The Study of Safety Governance for Service Robots: on Open-Texture Risk
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
RS Media User Manual
A Fusion of technology and Personality User Manual North America Item No. 8061 | Ages 8+ CAUTION - ELECTRICAL TOY: NOT RECOMMENDED FOR CHILDREN UNDER 4 YEARS OF AGE. AS WITH ALL ELECTRICAL PRODUCTS, PRECAUTIONS SHOULD BE OBSERVED DURING HANDLING AND USE TO PREVENT ELECTRICAL SHOCK. INPUT: AC100-240V, 50/60HZ OUTPUT: DC 7.5V 3.1A COPYRIGHT INFORMATION RS Media™, Robosapien™, Robosapien™ V2, Roboreptile™, Robopet™, and Roboraptor™ are copyright and trademarked by Wowwee Ltd. Sun Microsystems and Java are registered trademarks of Sun Microsystems, Inc. All other copyrights are hereby acknowledged. sYsTeM RequIReMeNTs Minimum system requirements for running RS Media Editing Suite. Microsoft® Windows® XP SP2 or higher (English Edition) (Compatible with German, Spanish, French, and Italian Windows® XP SP2 or higher) PC with PIII 1.5GHz equivalent or higher processor 256 MB of system RAM 16 MB video card recommended 200 MB available hard disk space CD-ROM drive Supply of this product does not convey a license nor imply any right to distribute content created with this product in revenue-generating broadcast systems (terrestrial, satellite, cable and/or other distribution channels), streaming applications (via Internet, intranets and/or other networks), other content distribution systems (pay-audio or audio-on- demand applications and the like) or on physical media (compact discs, digital versatile discs, semiconductor chips, hard drives, memory cards and the like). An independent license for such use is required. For details, please visit http://mp3licensing.com. WELCOME Congratulations on choosing Rs Media™, the next generation of Robosapien technology and personality. RS Media is a complete multimedia robotic experience with the unique ability to be fully customized. -
Legal Aspects on the Implementation of Artificial Intelligence
EAI Endorsed Transactions on Creative Technologies Research Article Legal Aspects on the Implementation of Artificial Intelligence Corneliu Andy Puşcã1,* 1 Danubius University of Galati, 3 Galati Blvd., Galati 800654, Romania Abstract Artificially Intelligent agents are more and more present in society. They have the potential to improve our daily life and social welfare. But, the introduction of AI already brings some technologic, industrial and regulatory challenges. The robots operating autonomously, without the intervention or awareness of humans will raise questions regarding attribution of rights or restrictions / obligations for them, liability for their actions, taxation, data privacy, robotic labour replacing human labour. The change of liability paradigm from the operator of the vehicle to the manufacturer started with the imposition of liability for damages arising from an autonomous car. Should robots pay taxes? Maybe it is not fair to tax artificially intelligent agents for benefiting from public expenditure, because the use of public services or infrastructures by an AI agent it’s not a benefit for the agent, but for the user or designer. It can be a necessity, for reasons related to altering patterns of consumption or employment within the economy. The risk of losing control over AI agents are not only related to damages, but also to the protection of personal data and public safety. This can happen due to malfunctions, security breaches, the superior response time of computers compared to humans, unsafe explorations, hacking and so on. In this paper we aim at demonstrating that, with the proliferation of artificial intelligence, questions will come up and legal frameworks will inevitably need to adapt. -
A Control Architecture for Dynamically Stable Gaits of Small Size Humanoid Robots
A CONTROL ARCHITECTURE FOR DYNAMICALLY STABLE GAITS OF SMALL SIZE HUMANOID ROBOTS Andrea Manni ¤;1, Angelo di Noi ¤ and Giovanni Indiveri ¤ ¤ Dipartimento di Ingegneria dell'Innovazione, Universit`a di Lecce, via per Monteroni, 73100 Lecce, Italy, Fax: +39 0832 297279, email:fandrea.manni, giovanni.indiveri, [email protected] Abstract: From the 1970's biped robots have had a large attention from the robotic research community. Yet the issue of controlling dynamically stable walking for arbitrary biped robots is still open. We propose a simple control architecture based on the use of the FRI (Foot Rotation Indicator) point and the support polygon. The major advantage of the proposed architecture is that motion planning (and eventually sensor based re-planning (slower feedback loop)) is limited to the leg joints whereas the trunk and arm degrees of freedom are controlled in closed loop (faster feedback loop) to achieve overall dynamic stability. Such architecture allows to decouple the problem of dynamic stable walking in the two relatively simpler problems of gait generation and robot stabilization. This architecture is particularly suited for small size robots having limited onboard computational power and limited sensor suits. The e®ectiveness of the proposed method has been validated through Matlabr simulations and experimental tests performed on a Robovie-MS platform. Copyright °c 2006 IFAC Keywords: control architecture, dynamically stable gait, foot rotation indicator, support polygon. 1. INTRODUCTION over twenty actuated degrees of freedom and gen- erally they carry some microcontroller electronics Humanoid robots are enjoying increasing popular- board for the low level control, i.e. to generate ity as their anthropomorphic body allows the in- target signals for the actuators. -
Robosapien RS Media - the Champion of Robotic Toys Submitted By: Gizoo Thursday, 19 October 2006
Robosapien RS Media - the champion of robotic toys Submitted by: Gizoo Thursday, 19 October 2006 With 67 different programmable movements, extensive speech responses and removable SD memory cards, and an editing package to modify its personality, the latest edition to the Robosapien family - Robosapien RS Media (http://www.gizoo.co.uk/Products/ToysGames/RadioControl/RobosapienRSMedia.htm) - definitely rules the roost. The Robosapien RS Media (http://www.gizoo.co.uk/Products/ToysGames/RadioControl/RobosapienRSMedia.htm) comes complete with a camera mounted to its head, which can be displayed through the 1.9" colour LCD screen on the robot's chest. Multimedia files can be downloaded to the Robosapien RS Media (http://www.gizoo.co.uk/Products/ToysGames/RadioControl/RobosapienRSMedia.htm) through the USB port, allowing the user to view pictures and video through the LCD screen. While body movements and the user's voice can be stored multi-talented robot, downloaded music files are enjoyed through its eleven watt stereo speakers. Available at Gizoo (http://www.gizoo.co.uk) for just £299.99, main features include: Colour LCD Screen Camera mounted on Robosapien RS Media's head Interacts with other WooWee robots including Roboreptile, Robosapien V2 and Roboraptor Store and edit body movements Record and store user's voice USB port Eleven watt stereo speakers and back mounted woofer 40MB Flash Memory The Robosapien RS Media's predecessor - Robosapien V2 (http://www.gizoo.co.uk/Products/ToysGames/RadioControl/RobosapienV2.htm) - is now available from Gizoo at only £99.95 - almost £90 off the RRP! ENDS For further information and images please contact: Amy Bath on 0115 914 9118 or email: [email protected] Notes to Editors For more information on the Robosapien RS Media, please visit Gizoo (http://www.gizoo.co.uk) Gizoo (http://www.gizoo.co.uk) Having operated a website dedicated to gadgets, gifts and gizmos since 2002, the successful e-tailer Page 1 re-launched as Gizoo (http://www.gizoo.co.uk) in August 2006 and serves approximately 500,000 customers. -
Robosapien V1 Instruction Manual
Robosapien V1 Instruction Manual ROBOSAPIEN V2 INSTRUCTION MANUAL - SHARPER IMAGE WW252 2004 WowWee Red Metallic Robosapien V1 Humanoid Toy NO REMOTE. These are some keyword suggestions for the term "Robosapien Manual". robosapien Robosapien V1 Manual Http//wwwrobotsandcomputerscom/robots/manuals Robosapien Humanoid Robots Remote Control 14 Instruction Manual 8081. I need an instruction manual for Robosapien · Wowwee Mini. Robosapien V1's head stuck to the lefthow do i Robosapien V1 not responding to remote. PASQUALI - 995 Tractor (Parts Manual in French) · PASQUALI - 988.30 (Instructions and maintenance) Tractor (User's Guide in English) 1100 SHOP HDD2183 ROBOSAPIEN V1 SHOP SHOP S S climatiseurmobile gs model9000 RADIO. Find great deals on eBay for Robosapien in Radio-Controlled Robot Models. Shop with 3 Skittles and instructions as shown. Good overall Wowwee ROBOSAPIEN V2 LARGE 22'' ROBOT And Manual For Spares Or Repairs. £27.99. Owner's manual, instructions book, user's guide, service manual, schematics, illustrated parts lists Enter brand EN 35LE5500 Installation Manual · EN. Robosapien V1 Instruction Manual Read/Download robosapien v1 manual. add to basket These are some keyword suggestions for the term "Robosapien V1". robosapien v1 robosapien v1 instructions. Bluefruit EZ-Key Bluetooth HID Keyboard Controller v1.2. Product Code : RB-Ada-95. 1 Review(s). USD $19.95. In stock. Please wait while we. ROBOSAPIEN V2 INSTRUCTION MANUAL - SHARPER IMAGE WW252 WOWWEE RoboSapien V1 Robot Chrome Color New in sealed original box. User's guide, Instructions manual & Installation guide - Immediate download or search mode services. HANSEATIC OKO 1100 SHOP HDD2183 ROBOSAPIEN V1 SHOP SHOP S S climatiseurmobile gs model9000 RADIO OLA CEP400USO. -
Assistive Humanoid Robot MARKO: Development of the Neck Mechanism
MATEC Web of Conferences 121, 08005 (2017) DOI: 10.1051/ matecconf/201712108005 MSE 2017 Assistive humanoid robot MARKO: development of the neck mechanism Marko Penčić1,*, Maja Čavić1, Srđan Savić1, Milan Rackov1, Branislav Borovac1, and Zhenli Lu2 1Faculty of Technical Sciences, University of Novi Sad, TrgDositejaObradovića 6, 21000 Novi Sad, Serbia 2School of Electrical Engineering and Automation, Changshu Institute of Technology, Hushan Road 99, 215500 Changshu, People's Republic of China Abstract.The paper presents the development of neck mechanism for humanoid robots. The research was conducted within the project which is developing a humanoid robot Marko that represents assistive apparatus in the physical therapy for children with cerebral palsy.There are two basic ways for the neck realization of the robots. The first is based on low backlash mechanisms that have high stiffness and the second one based on the viscoelastic elements having variable flexibility. We suggest low backlash differential gear mechanism that requires small actuators. Based on the kinematic-dynamic requirements a dynamic model of the robots upper body is formed. Dynamic simulation for several positions of the robot was performed and the driving torques of neck mechanism are determined.Realized neck has 2 DOFs and enables movements in the direction of flexion-extension 100°, rotation ±90° and the combination of these two movements. It consists of a differential mechanism with three spiral bevel gears of which the two are driving and are identical, and the third one which is driven gear to which the robot head is attached. Power transmission and motion from the actuators to the input links of the differential mechanism is realized with two parallel placed gear mechanisms that are identical.Neck mechanism has high carrying capacity and reliability, high efficiency, low backlash that provide high positioning accuracy and repeatability of movements, compact design and small mass and dimensions. -
Generation of the Whole-Body Motion for Humanoid Robots with the Complete Dynamics Oscar Efrain Ramos Ponce
Generation of the whole-body motion for humanoid robots with the complete dynamics Oscar Efrain Ramos Ponce To cite this version: Oscar Efrain Ramos Ponce. Generation of the whole-body motion for humanoid robots with the complete dynamics. Robotics [cs.RO]. Universite Toulouse III Paul Sabatier, 2014. English. tel- 01134313 HAL Id: tel-01134313 https://tel.archives-ouvertes.fr/tel-01134313 Submitted on 23 Mar 2015 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Christine CHEVALLEREAU: Directeur de Recherche, École Centrale de Nantes, France Francesco NORI: Researcher, Italian Institute of Technology, Italy Patrick DANÈS: Professeur des Universités, Université de Toulouse III, France Ludovic RIGHETTI: Researcher, Max-Plank-Institute for Intelligent Systems, Germany Nicolas MANSARD: Chargé de Recherche, LAAS-CNRS, France Philippe SOUÈRES: Directeur de recherche, LAAS-CNRS, France Yuval TASSA: Researcher, University of Washington, USA Abstract This thesis aims at providing a solution to the problem of motion generation for humanoid robots. The proposed framework generates whole-body motion using the complete robot dy- namics in the task space satisfying contact constraints. This approach is known as operational- space inverse-dynamics control. The specification of the movements is done through objectives in the task space, and the high redundancy of the system is handled with a prioritized stack of tasks where lower priority tasks are only achieved if they do not interfere with higher priority ones. -
Unified Humanoid Robotics Software Platform
Unified Humanoid Robotics Software Platform McGill, Stephen G. #1, Brindza, Jordan #3, Yi, Seung-Joon #2, Lee, Daniel D. #4 #Electrical and Systems Engineering Department, University of Pennsylvania 200 South 33rd Street, Philadelphia, PA 19104, U.S.A. [email protected] [email protected] [email protected] [email protected] Abstract— Development of humanoid robots is increasing rapidly, and humanoids are occupying a larger percentage of robotics research. They are seen in competitions like RoboCup, as consumer toys like the RoboSapien from WowWee, and in various research and DIY community projects. Equipping these humanoid hardware platforms with simple software systems that provide basic functionality is both cumbersome and time consuming. In this paper, we present a software framework for simple humanoid behavior that abstracts away the particulars of specific humanoid hardware. Fig. 1. Various supported humanoid robotic platforms, from left: Aldabaran Nao, MiniHUBO, DARwIn LC, DARwIn HP. I. INTRODUCTION From designing and gathering components to building and II. PRIOR WORK tuning algorithms, humanoid soccer design can be a cumber- In the Robocup soccer competition, some teams do release some process. In our effort to reduce overhead in applying their code in an open source fashion [2]. However, these soft- algorithms and testing across several humanoid platforms, we ware releases are not amenable to porting from robot to robot. have developed a modularized software platform to interface In the Standard Platform League, all teams share the same the many components that are common to humanoids. robotic platform, but their code cannot be used on other robotic Our modularized platform separates low level components platforms that vary from team to team in the other Leagues that vary from robot to robot from the high level logic of RoboCup. -
[2 [6 I8 [12 176
Aba - Abe Abarbanel, Isaac 35 an J 257 8. Jishäq,- . Abravanel. Abdruck zweier Schreiben: So an Hertzog Johans Friderichen den mitlern [Johann Friedrich 11.1 Abbadie, Jaques: zu Sachsen, seiner F.G. Rethe aus Augspurg inn E 646 werendem jüngsten Reichstag gethan, sampt ange- --- L'Art de se oonnoitre soy-meme, ou La Recher- hengter Erklerung der Röm. Key. May. [gaximili- ohe des sources de la morale. Par Jaques Abbadie. an 11. Kaiser v. Deutschland: Ankündigung der P. 1.2’ Acht6 Exeoution] den Echter Wilhelmen von -um- Rotterdam: vander Slaart 1692. 494 S. k1.8’ [1 hach . betr. 0.0. 1567. 16 Bl. 8' [Y --- Die triumphierende christliche Religion s. Abbadie: Traitk de la veritk de la religion 2an J515 chrbtienne [deutsch]. Abdruok.- Wahrer Abdruck derer Sohrifften, welche -gewesenen Mönchs-Zellen . Martin Luthers D 201 in dem Augustiner-Kloster zu Erffurt . angemah- --- [Traite de la v&itk de la religion chreti- let zu befinden. enne, deutsch] Gotha 1677: Reyher. 12 Bl. k1.8’ [IO Die triumphirende christliche Religion. Das ist hochnöthiger, nützlicher und erbaulicher Trattat 2 an C 247 von der Warheit und Gewißheit der christl. Reli- Abdruck.- Warhaffter Abdruck etlicher vornehmer Schrifften und Handlungen der Evangelischen Chur: gion. Aus d. unvergleichlichen frantz. Sorip- to des Jacobi Abbadie . übers. und . erl. Fürsten und Stände . so auff dem zu Leipzig ge- haltenem Conventu beysammen gewesen. Wie auch der (von C;hristoph] L[orenz] g[ilderbeck].) Nebst e. Röm: Kayserl. Mayest: hierüber außgefertigten und Vorr. (T.I.) ins Reich publicirtenoKayserl. Monitorij. Franokfurt u. Leipzig: Hoffmann 1713. 0.0. 1631. 22 Bl. 8 [11 26 Bl., 536 S. -
Systems Overview of Ono a DIY Reproducible Open Source Social Robot
Systems Overview of Ono A DIY Reproducible Open Source Social Robot Cesar Vandevelde1, Jelle Saldien1, Maria-Cristina Ciocci and Bram Vanderborght2 1 Ghent University, Dept. of Industrial Systems and Product Design, Campus Kortrijk, Belgium {cesar.vandevelde, jelle.saldien, maria-cristina.ciocci}@ugent.be 2Vrije Universiteit Brussel, Dept. of Mechanical Engineering, Brussels, Belgium [email protected] Abstract. One of the major obstacles in the study of HRI (human-robot interac- tion) with social robots is the lack of multiple identical robots that allow testing with large user groups. Often, the price of these robots prohibits using more than a handful. A lot of the commercial robots do not possess all the necessary features to perform specific HRI experiments and due to the closed nature of the platform, large modifications are nearly impossible. While open source social robots do exist, they often use high-end components and expensive manufactur- ing techniques, making them unsuitable for easy reproduction. To address this problem, a new social robotics platform, named Ono, was developed. The de- sign is based on the DIY mindset of the maker movement, using off-the-shelf components and more accessible rapid prototyping and manufacturing tech- niques. The modular structure of the robot makes it easy to adapt to the needs of the experiment and by embracing the open source mentality, the robot can be easily reproduced or further developed by a community of users. The low cost, open nature and DIY friendliness of the robot make it an ideal candidate for HRI studies that require a large user group. -
Study on Artificial Intelligence Diplomacy
STUDY Requested by the AIDA committee Artificial Intelligence diplomacy Artificial Intelligence governance as a new European Union external policy tool Policy Department for Economic, Scientific and Quality of Life Policies Directorate-General for Internal Policies Author: Ulrike3 FRANKE EN PE 662.926 – June 2021 Artificial Intelligence diplomacy Artificial Intelligence governance as a new European Union external policy tool Abstract Artificial Intelligence (AI) has become a tool of power politics, and an element of state diplomacy. The European Union (EU), however, approaches AI primarily from an economic, social, and regulatory angle. This paper discusses the way that AI impacts the European Union’s geopolitical power and its relationship with other countries. It presents possible scenarios for how AI may change the international balance of power and recommends ways for the EU and its Member States to respond. This document was provided by the Policy Department for Economic, Scientific and Quality of Life Policies at the request of the special committee on Artificial Intelligence in a Digital Age (AIDA). This document was requested by the European Parliament's special committee on Artificial Intelligence in a Digital Age. AUTHOR Ulrike FRANKE, European Council on Foreign Relations ADMINISTRATORS RESPONSIBLE Matteo CIUCCI Frédéric GOUARDÈRES EDITORIAL ASSISTANT Catherine NAAS LINGUISTIC VERSIONS Original: EN ABOUT THE EDITOR Policy departments provide in-house and external expertise to support EP committees and other parliamentary bodies -
Robots and Racism: Examining Racial Bias Towards Robots Arifah Addison
Robots and Racism: Examining Racial Bias towards Robots Arifah Addison HIT Lab New Zealand University of Canterbury Supervisors Chrisoph Bartneck (HIT Lab NZ), Kumar Yogeeswaran (Dept of Psychology) Thesis in partial fulfilment of the requirements for the degree of Master of Human Interface Technology June 2019 Abstract Previous studies indicate that using the `shooter bias' paradigm, people demon- strate a similar racial bias toward robots racialised as Black over robots racialised as White as they do toward humans of similar skin tones (Bartneck et al., 2018). However, such an effect could be argued to be the result of social priming. The question can also be raised of how people might respond to robots that are in the middle of the colour spectrum (i.e., brown) and whether such effects are moderated by the perceived anthropomorphism of the robots. Two experiments were conducted to examine whether shooter bias tendencies shown towards robots is driven by social priming, and whether diversification of robot colour and level of anthropomorphism influenced shooter bias. The results suggest that shooter bias is not influenced by social priming, and in- terestingly, introducing a new colour of robot removed shooter bias tendencies entirely. Contrary to expectations, the three types of robot were not perceived by the participants as having different levels of anthropomorphism. However, there were consistent differences across the three types in terms of participants' response times. Publication Co-Authorship See AppendixA for confirmation of publication and contribution details. Contents 1 Introduction and Literature Review1 1.1 Racial Bias . .2 1.2 Perception of Social Robots . .3 1.3 Current Research Questions .