMD, Institut Pierre-Simon Laplace, Université P. et M. Curie, BP99, 75005 Paris, France e-mail: [email protected] 2 Department of Geological Sciences, University of Chicago, 5734 S Ellis Avenue, Chicago, IL 60622, USA 3 Université de Bordeaux, Observatoire Aquitain des Sciences de l’Univers, BP 89, 33271 Floirac Cedex, France 4 CNRS, UMR 5804, Laboratoire d’Astrophysique de Bordeaux, BP 89, 33271 Floirac Cedex, France Received 4 January 2013 / Accepted 27 March 2013 ABSTRACT The inner edge of the classical habitable zone is often defined by the critical flux needed to trigger the runaway greenhouse instability. This 1D notion of a critical flux, however, may not be all that relevant for inhomogeneously irradiated planets, or when the water content is limited (land planets). Based on results from our 3D global climate model, we present general features of the climate and large-scale circulation on close-in terrestrial planets. We find that the circulation pattern can shift from super-rotation to stellar/anti stellar circulation when the equatorial Rossby deformation radius significantly exceeds the planetary radius, changing the redistribu- tion properties of the atmosphere. Using analytical and numerical arguments, we also demonstrate the presence of systematic biases among mean surface temperatures and among temperature profiles predicted from either 1D or 3D simulations. After including a complete modeling of the water cycle, we further demonstrate that two stable climate regimes can exist for land planets closer than the inner edge of the classical habitable zone. One is the classical runaway state where all the water is vaporized, and the other is a collapsed state where water is captured in permanent cold traps. We identify this “moist” bistability as the result of a competition between the greenhouse effect of water vapor and its condensation on the night side or near the poles, highlighting the dynamical nature of the runaway greenhouse effect. We also present synthetic spectra showing the observable signature of these two states. Taking the example of two prototype planets in this regime, namely Gl 581 c and HD 85512 b, we argue that depending on the rate of water delivery and atmospheric escape during the life of these planets, they could accumulate a significant amount of water ice at their surface. If such a thick ice cap is present, various physical mechanisms observed on Earth (e.g., gravity driven ice flows, geothermal flux) should come into play to produce long-lived liquid water at the edge and/or bottom of the ice cap. Consequently, the habitability of planets at smaller orbital distance than the inner edge of the classical habitable zone cannot be ruled out. Transiting planets in this regime represent promising targets for upcoming exoplanet characterization observatories, such as EChO and JWST. Key words. planets and satellites: general – planets and satellites: atmospheres – planets and satellites: physical evolution – planet-star interactions 1. Beyond the runaway greenhouse limit equilibrium balance and is heated until the surface can radiate at optical wavelength around a temperature of 1400 K (Kasting Because of the bias of planet characterization observatories et al. 1984; Kasting 1988). All the water at the surface is va- toward strongly irradiated objects on short orbits, planets identi- porized. The planet is in a runaway greenhouse state. Roughly fied as near the inner edge of the habitable zone represent valu- speaking, this radiation limit stems from the fact that the surface able targets. This does, however, raise numerous questions con- must increase its temperature to radiate more, but the amount of cerning our understanding of the processes delimiting this inner water vapor in the troposphere, hence the opacity of the latter, edge. increases exponentially with this surface temperature (because For a planet like the Earth, which from the point of view of 1 of the Clausius-Clapeyron relation). Then the thermal emission climate can be considered as an aqua planet , a key constraint of the opaque atmosphere is emitted at the level at which the op- is provided by the positive feedback of water vapor on climate. tical depth is close to unity, a level whose temperature reaches an When the insolation of the planet is increased, more water vapor asymptotic value, hence the limited flux2 (Nakajima et al. 1992; is released in the atmosphere by the hotter surface, increasing the Pierrehumbert 2010). greenhouse effect. If on Earth today this effect is balanced by While large uncertainties remain regarding the radiative ef- other processes, in particular the increase in infrared emission fect of water vapor continuum and the nonlinear, 3D effect of by the surface with temperature, it has been shown that above dynamics and clouds, the critical value of the average absorbed a critical absorbed stellar flux, the planet cannot reach radiative 1 i.e. a planet whose surface is largely covered by connected oceans 2 A similar but slightly subtler limit stems from considering the radia- that have a planet-wide impact on the climate. Not to be confused with tive/thermodynamic equilibrium of the stratosphere (Kombayashi 1967; an ocean planet for which, in addition, water must represent a significant Ingersoll 1969; Nakajima et al. 1992), but it is less constraining in the fraction of the bulk mass (Léger et al. 2004). case considered. Article published by EDP Sciences A69, page 1 of 17 A&A 554, A69 (2013) stellar radiation, (1 − A¯)F?=4 (where F? is the stellar flux at the have performed simulations for two already detected planets. substellar point and A¯ is the planetary bond albedo), should con- We show that qualitatively robust features appear in our simu- servatively range between 240 W/m2 (the mean absorbed stellar lations and argue that the processes governing the climate dis- radiation on Earth) and 350 W/m2 (Abe et al. 2011). Terrestrial cussed here are quite general. planets emitting such (low) IR fluxes will be difficult to charac- In Sect.2 we introduce the various components of our nu- terize in the near future. merical climate model and present the basic climatology of our Fortunately, the runaway greenhouse limit discussed above model in a completely dry case (Sect.3). We show that the at- is not as fundamental as it may appear. Indeed, the theory out- mospheric circulation can settle into two different regimes – lined above assumes that a sufficient3 reservoir of liquid water is namely, super-rotation or stellar/anti-stellar circulation – and available everywhere on the surface (Selsis et al. 2007). While that the transition of one regime to the next occurs when the it would seem from 1D modeling that liquid water would disap- equatorial Rossby deformation radius significantly exceeds the pear at a lower surface temperature for a planet with a limited planetary radius. We also show that strong discrepancies can oc- water inventory, it goes the opposite way in 3D. Global climate cur between 1D and globally averaged 3D results. Then we show models show that such “land planets” can have a wider habitable that when water is present, the climate regime reached depends zone (Abe et al. 2011). Near the inner edge, this property stems on the initial conditions and can exhibit a bistability (Sect.4). from the fact that atmospheric transport of water from warm to We argue that this bistability is a dynamical manifestation of the cold regions of the planets is not counteracted by large-scale sur- interplay between the runaway greenhouse instability on the hot face runoff (Abe et al. 2005). Heavily irradiated regions are then hemisphere and the cold trapping arising either on the dark side drier and can emit more IR flux than the limit found for a satu- or near the poles. In Sect.5, we discuss the long-term stability of rated atmosphere. the different regimes found here and show that, if atmospheric In principle, it is thus possible to find planets that absorb and escape is efficient, it could provide a stabilizing feedback for re-emit more flux than the runaway greenhouse threshold and the climate. In Sect.6, we suggest that if the planet has been for which liquid or solid water can be thermodynamically stable able to accumulate a large amount of ice in its cold traps such at the surface, provided that they have accreted limited water that ice draining by glaciers is significant, liquid water could be supplies (or lost most of them). As shown hereafter, this could present at the edge of the ice cap where glaciers melt. We also be the case for Gl 581 c (Udry et al. 2007; Mayor et al. 2009; discuss the possible presence of subsurface water under a thick Forveille et al. 2011) and HD 85512 b (Pepe et al. 2011), the ice cap. Finally, in Sect.7 we present synthetic spectra and dis- only two confirmed planets having masses that are compatible cuss the observable signatures of the two climate regimes dis- with a terrestrial planet (M p ∼< 7−8 M⊕; although defining such cussed above. a mass limit is questionable) and that lie beyond the inner edge of the classical habitable zone but receive a moderate stellar flux, 2 F?=4 < 1000 W/m . These planets lie even closer to the star that 2. Method the inner edge of the limits set by Abe et al.(2011) for land planets. Our simulations were performed with an upgraded version of However, for those close-in planets whose rotation states the LMD generic global climate model (GCM) specifically de- have been strongly affected by tidal dissipation and which are veloped for the study of extrasolar planets (Wordsworth et al.
Recommended publications
  • THE MUSCLES TREASURY SURVEY. I. MOTIVATION and OVERVIEW* Kevin France1, R
    The Astrophysical Journal, 820:89 (24pp), 2016 April 1 doi:10.3847/0004-637X/820/2/89 © 2016. The American Astronomical Society. All rights reserved. THE MUSCLES TREASURY SURVEY. I. MOTIVATION AND OVERVIEW* Kevin France1, R. O. Parke Loyd1, Allison Youngblood1, Alexander Brown2, P. Christian Schneider3, Suzanne L. Hawley4, Cynthia S. Froning5, Jeffrey L. Linsky6, Aki Roberge7, Andrea P. Buccino8, James R. A. Davenport9,19, Juan M. Fontenla10, Lisa Kaltenegger11, Adam F. Kowalski12, Pablo J. D. Mauas8, Yamila Miguel13, Seth Redfield14, Sarah Rugheimer15, Feng Tian16, Mariela C. Vieytes17, Lucianne M. Walkowicz18, and Kolby L. Weisenburger4 1 Laboratory for Atmospheric and Space Physics, University of Colorado, 600 UCB, Boulder, CO 80309, USA; [email protected] 2 Center for Astrophysics and Space Astronomy, University of Colorado, 389 UCB, Boulder, CO 80309, USA 3 European Space Research and Technology Centre (ESA/ESTEC), Keplerlaan 1, 2201 AZ Noordwijk, The Netherlands 4 Department of Astronomy, University of Washington, Box 351580, Seattle, WA 98195, USA 5 Department of Astronomy, C1400, University of Texas at Austin, Austin, TX 78712, USA 6 JILA, University of Colorado and NIST, 440 UCB, Boulder, CO 80309, USA 7 Exoplanets and Stellar Astrophysics Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA 8 Instituto de Astronomía y Física del Espacio (UBA-CONICET) and Departamento de Física (UBA), CC.67, suc. 28, 1428, Buenos Aires, Argentina 9 Department of Physics & Astronomy, Western Washington University, Bellingham,
    [Show full text]
  • Lurking in the Shadows: Wide-Separation Gas Giants As Tracers of Planet Formation
    Lurking in the Shadows: Wide-Separation Gas Giants as Tracers of Planet Formation Thesis by Marta Levesque Bryan In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy CALIFORNIA INSTITUTE OF TECHNOLOGY Pasadena, California 2018 Defended May 1, 2018 ii © 2018 Marta Levesque Bryan ORCID: [0000-0002-6076-5967] All rights reserved iii ACKNOWLEDGEMENTS First and foremost I would like to thank Heather Knutson, who I had the great privilege of working with as my thesis advisor. Her encouragement, guidance, and perspective helped me navigate many a challenging problem, and my conversations with her were a consistent source of positivity and learning throughout my time at Caltech. I leave graduate school a better scientist and person for having her as a role model. Heather fostered a wonderfully positive and supportive environment for her students, giving us the space to explore and grow - I could not have asked for a better advisor or research experience. I would also like to thank Konstantin Batygin for enthusiastic and illuminating discussions that always left me more excited to explore the result at hand. Thank you as well to Dimitri Mawet for providing both expertise and contagious optimism for some of my latest direct imaging endeavors. Thank you to the rest of my thesis committee, namely Geoff Blake, Evan Kirby, and Chuck Steidel for their support, helpful conversations, and insightful questions. I am grateful to have had the opportunity to collaborate with Brendan Bowler. His talk at Caltech my second year of graduate school introduced me to an unexpected population of massive wide-separation planetary-mass companions, and lead to a long-running collaboration from which several of my thesis projects were born.
    [Show full text]
  • Habitabilidade No Sistema Solar
    Jorge Martins Teixeira HABITABILIDADE NO SISTEMA SOLAR Departamento de Física e Astronomia. Faculdade de Ciências da Universidade do Porto. Ano de 2014 Prefácio O tema da existência de vida no sistema solar é extremamente interessante. Gente de todas as idades, formações escolares e profissões se questiona se estamos sós no Universo. E gente de todos os tempos. É um assunto inesgotável. Estar em cima deste planeta e ver aquelas pintinhas lá longe tão inacessíveis é sentir que estamos perante algo que nos ultrapassa completamente. Mas que é ao mesmo tempo extremamente fascinante. Isso mesmo tive oportunidade de constatar numas férias que passei no Alentejo quando estive presente no Andanças - basicamente uma série de pavilhões onde se aprende a dançar - pois quando me encontrava altas horas da noite a indicar aos meus colegas onde se encontrava a estrela polar, a posição da Via Láctea, e outros fenómenos astronómicos fui surpreendido por um grupo de umas dez pessoas, de todas as idades, que se apercebeu do que estava a fazer e propôs a realização de uma sessão de observação de astronomia naquele recinto. De pergunta a pergunta a olhar para o céu estrelado, os minutos passaram a mais de uma hora. Isto é, a juntar à dança propriamente dita não lhes parecia mal acrescentar as danças dos corpos celestes. Seria também interessante fazer uma pesquisa nos livros de divulgação científica quais aqueles que fazem da astronomia o seu principal tema. E dar o devido valor a estas matérias que têm sido um pouco subalternizadas no ensino por outras. E ir para o espaço é o nosso futuro.
    [Show full text]
  • Planets Beyond the Solar System
    Understanding exoplanets in the era of large telescopes Yogesh C. Joshi Aryabhatta Research Institute of Observational Sciences (ARIES), India 1 Detection of exoplanets: Transit and Radial Velocity Method When planet passes in front of the stellar disc, it blocks light and we see a dip (loss of flux) in the light curve. 2 ΔF/F0 = (Rp/R*) When planet revolves around the star, the star wobbles and we see a variation in the radial motion. ( ⅓ 1 2G Mp sin i K = ( ⅔ 2 ½ P Ms (1 – e ) Exoplanets: present status More than 4100 exoplanets are already detected till date Planetary system close to solar system: TRAPPIST-1 4 Planetary system close to solar system: TRAPPIST-1 • TRAPPIST-1b, the innermost planet, is likely to have a rocky core, surrounded by an atmosphere much thicker than Earth's. • TRAPPIST-1c may also have a rocky interior, but with a thinner atmosphere than planet b. • TRAPPIST-1d is the lightest of the planets – about 30 percent the mass of Earth. • TRAPPIST-1e is the only planet in the system slightly denser than Earth, suggesting it may have a denser iron core than our home planet. In terms of size, density and the amount of radiation it receives from its star, this is the most similar planet to the Earth. • TRAPPIST-1f, g and h are far enough from the host star that water could be frozen as ice across their surfaces. If they have thin atmospheres, 5 they would be unlikely to contain heavy molecules of Earth, such as CO2. Exoplanetary science with large telescope High-precision photometry High-resolution spectroscopy 6 Radial Velocity through high-resolution spectroscopy HD 85512: 3.6 M⨁ transiting exoplanet Credit: ESPRESSO consortium (2018) 7 Studying the stellar rotation WASP-14b (Joshi et al.
    [Show full text]
  • 2016 Publication Year 2021-04-23T14:32:39Z Acceptance in OA@INAF Age Consistency Between Exoplanet Hosts and Field Stars Title B
    Publication Year 2016 Acceptance in OA@INAF 2021-04-23T14:32:39Z Title Age consistency between exoplanet hosts and field stars Authors Bonfanti, A.; Ortolani, S.; NASCIMBENI, VALERIO DOI 10.1051/0004-6361/201527297 Handle http://hdl.handle.net/20.500.12386/30887 Journal ASTRONOMY & ASTROPHYSICS Number 585 A&A 585, A5 (2016) Astronomy DOI: 10.1051/0004-6361/201527297 & c ESO 2015 Astrophysics Age consistency between exoplanet hosts and field stars A. Bonfanti1;2, S. Ortolani1;2, and V. Nascimbeni2 1 Dipartimento di Fisica e Astronomia, Università degli Studi di Padova, Vicolo dell’Osservatorio 3, 35122 Padova, Italy e-mail: [email protected] 2 Osservatorio Astronomico di Padova, INAF, Vicolo dell’Osservatorio 5, 35122 Padova, Italy Received 2 September 2015 / Accepted 3 November 2015 ABSTRACT Context. Transiting planets around stars are discovered mostly through photometric surveys. Unlike radial velocity surveys, photo- metric surveys do not tend to target slow rotators, inactive or metal-rich stars. Nevertheless, we suspect that observational biases could also impact transiting-planet hosts. Aims. This paper aims to evaluate how selection effects reflect on the evolutionary stage of both a limited sample of transiting-planet host stars (TPH) and a wider sample of planet-hosting stars detected through radial velocity analysis. Then, thanks to uniform deriva- tion of stellar ages, a homogeneous comparison between exoplanet hosts and field star age distributions is developed. Methods. Stellar parameters have been computed through our custom-developed isochrone placement algorithm, according to Padova evolutionary models. The notable aspects of our algorithm include the treatment of element diffusion, activity checks in terms of 0 log RHK and v sin i, and the evaluation of the stellar evolutionary speed in the Hertzsprung-Russel diagram in order to better constrain age.
    [Show full text]
  • Using an Energy Balance Model to Determine Exoplanetary Climates
    Using an Energy Balance Model to Determine Exoplanetary Climates that Support Liquid Water By Macgregor Sullivan Presented to the Faculty of Wheaton College in Partial Fulfillment of the Requirements for Graduation with Departmental Honors in Physics May 14, 2018 1 Abstract The purpose of this thesis is to modify an energy balance atmospheric model created by R. Pierrehumbert (Pierrehumbert 2011). His energy balance model gave an estimate of Gliese 581g’s, a tidally locked exoplanet, atmosphere. Using an energy balance model, the surface and air temperatures can be found for a planet in equilibrium, when the amount incoming energy is equal to the amount of outgoing energy. Starting from Pierrehumbert’s model, we have added for a greenhouse effect and an ice-albedo feedback. We have also modified the model to test a rotating planet (similar to Earth) in addition to a tidally locked planet. This model, by varying the planet’s surface pressure, stellar flux, and the atmosphere's emissivity, can find which conditions leads to the planet having the temperatures needed to support liquid water. Surface pressure affects how efficient the planet is at redistributing heat leading to uniform temperatures across its surface. As the incoming stellar flux or the emissivity increase, the planet’s surface temperatures rise due the increase in absorbed energy from the planet’s surface. We have also found that the orbital distances that are able to support liquid water depend heavily on the pressure of the planet’s atmosphere. In future work, this model will produce the planet’s IR emission to determine if the planet is detectable using telescopes like the James Webb Space Telescope.
    [Show full text]
  • 50 New Exoplanets Discovered by HARPS 12 September 2011
    50 new exoplanets discovered by HARPS 12 September 2011 "The harvest of discoveries from HARPS has exceeded all expectations and includes an exceptionally rich population of super-Earths and Neptune-type planets hosted by stars very similar to our Sun. And even better - the new results show that the pace of discovery is accelerating," says Mayor. In the eight years since it started surveying stars like the Sun using the radial velocity technique HARPS has been used to discover more than 150 new planets. About two thirds of all the known This artist's impression shows the planet orbiting the exoplanets with masses less than that of Neptune Sun-like star HD 85512 in the southern constellation of were discovered by HARPS. These exceptional Vela (The Sail). This planet is one of sixteen super- results are the fruit of several hundred nights of Earths discovered by the HARPS instrument on the HARPS observations. 3.6-metre telescope at ESO’s La Silla Observatory. This planet is about 3.6 times as massive as the Earth and Working with HARPS observations of 376 Sun-like lies at the edge of the habitable zone around the star, stars, astronomers have now also much improved where liquid water, and perhaps even life, could potentially exist. Credit: ESO/M. Kornmesser the estimate of how likely it is that a star like the Sun is host to low-mass planets (as opposed to gaseous giants). They find that about 40% of such stars have at least one planet less massive than Astronomers using ESO's world-leading exoplanet Saturn.
    [Show full text]
  • [Narrator] 1. Astronomers Using ESO's Leading
    ESOcast Episode 35: Fifty New Exoplanets Found by HARPS 00:00 [Visual starts] [Narrator] 1. Astronomers using ESO’s leading exoplanet hunter HARPS have today announced more than fifty New exoplanet animation... newly discovered planets around other stars. Among these are many rocky planets not much heavier than the Earth. One of them in particular orbits within the habitable zone around its star. 00:24 ESOcast intro This is the ESOcast! Cutting-edge science and life behind the scenes of ESO, the European Southern Observatory. 00:44 [Narrator] La Silla observatory 2. In this episode of the ESOcast, we take a close look at another major exoplanet discovery from Footage HARPS ESO’s La Silla Observatory, made thanks to its world-beating planet hunting machine HARPS. 01:02 Footage NTT [Narrator] 3. Among the new planets just announced by Footage HARPS scientists, sixteen are super-Earths — rocky planets up to ten times as massive as Earth. This is the Doppler video largest number of such planets ever announced at one time. A planet in orbit causes its star to regularly move backwards and forwards as seen from Earth. This creates a tiny shift of the star’s spectrum that can be measured with an extremely sensitive spectrograph such as HARPS. 01:35 Zoom (D) [Narrator] In their quest to find a rocky planet that could harbour life, astronomers are now pushing HARPS even further. They have selected ten well-studied nearby stars similar to our Sun. Earlier observations showed that these were ideal stars to examine for even less massive planets.
    [Show full text]
  • Kepler-22B: Overhyped Or Potential New Home? New 0 by Astronomyjc with
    http://chirpstory.com/dialog_embed/3351 09/12/2011 11:16 1 minute ago 0 Kepler-22b: Overhyped or potential new home? new 0 By astronomyjc with ... Like Tweet The transcript for the 18th meeting of the astronomy twitter journal club. We discussed the recent announcement of, and subsequent excitable media response to, exoplanet Kepler-22b. http://astrojournalclub.wordpress.com/2011/12/07/this-weeks-meeting-kepler-22b-hype-or-new- home/ What would you like to discuss in #astrojc this week? astronomyjc 2 days ago @astronomyjc I think we should have @Matt_Burleigh discussing Kepler 22b :-) wikimir 2 days ago @wikimir @astronomyjc love to.... If/when a paper ever appears..... Matt_Burleigh 2 days ago @Matt_Burleigh @astronomyjc Yes, good point! wikimir 2 days ago @astronomyjc Kepler-22b? antisophista 2 days ago @astronomyjc more info on kepler-22b here http://t.co/qaAzBDyD and here http://t.co/9I1pSMQW (via @astrobites) #astrojc antisophista 2 days ago Votes for Kepler22b (@antisophista & @wikimir) but there's no paper yet as @Matt_Burleigh points out How about we discuss the hype? #astrojc astronomyjc 1 day ago @astronomyjc yes, please discuss Kepler 22b hype (Topic of my astro tutorial with 3rd yr undergrads today) incl. range in planet's temp & g. Paul_Crowther 1 day ago By popular demand (i.e. 3 votes) #astrojc will discuss Kepler22b & the surrounding hype tomorrow, 20:10 GMT http://t.co/s2HhJ3t2 astronomyjc 1 day ago “@AstroPHYPapers: Kepler-22b: A 2.4 Earth-radius Planet in the Habitable Zone of a Sun- like Star. http://t.co/xMrNYAa9” cc @astronomyjc antisophista 1 day ago There's now a paper to go with the Kepler-22b press release http://t.co/SZZdY89R #astrojc astronomyjc 1 day ago Page 1 of 16 http://chirpstory.com/dialog_embed/3351 09/12/2011 11:16 astronomyjc 1 day ago #astrojc MT @KarenLMasters: "what scientists were quick to label a twin of Earth" http://t.co/upLAp8DL - yes it's all the scientists fault! astronomyjc 22 hours ago "Kepler 22b – hype or new home?" #astrojc discussion tonight, 20:10GMT - Please join in! I might not have..
    [Show full text]
  • The HARPS Search for Earth-Like Planets in the Habitable Zone I
    A&A 534, A58 (2011) Astronomy DOI: 10.1051/0004-6361/201117055 & c ESO 2011 Astrophysics The HARPS search for Earth-like planets in the habitable zone I. Very low-mass planets around HD 20794, HD 85512, and HD 192310, F. Pepe1,C.Lovis1, D. Ségransan1,W.Benz2, F. Bouchy3,4, X. Dumusque1, M. Mayor1,D.Queloz1, N. C. Santos5,6,andS.Udry1 1 Observatoire de Genève, Université de Genève, 51 ch. des Maillettes, 1290 Versoix, Switzerland e-mail: [email protected] 2 Physikalisches Institut Universität Bern, Sidlerstrasse 5, 3012 Bern, Switzerland 3 Institut d’Astrophysique de Paris, UMR7095 CNRS, Université Pierre & Marie Curie, 98bis Bd Arago, 75014 Paris, France 4 Observatoire de Haute-Provence/CNRS, 04870 St. Michel l’Observatoire, France 5 Centro de Astrofísica da Universidade do Porto, Rua das Estrelas, 4150-762 Porto, Portugal 6 Departamento de Física e Astronomia, Faculdade de Ciências, Universidade do Porto, Portugal Received 8 April 2011 / Accepted 15 August 2011 ABSTRACT Context. In 2009 we started an intense radial-velocity monitoring of a few nearby, slowly-rotating and quiet solar-type stars within the dedicated HARPS-Upgrade GTO program. Aims. The goal of this campaign is to gather very-precise radial-velocity data with high cadence and continuity to detect tiny signatures of very-low-mass stars that are potentially present in the habitable zone of their parent stars. Methods. Ten stars were selected among the most stable stars of the original HARPS high-precision program that are uniformly spread in hour angle, such that three to four of them are observable at any time of the year.
    [Show full text]
  • Recipe for a Habitable Planet
    Recipe for a Habitable Planet Aomawa Shields Clare Boothe Luce Associate Professor Shields Center for Exoplanet Climate and Interdisciplinary Education (SCECIE) University of California, Irvine ASU School of Earth and Space Exploration (SESE) December 2, 2020 A moment to pause… Leading effectively during COVID-19 • Employees Need Trust and Compassion: Be Present, Even When You're Distant • Employees Need Stability: Prioritize Wellbeing Amid Disruption • Employees Need Hope: Anchor to Your "True North" From “3 strategies for leading effectively during COVID-19” (https://www.gallup.com/workplace/306503/strategies-leading-effectively-amid-covid.aspx) Hobbies: reading movies, shows knitting mixed media/collage violin tea yoga good restaurants spa days the beach hiking smelling flowers hanging with family BINGO Ill. Niklas Elmehed. Ill. Niklas Elmehed. © Nobel Media. © Nobel Media. RadialVelocity (m/s) Nobel Prize in Physics 2019 Mayor & Queloz 1995 https://exoplanets.nasa.gov/ As of December 2, 2020 Aomawa Shields Recipe for a Habitable World Credit: NASA NNASA’sASA’s KKeplerepler MMissionission TESS Transiting Exoplanet Survey Satellite Credit: NASA-JPL/Caltech Proxima Centauri b Credit: ESO/M. Kornmesser LHS 1140b Credit: ESO TOI 700d Credit: NASA TESS planets in the Earth-sized regime Credit: NASA’s Goddard Space Flight Center Which ones do we follow up on? 20 The Habitable Zone (Kasting et al. 1993, Kopparapu et al. 2013) ) Runaway greenhouse Maximum CO2 greenhouse Stellar Mass (M Mass Stellar Distance from Star (AU) Snowball Earth Many factors can affect planetary habitability Aomawa Shields Recipe for a Habitable World Liquid water Aomawa Shields Recipe for a Habitable World Isotopic Birth Tides Orbit Abundance Environ.
    [Show full text]
  • A Terrestrial Planet Candidate in a Temperate Orbit Around Proxima Centauri
    A terrestrial planet candidate in a temperate orbit around Proxima Centauri Guillem Anglada-Escude´1∗, Pedro J. Amado2, John Barnes3, Zaira M. Berdinas˜ 2, R. Paul Butler4, Gavin A. L. Coleman1, Ignacio de la Cueva5, Stefan Dreizler6, Michael Endl7, Benjamin Giesers6, Sandra V. Jeffers6, James S. Jenkins8, Hugh R. A. Jones9, Marcin Kiraga10, Martin Kurster¨ 11, Mar´ıa J. Lopez-Gonz´ alez´ 2, Christopher J. Marvin6, Nicolas´ Morales2, Julien Morin12, Richard P. Nelson1, Jose´ L. Ortiz2, Aviv Ofir13, Sijme-Jan Paardekooper1, Ansgar Reiners6, Eloy Rodr´ıguez2, Cristina Rodr´ıguez-Lopez´ 2, Luis F. Sarmiento6, John P. Strachan1, Yiannis Tsapras14, Mikko Tuomi9, Mathias Zechmeister6. July 13, 2016 1School of Physics and Astronomy, Queen Mary University of London, 327 Mile End Road, London E1 4NS, UK 2Instituto de Astrofsica de Andaluca - CSIC, Glorieta de la Astronoma S/N, E-18008 Granada, Spain 3Department of Physical Sciences, Open University, Walton Hall, Milton Keynes MK7 6AA, UK 4Carnegie Institution of Washington, Department of Terrestrial Magnetism 5241 Broad Branch Rd. NW, Washington, DC 20015, USA 5Astroimagen, Ibiza, Spain 6Institut fur¨ Astrophysik, Georg-August-Universitat¨ Gottingen¨ Friedrich-Hund-Platz 1, 37077 Gottingen,¨ Germany 7The University of Texas at Austin and Department of Astronomy and McDonald Observatory 2515 Speedway, C1400, Austin, TX 78712, USA 8Departamento de Astronoma, Universidad de Chile Camino El Observatorio 1515, Las Condes, Santiago, Chile 9Centre for Astrophysics Research, Science & Technology Research Institute, University of Hert- fordshire, Hatfield AL10 9AB, UK 10Warsaw University Observatory, Aleje Ujazdowskie 4, Warszawa, Poland 11Max-Planck-Institut fur¨ Astronomie Konigstuhl¨ 17, 69117 Heidelberg, Germany 12Laboratoire Univers et Particules de Montpellier, Universit de Montpellier, Pl.
    [Show full text]