Nanoscale Science, Engineering and Technology

Total Page:16

File Type:pdf, Size:1020Kb

Nanoscale Science, Engineering and Technology Nanoscale Science, Engineering and Technology Research Directions ABSTRACT This report describes important future research directions in nanoscale science, engineering and technology. It was prepared in connection with an anticipated national research initiative on nanotechnology for the twenty–first century. The research directions described are not expected to be inclusive but illustrate the wide range of research opportunities and challenges that could be undertaken through the national laboratories and their major national scientific user facilities with the support of universities and industry. TABLE OF CONTENTS Basic Energy Sciences Nanoscience/Nanotechnology Group...................................................iii Section Editors..............................................................................................................................iv EXECUTIVE SUMMARY........................................................................................................... v 1. INTRODUCTION ................................................................................................................. 1 2. EMERGENCE OF PROPERTIES AT MULTIPLE LENGTH AND TIME SCALES .............................................................4 3. MANIPULATION AND COUPLING OF PROPERTIES AT THE NANOSCALE ......................................................................................................10 4. CONTROLLED SYNTHESIS AND PROCESSING AT THE NANOSCALE (PRIMARILY ORGANIC)................................................................................................. 23 5. CONTROLLED SYNTHESIS AND PROCESSING AT THE NANOSCALE (PRIMARILY INORGANIC) ............................................................................................ 26 6. NANOSCALE PRECURSORS AND ASSEMBLY FOR MACROSTRUCTURES AND DEVICES............................................................... 35 7. UNDERSTANDING AND MIMICKING BIOLOGICAL FUNCTIONS: “DRAWING INSPIRATION FROM NATURE” ............................................................ 46 8. HYBRID SYSTEMS: INTEGRATING FUNCTIONALITY ........................................52 9. NANOSCALE INSTRUMENTATION.............................................................................57 10. INFRASTRUCTURE AND FACILITIES FOR NANOSCALE SCIENCE AND TECHNOLOGY ..................................................67 APPENDIX: NANOMATERIALS RESEARCH CENTERS................................................ 70 ii Basic Energy Sciences Nanoscience/Nanotechnology Group Chair: Douglas H. Lowndes (ORNL) A. Paul Alivisatos, Lawrence Berkeley National Laboratory (LBNL) Mark Alper, Lawrence Berkeley National Laboratory (LBNL) Robert S. Averback, University of Illinois–Urbana Champaign (UI–UC) Jacob Barhen, Oak Ridge National Laboratory (ORNL) Jeffrey A. Eastman, Argonne National Laboratory (ANL) Dan Imre, Brookhaven National Laboratory (BNL) Douglas H. Lowndes, Oak Ridge National Laboratory (ORNL) Ian McNulty, Argonne National Laboratory (ANL) Terry A. Michalske, Sandia National Laboratories (SNL) Kai–Ming Ho, Ames Laboratory (AL) Arthur J. Nozik, National Renewable Energy Laboratory (NREL) Thomas P. Russell, University of Massachusetts (UM) Richard A. Valentin, Argonne National Laboratory (ANL) David O. Welch, Brookhaven National Laboratory (BNL) NOTE: Information also was provided by university professors and national laboratory research staff. Contributors are listed on the inside back cover page. iii General Editor D. H. Lowndes (ORNL) Section Editors 1. Introduction: D. H. Lowndes (ORNL) 2. Emergence of Properties: D. O. Welch (BNL) 3. Manipulation and Coupling of Properties: I. McNulty (ANL) 4. Controlled Synthesis and Processing (Organic): A. P. Alivisatos (LBNL) 5. Controlled Synthesis and Processing (Inorganic): R. S. Averback (UI–UC) 6. Nanoscale Precursors and Assembly: A. J. Nozik (NREL) 7. Understanding and Mimicking Biological Functions: M. Alper (LBNL) 8. Hybrid Systems: T. A. Michalske (SNL) 9. Nanoscale Instrumentation: J. A. Eastman (ANL) 10. Infrastructure and Facilities: T. P. Russell (UM) Appendix. Nanomaterials Centers: D. H. Lowndes (ORNL) NOTE: Jacob Barhen (ORNL) edited contributions from the Engineering Research Program. iv EXECUTIVE SUMMARY The principal missions of the Department of Energy (DOE) in Energy, Defense, and Environment will benefit greatly from future developments in nanoscale science, engineering and technology. For example, nanoscale synthesis and assembly methods will result in significant improvements in solar energy conversion; more energy-efficient lighting; stronger, lighter materials that will improve efficiency in transportation; greatly improved chemical and biological sensing; use of low-energy chemical pathways to break down toxic substances for environmental remediation and restoration; and better sensors and controls to increase efficiency in manufacturing. The DOE’s Office of Science has a strong focus on nanoscience discovery, the development of fundamental scientific understanding, and the conversion of these into useful technological solutions. A key challenge in nanoscience is to understand how deliberate tailoring of materials on the nanoscale can lead to novel and enhanced functionalities. The DOE National Laboratories are already making a broad range of contributions in this area. The enhanced properties of nanocrystals for novel catalysts, tailored light emission and propagation, and supercapacitors are being explored, as are hierachical nanocomposite structures for chemical separations, adaptive/responsive behavior and impurity gettering. Nanocrystals and layered structures offer unique opportunities for tailoring the optical, magnetic, electronic, mechanical and chemical properties of materials. The Laboratories are currently synthesizing layered structures for electronics/photonics, novel magnets and surfaces with tailored hardness. This report supplies numerous other examples of new properties and functionalities that can be achieved through nanoscale materials control. These include: • Nanoscale layered materials that can yield a four-fold increase in the performance of permanent magnets • Addition of aluminum oxide nanoparticles that converts aluminum metal into a material with wear resistance equal to that of the best bearing steel • New optical properties achieved by fabricating photonic band gap superlattices to guide and switch optical signals with nearly 100% transmission, in very compact architectures • Layered quantum well structures to produce highly efficient, low-power light sources and photovoltaic cells • Novel optical properties of semiconducting nanocrystals that are used to label and track molecular processes in living cells • Novel chemical properties of nanocrystals that show promise as photocatalysts to speed the breakdown of toxic wastes • Meso-porous inorganic hosts with self-assembled organic monolayers that are used to trap and remove heavy metals from the environment • Meso-porous structures integrated with micromachined components that are used to produce high-sensitivity and highly selective chip-based detectors of chemical warfare agents v These and other nanostructures are already recognized as likely key components of 21st century optical communications, printing, computing, chemical sensing and energy conversion technologies. The DOE is well prepared to make major contributions to developing nanoscale scientific understanding, and ultimately nanotechnology, through its materials characterization, synthesis, in situ diagnostic and computing capabilities. The DOE and its National Laboratories maintain a large array of major national user facilities that are ideally suited to nanoscience discovery and to developing a fundamental understanding of nanoscale processes. Synchrotron and neutron sources provide exquisite energy control of radiation sources that are able to probe structure and properties on length scales ranging from Ångstroms to millimeters. Scanning Probe Microscope (SPM) and Electron Microscopy facilities provide unique capabilities for characterizing nanoscale materials and diagnosing processes. DOE also maintains synthesis and prototype manufacturing centers where fundamental and applied research, technology development and prototype fabrication can be pursued simultaneously. Finally, the large computational facilities at the DOE National Laboratories can be key contributors in nanoscience discovery, modeling and understanding. In order to increase the impact of major DOE facilities on the national nanoscience and technology initiative, it is proposed to establish several new Nanomaterials Research Centers. These Centers are intended to exploit and be associated with existing radiation sources and materials characterization and diagnostic facilities at DOE National Laboratories. Each Center would focus on a different area of nanoscale research, such as materials derived from or inspired by nature; hard and crystalline materials, including the structure of macromolecules; magnetic and soft materials, including polymers and ordered structures in fluids; and nanotechnology integration. The Nanomaterials Research Centers will facilitate interdisciplinary research and provide an environment where students, faculty, industrial researchers and national laboratory staff can work together to rapidly advance nanoscience discovery and its application to nanotechnology. Establishment of these Centers will permit focusing DOE resources on the most important nanoscale science questions and technology needs, and
Recommended publications
  • Accomplishments in Nanotechnology
    U.S. Department of Commerce Carlos M. Gutierrez, Secretaiy Technology Administration Robert Cresanti, Under Secretaiy of Commerce for Technology National Institute ofStandards and Technolog}' William Jeffrey, Director Certain commercial entities, equipment, or materials may be identified in this document in order to describe an experimental procedure or concept adequately. Such identification does not imply recommendation or endorsement by the National Institute of Standards and Technology, nor does it imply that the materials or equipment used are necessarily the best available for the purpose. National Institute of Standards and Technology Special Publication 1052 Natl. Inst. Stand. Technol. Spec. Publ. 1052, 186 pages (August 2006) CODEN: NSPUE2 NIST Special Publication 1052 Accomplishments in Nanoteciinology Compiled and Edited by: Michael T. Postek, Assistant to the Director for Nanotechnology, Manufacturing Engineering Laboratory Joseph Kopanski, Program Office and David Wollman, Electronics and Electrical Engineering Laboratory U. S. Department of Commerce Technology Administration National Institute of Standards and Technology Gaithersburg, MD 20899 August 2006 National Institute of Standards and Teclinology • Technology Administration • U.S. Department of Commerce Acknowledgments Thanks go to the NIST technical staff for providing the information outlined on this report. Each of the investigators is identified with their contribution. Contact information can be obtained by going to: http ://www. nist.gov Acknowledged as well,
    [Show full text]
  • Meso/Micro/Nano Scale Technologies
    Meso/Micro/Nano Scale Technologies Clayton Teague, Chief, APTD, MEL John Evans, Chief, ISD, MEL June 8, 1999 Contents of Presentation • What we (MEL) have done in meso-scale area • What is nanotechnology • Nanotechnology is important • Principal message • Why is it important to industry and NIST? – Examples of industry/NIST work at all scales • Challenges for NIST • Long term needs at the nano-scale • Short term needs at the meso/micro-scales • Priorities • Ideas • Discussion topics Background • During past 9 months, MEL has explored measurements and standards needs of meso and micro-scale manufacturing • Visited 20 companies • Conducted and participated in three workshops jointly sponsored with DARPA and NSF • Organized informal NIST-wide co-ordinating group for meso/micro/nano scale activities • All feedback from these efforts points toward an exploding growth of nanotechnology • We see a continuum of needs for NIST efforts from the macro-scale to the nano-scale What is Nanotechnology? • Technology on the scale of atoms -100 pm- up to biomolecular systems as large as cells - 10’s mm • “Top-down” - achieving increased miniaturization through extension of existing microfabrication schemes • “Bottom-up” - capability to construct functional components, devices, and systems from building blocks of atoms and molecules Nanotechnology Strategies Nanotechnology is important! • “We’ve got to learn how to build machines, materials, and devices with the ultimate finesse that life has always used: atom by atom, on the same nanometer scale as the machinery in living cells.” Richard Smalley, Nobel Laureate, 1995 • “I believe nanoscience and nanotechnology will be central to the next epoch of the information age …” John Armstrong, formerly Chief Scientist of IBM, 1991 • “If I were asked for an area of science and engineering that will most likely produce the breakthroughs of tomorrow, I would point to nanoscale science and engineering.” Neal Lane, Director OSTP, 1998 • “Nanotechnology has given us the tools to make contact with the world of the molecule and the atom.
    [Show full text]
  • Challenges for Nanomechanics of Biological Systems
    NNI Interagency Workshop : Instrumentation and Metrology for Nanotechnology Grand Challenge Workshop National Institute of Standards and Technology, Gaithersburg, MD Jan 27-29, 2004 Challenges for Nanomechanics of Biological Systems Christine Ortiz, Assistant Professor Massachusetts Institute of Technology Department of Materials Science and Engineering WWW : http://web.mit.edu/cortiz/www/ Biological systems are one of the most difficult classes of materials to study mechanically at the nanoscale.1-3 Their complex multilevel and multicomponent structures (e.g. tissues, cells, proteins) need to be highly purified and characterized with minimal sample preparation damage (if possible, with no polishing and chemical treatments) so as to still give information relevant to in vivo function. Nanomechanical testing can be challenging due to the need for near-physiological conditions (i.e. aqueous salt solutions, ionic strength=0.15M, pH=7.4), the existence of varied 3-dimensional geometries and multiple buried interfaces, and their dynamic and sometimes, extremely soft, fluid-like nature. Following is a summary of a few new areas which I believe represent the most significant new paths in this field. I. Integration of Nanomechanical Testing Methods with Nanoscale Chemical/Structural Characterization Techniques Down to the Single Molecule Level in Near-Phys iological Conditions. One promising example of this is the combination of atomic force microscopy (AFM) and surface enhanced Raman spectroscopy (SERS)(Figure 1).4-8 SERS is a higher resolution version of traditional Raman spectroscopy, in which the wavelength and intensity of inelastically scattered light from molecules is measured. These wavelengths are shifted from the incident light by the energies of molecular vibrations and hence, allow for chemical identification and characterization of substances.
    [Show full text]
  • Nanoscience and Nanotechnologies: Opportunities and Uncertainties
    ISBN 0 85403 604 0 © The Royal Society 2004 Apart from any fair dealing for the purposes of research or private study, or criticism or review, as permitted under the UK Copyright, Designs and Patents Act (1998), no part of this publication may be reproduced, stored or transmitted in any form or by any means, without the prior permission in writing of the publisher, or, in the case of reprographic reproduction, in accordance with the terms of licences issued by the Copyright Licensing Agency in the UK, or in accordance with the terms of licenses issued by the appropriate reproduction rights organization outside the UK. Enquiries concerning reproduction outside the terms stated here should be sent to: Science Policy Section The Royal Society 6–9 Carlton House Terrace London SW1Y 5AG email [email protected] Typeset in Frutiger by the Royal Society Proof reading and production management by the Clyvedon Press, Cardiff, UK Printed by Latimer Trend Ltd, Plymouth, UK ii | July 2004 | Nanoscience and nanotechnologies The Royal Society & The Royal Academy of Engineering Nanoscience and nanotechnologies: opportunities and uncertainties Contents page Summary vii 1 Introduction 1 1.1 Hopes and concerns about nanoscience and nanotechnologies 1 1.2 Terms of reference and conduct of the study 2 1.3 Report overview 2 1.4 Next steps 3 2 What are nanoscience and nanotechnologies? 5 3 Science and applications 7 3.1 Introduction 7 3.2 Nanomaterials 7 3.2.1 Introduction to nanomaterials 7 3.2.2 Nanoscience in this area 8 3.2.3 Applications 10 3.3 Nanometrology
    [Show full text]
  • Nanotechnology and Picotechnology to Increase Tissue Growth: a Summary of in Vivo Studies
    Nanotechnology and picotechnology to increase tissue growth: a summary of in vivo studies Ece Alpaslan1 and Thomas J Webster1,2 Author information ► Copyright and License information ► Go to: Abstract The aim of tissue engineering is to develop functional substitutes for damaged tissues or malfunctioning organs. Since only nanomaterials can mimic the surface properties (ie, roughness) of natural tissues and have tunable properties (such as mechanical, magnetic, electrical, optical, and other properties), they are good candidates for increasing tissue growth, minimizing inflammation, and inhibiting infection. Recently, the use of nanomaterials in various tissue engineering applications has demonstrated improved tissue growth compared to what has been achieved until today with our conventional micron structured materials. This short report paper will summarize some of the more relevant advancements nanomaterials have made in regenerative medicine, specifically improving bone and bladder tissue growth. Moreover, this short report paper will also address the continued potential risks and toxicity concerns, which need to be accurately addressed by the use of nanomaterials. Lastly, this paper will emphasize a new field, picotechnology, in which researchers are altering electron distributions around atoms to promote surface energy to achieve similar increased tissue growth, decreased inflammation, and inhibited infection without potential nanomaterial toxicity concerns. Keywords: nanomaterials, tissue engineering, toxicity Go to: Introduction Bone tissue and other organ dysfunction can be provoked by poor eating habits, stress, age-related diseases such as osteoarthritis or osteoporosis, as well as accidents.1 To date, common procedures to restore or enhance life expectancy involve medical device insertion or organ transplantation.1 However, due to the low number of donors and its high cost, organ transplantation is limited.
    [Show full text]
  • Engineered Carbon Nanotubes and Graphene for Nanoelectronics And
    Engineered Carbon Nanotubes and Graphene for Nanoelectronics and Nanomechanics E. H. Yang Stevens Institute of Technology, Castle Point on Hudson, Hoboken, NJ, USA, 07030 ABSTRACT We are exploring nanoelectronic engineering areas based on low dimensional materials, including carbon nanotubes and graphene. Our primary research focus is investigating carbon nanotube and graphene architectures for field emission applications, energy harvesting and sensing. In a second effort, we are developing a high-throughput desktop nanolithography process. Lastly, we are studying nanomechanical actuators and associated nanoscale measurement techniques for re-configurable arrayed nanostructures with applications in antennas, remote detectors, and biomedical nanorobots. The devices we fabricate, assemble, manipulate, and characterize potentially have a wide range of applications including those that emerge as sensors, detectors, system-on-a-chip, system-in-a-package, programmable logic controls, energy storage systems, and all-electronic systems. INTRODUCTION A key attribute of modern warfare is the use of advanced electronics and information technologies. The ability to process, analyze, distribute and act upon information from sensors and other data at very high- speeds has given the US military unparalleled technological superiority and agility in the battlefield. While recent advances in materials and processing methods have led to the development of faster processors and high-speed devices, it is anticipated that future technological breakthroughs in these areas will increasingly be driven by advances in nanoelectronics. A vital enabler in generating significant improvements in nanoelectronics is graphene, a recently discovered nanoelectronic material. The outstanding electrical properties of both carbon nanotubes (CNTs) [1] and graphene [2] make them exceptional candidates for the development of novel electronic devices.
    [Show full text]
  • MSE 403: Ceramic Materials
    MSE 403: Ceramic Materials Course description: Processing, characteristics, microstructure and properties of ceramic materials. Number of credits: 3 Course Coordinator: John McCloy Prerequisites by course: MSE 201 Prerequisites by topic: 1. Basic knowledge of thermodynamics. 2. Elementary crystallography and crystal structure. 3. Mechanical behavior of materials. Postrequisites: None Textbooks/other required 1. Carter, C.B. and Norton, M.G. Ceramic Materials Science and Engineering, materials: Springer, 2007. Course objectives: 1. Review of crystallography and crystal structure. 2. Review of structure of atoms, molecules and bonding in ceramics. 3. Discussion on structure of ceramics. 4. Effects of structure on physical properties. 5. Ceramic Phase diagrams. 6. Discussion on defects in ceramics. 7. Introduction to glass. 8. Discussion on processing of ceramics. 9. Introduction to sintering and grain growth. 10. Introduction to mechanical properties of ceramics. 11. Introduction to electrical properties of ceramics. 12. Introduction to bioceramics. 13. Introduction to magnetic ceramics. Topics covered: 1. Introduction to crystal structure and crystallography. 2. Fundamentals of structure of atoms. 3. Structure of ceramics and its influence on properties. 4. Binary and ternary phase diagrams. 5. Point defects in ceramics. 6. Glass and glass-ceramic composites. 7. Ceramics processing and sintering. 8. Mechanical properties of ceramics. 9. Electrical properties of ceramics. 10. Bio-ceramics. 11. Ceramic magnets. Expected student outcomes: 1. Knowledge of crystal structure of ceramics. 2. Knowledge of structure-property relationship in ceramics. 3. Knowledge of the defects in ceramics (Point defects). 4. Knowledge of glass and glass-ceramic composite materials. 5. Introductory knowledge on the processing of bulk ceramics. 6. Applications of ceramic materials in structural, biological and electrical components.
    [Show full text]
  • Materials Science and Engineering 1
    Materials Science and Engineering 1 EN.515.603. Materials Characterization. 3 Credits. MATERIALS SCIENCE AND This course will describe a variety of techniques used to characterize the structure and composition of engineering materials, including metals, ENGINEERING ceramics, polymers, composites, and semiconductors. The emphasis will be on microstructural characterization techniques, including optical The Materials Science and Engineering Program for professionals allows and electron microscopy, x-ray diffraction, and acoustic microscopy. students to take courses that address current and emerging areas Surface analytical techniques, including Auger electron spectroscopy, critical to the development and use of biomaterials, electronic materials, secondary ion mass spectroscopy, x-ray photoelectron spectroscopy, structural materials, nanomaterials and nanotechnology, and related and Rutherford backscattering spectroscopy. Real-world examples of materials processing technologies. Students in this program gain an materials characterization will be presented throughout the course, advanced understanding of foundational concepts and are exposed to including characterization of thin films, surfaces, interfaces, and single the latest research that is driving materials-related advances. crystals. Courses are offered at the Applied Physics Laboratory, the Homewood EN.515.605. Electrical, Optical and Magnetic Properties. 3 Credits. campus, and online. An overview of electrical, optical and magnetic properties arising from the fundamental electronic and atomic structure of materials. Continuum materials properties are developed through examination of microscopic Program Committee processes. Emphasis will be placed on both fundamental principles and James Spicer, Program Chair applications in contemporary materials technologies.Course Note(s): Principal Professional Staff Please note that this 515 course is also listed as a 510 course in the full- JHU Applied Physics Laboratory time program.
    [Show full text]
  • Springer Handbook of Nanotechnology
    Springer Handbook of Nanotechnology Springer Handbooks provide a concise compilation of approved key information on methods of research, general principles, and functional relationships in physi- cal sciences and engineering. The world’s leading experts in the fields of physics and engineer- ing will be assigned by one or several renowned editors to write the chapters comprising each vol- ume. The content is selected by these experts from Springer sources (books, journals, online content) and other systematic and approved recent publications of physical and technical information. The volumes are designed to be useful as readable desk reference books to give a fast and comprehen- sive overview and easy retrieval of essential reliable key information, including tables, graphs, and bibli- ographies. References to extensive sources are provided. HandbookSpringer of Nanotechnology Bharat Bhushan (Ed.) 3rd revised and extended edition With DVD-ROM, 1577 Figures and 127 Tables 123 Editor Professor Bharat Bhushan Nanoprobe Laboratory for Bio- and Nanotechnology and Biomimetics (NLB2) Ohio State University 201 W. 19th Avenue Columbus, OH 43210-1142 USA ISBN: 978-3-642-02524-2 e-ISBN: 978-3-642-02525-9 DOI 10.1007/978-3-642-02525-9 Springer Heidelberg Dordrecht London New York Library of Congress Control Number: 2010921002 c Springer-Verlag Berlin Heidelberg 2010 This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer.
    [Show full text]
  • Nt2113 Chemistry of Nanomaterials
    DEPARTMENT OF PHYSICS AND NANOTECHNOLOGY FACULTY OF ENGINEERING AND TECHNOLOGY COURSE PLAN Course Code : NT2113 CHEMISTRY OF NANOMATERIALS Course Title : CHEMISTRY OF NANOMATERIALS Semester : III Course Time : JULY- NOV 2017 Location : SRM.UNIVERSITY Faculty Details Sec. Name Office Office hour Mail id Day III- A Dr. N. Angeline Little UB [email protected] (12.30- Flower 609A v.ac.in 2.15pm) Day 4- (10-40- 11.30 am) Required Text Books: 1. C. Brechignac, P. Houdy, M. Lahmani, “Nanomaterials and Nanochemistry”, Springer publication 2007. 2. Kenneth J. Klabunde, “Nanscale materials in chemistry”, Wiley Interscience Publications 2001 3. C. N. Rao, A. Muller, A. K. Cheetham ,“Nanomaterials chemistry”, Wiley-VCH 2007. Prerequisite : Nil Objectives : The purpose of this course is to provide an adequate knowledge on various Nanochemistry aspects Assessment Details: Cycle Test – I : 15 Marks Cycle Test – II : 25 Marks Surprise Test : 5 Marks Attendance : 5 Marks Department of Physics and Nanotechnology Program: II M. Tech. Nanotechnology Course file NT2113 CHEMISTRY OF NANOMATERIALS Table of Contents 1. Syllabus of NT2113 CHEMISTRY OF NANOMATERIALS 2. Academic course description 3. Notes of lesson Test Schedule S.No TEST PORTIONS DURATION . 1 Cycle Test-1 Session 1 to 15 2 Periods 2 Cycle Test-2 Session 16 to 45 3 Hrs. Outcomes Students who have successfully completed this course Instruction Objective To provide knowledge about chemistry based nanoprocess To design and conduct experiments relevant to nanochemistry, as well as to analyze the results To enhance the various nanosynthesis techniques and to identify and solve problems. To improve usage of chemistry for modern technology 1.
    [Show full text]
  • Ligand-Free Nanoparticles As Building Blocks For
    Includes Surfactants and Ligands for Nano Synthesis Ligand-free Nanoparticles as Building Blocks for Biomedicine and Catalysis by Stephan Barcikowski and Niko Bärsch Semiconductor Nanoparticles – A Review by Daniel Neß and Jan Niehaus Table of Contents Ligand-free Nanoparticles as Building Blocks for Biomedicine and Catalysis by Prof. Dr.-Ing. Stephan Barcikowski and Dr.-Ing. Niko Bärsch ....................................................1-8 Semiconductor Nanoparticles – A Review by Daniel Neß and Jan Niehaus ...................................................................................................9-16 Nanomaterials Sorted by Major Element ....................................................................................17-45 Nanomaterials – Surfactants and Ligands for Nano Synthesis........................................45-46 Nano Kits .......................................................................................................................................47-48 NEW Nanomaterials ...Coming Soon.... .............................................................................................49 Strem Chemicals, Inc., established in 1964, manufactures and markets a wide range of metals, inorganics and organometallics for research and development in the pharmaceutical, microelectronics, chemical and petrochemical industries as well as for academic and government institutions. Since 2004, Strem has manufactured a number of nanomaterials including clusters, colloids, particles, powders and magnetic fluids of a range
    [Show full text]
  • Biological Materials: a Materials Science Approach✩
    JOURNALOFTHEMECHANICALBEHAVIOROFBIOMEDICALMATERIALS ( ) ± available at www.sciencedirect.com journal homepage: www.elsevier.com/locate/jmbbm Review article Biological materials: A materials science approachI Marc A. Meyers∗, Po­Yu Chen, Maria I. Lopez, Yasuaki Seki, Albert Y.M. Lin University of California, San Diego, La Jolla, CA, United States ARTICLEINFO ABSTRACT Article history: The approach used by Materials Science and Engineering is revealing new aspects Received 25 May 2010 in the structure and properties of biological materials. The integration of advanced Received in revised form characterization, mechanical testing, and modeling methods can rationalize heretofore 20 August 2010 unexplained aspects of these structures. As an illustration of the power of this Accepted 22 August 2010 methodology, we apply it to biomineralized shells, avian beaks and feathers, and fish scales. We also present a few selected bioinspired applications: Velcro, an Al2O3­PMMA composite inspired by the abalone shell, and synthetic attachment devices inspired by gecko. ⃝c 2010 Elsevier Ltd. All rights reserved. Contents 1. Introduction and basic components ............................................................................................................................................. 1 2. Hierarchical nature of biological materials ................................................................................................................................... 3 3. Structural biological materials.....................................................................................................................................................
    [Show full text]