Presence of Europe in HPC-HPDA Standardisation and Recommendations to Promote European Technologies

Total Page:16

File Type:pdf, Size:1020Kb

Presence of Europe in HPC-HPDA Standardisation and Recommendations to Promote European Technologies Ref. Ares(2020)1227945 - 27/02/2020 H2020-FETHPC-3-2017 - Exascale HPC ecosystem development EXDCI-2 European eXtreme Data and Computing Initiative - 2 Grant Agreement Number: 800957 D5.3 Presence of Europe in HPC-HPDA standardisation and recommendations to promote European technologies Final Version: 1.0 Authors: JF Lavignon, TS-JFL; Marcin Ostasz, ETP4HPC; Thierry Bidot, Neovia Innovation Date: 21/02/2020 D5.3 Presence of Europe in HPC-HPDA standardisation Project and Deliverable Information Sheet EXDCI Project Project Ref. №: FETHPC-800957 Project Title: European eXtreme Data and Computing Initiative - 2 Project Web Site: http://www.exdci.eu Deliverable ID: D5.3 Deliverable Nature: Report Dissemination Level: Contractual Date of Delivery: PU * 29 / 02 / 2020 Actual Date of Delivery: 21/02/2020 EC Project Officer: Evangelia Markidou * - The dissemination level are indicated as follows: PU – Public, CO – Confidential, only for members of the consortium (including the Commission Services) CL – Classified, as referred to in Commission Decision 2991/844/EC. Document Control Sheet Title: Presence of Europe in HPC-HPDA standardisation and Document recommendations to promote European technologies ID: D5.3 Version: <1.0> Status: Final Available at: http://www.exdci.eu Software Tool: Microsoft Word 2013 File(s): EXDCI-2-D5.3-V1.0.docx Written by: JF Lavignon, TS-JFL Authorship Marcin Ostasz, ETP4HPC Thierry Bidot, Neovia Innovation Contributors: Reviewed by: Elise Quentel, GENCI John Clifford, PRACE Approved by: MB/TB EXDCI-2 - FETHPC-800957 i 21.02.2020 D5.3 Presence of Europe in HPC-HPDA standardisation Document Status Sheet Version Date Status Comments 0.1 03/02/2020 Draft To collect internal feedback 0.2 07/02/2020 Draft For internal reviewers 1.0 21/02/2020 Final version Integration of reviewers’ comments Document Keywords Keywords: PRACE, , Research Infrastructure, HPC, HPDA, Standards Copyright notices 2020 EXDCI-2 Consortium Partners. All rights reserved. This document is a project document of the EXDCI project. All contents are reserved by default and may not be disclosed to third parties without the written consent of the EXDCI-2 partners, except as mandated by the European Commission contract GA no.800957 for reviewing and dissemination purposes. All trademarks and other rights on third party products mentioned in this document are acknowledged as own by the respective holders. EXDCI-2 - FETHPC-800957 ii 21.02.2020 D5.3 Presence of Europe in HPC-HPDA standardisation Table of Contents Project and Deliverable Information Sheet ......................................................................................... i Document Control Sheet ........................................................................................................................ i Document Status Sheet ......................................................................................................................... ii Document Keywords ............................................................................................................................. ii Table of Contents ................................................................................................................................. iii List of Tables ......................................................................................................................................... iv References and Applicable Documents .............................................................................................. iv List of Acronyms and Abbreviations ................................................................................................... v Executive Summary .............................................................................................................................. 7 1 Introduction ................................................................................................................................... 9 2 Presentation of standard organisations relevant in HPC ........................................................ 10 2.1 Trends in standards for HPC/HPDA ................................................................................................10 2.2 Hardware ............................................................................................................................................11 2.3 Middleware .........................................................................................................................................16 2.4 Language .............................................................................................................................................22 2.5 Software packages ..............................................................................................................................26 3 Standard organisation analysis .................................................................................................. 31 3.1 Weight of European organisations and presence of European experts .........................................31 3.2 Synthesis ..............................................................................................................................................34 4 Interviews ..................................................................................................................................... 36 4.1 Objectives ............................................................................................................................................36 4.2 Execution .............................................................................................................................................36 4.3 Findings ...............................................................................................................................................37 4.4 Other discussions with stakeholders .................................................................................................38 5 Recommendations ....................................................................................................................... 40 5.1 Achieving a more efficient organisation ...........................................................................................40 5.2 Achieving a more active European ecosystem: making Europe a standard leader ......................41 5.3 Conclusion ...........................................................................................................................................43 6 Acknowledgments ........................................................................................................................ 44 7 Annex ............................................................................................................................................ 45 7.1 Annex 1 : Template for standard organisation description ............................................................46 7.2 Annex 2: Examples of standard organisation descriptions .............................................................47 7.3 Annex 3: Interview template .............................................................................................................56 7.4 Annex 4: Examples of interviews ......................................................................................................58 EXDCI-2 - FETHPC-800957 iii 21.02.2020 D5.3 Presence of Europe in HPC-HPDA standardisation List of Tables Table 1: Position of Europe in hardware oriented standard organisations ............................................ 32 Table 2: Position of Europe in HPC software stack oriented standard organisations ........................... 33 Table 3: Position of Europe in HPC language oriented standard organisations .................................... 33 Table 4 Position of Europe in software package oriented standard organisations ................................ 34 Table 5: Coverage of standards by the interviewees ............................................................................. 37 References and Applicable Documents [1] http://www.exdci.eu [2] http://www.prace-project.eu [3] http://www.etp4hpc.eu EXDCI-2 - FETHPC-800957 iv 21.02.2020 D5.3 Presence of Europe in HPC-HPDA standardisation List of Acronyms and Abbreviations Below is a list of acronyms used within the EXDCI-2 project. The acronym specific to this report are explained inside the text where they are used. AISBL Association Internationale Sans But Lucratif (International Non-for-Profit Association) BDEC Big Data and Extreme-scale Computing BDV Big Data Value CoE Centres of Excellence for Computing Applications cPPP contractual Public-Private Partnership CSA Coordination and Support Action D Deliverable DG Directorate General DoW Description of Work EC European Commission ECMWF European Centre for Medium-range Weather Forecasts EESI European Exascale Software Initiative ENES European Network for Earth System modelling EPOS European Plate Observing System EsD Extreme scale Demonstrators EU European Union FET Future and Emerging Technologies FP7 Framework Programme 7 GDP Gross Domestic Product H2020 Horizon 2020 – The EC Research and Innovation Programme in Europe HPC High Performance Computing IDC International Data Corporation IESP International Exascale Software Project INVG Istituto Nazionale di Geofisica e Vulcanologia (National Institute of Geophysics and Volcanology) ISV Independent Software Vendor IT Information Technology KPI Key-Performance Indicator M Month OS Operating System PM Person Month
Recommended publications
  • Summit™ M5x Protocol Analyzer / Jammer for PCI Express® 5.0
    Summit™ M5x Protocol Analyzer / Jammer for PCI Express® 5.0 The Summit M5x is Teledyne LeCroy’s highest performance PCI Express analyzer, Key Features offering both inline probing and direct tapping approaches to protocol capture - the best in overall diversity in probing methods. Find errors fast • One button error check Inline operation provides advanced features such as: real-time error injection (jammer) • Fast upload speed for PCI Express 4.0 specification; support for data rates of 2.5 GT/s, 5.0 GT/s, 8.0 • Large trace memory GT/s, and 16.0 GT/s; full data capture on bidirectional link widths of x1, x2, x4, x8 and • Powerful triggering/filtering x16 for up to 16 GT/s; and up to 128GB of trace memory. See and understand the traffic ® • Get useful information Direct tapping operation supports PCIe 5.0 protocol analysis with speeds up to • More choices of data views 32GT/s at up to x8 link widths. The Summit M5x is ideal for high-performance protocol • More ways to analyze data development of add-in boards, switches, servers and workstations, and for customers • Custom decoding and reports currently working on PCIe. Data capture Flexible Hardware Analyzer for CXL (Compute Express Link) Links. • 100% data capture at 32.0 GT/s The Summit M5x PCIe 5.0 Protocol Analyzer is a Support is provided for CXL.io, CXL.mem and high-end analyzer that offers important analysis CXL.cache with full decoding from the FLIT layer Deep memory buffer features for new application development. to the CXL Message layers.
    [Show full text]
  • Automated Analysis of Speculation Windows in Spectre Attacks
    Barbara Gigerl Automated Analysis of Speculation Windows in Spectre Attacks MASTER'S THESIS to achieve the university degree of Diplom-Ingenieurin Master's degree programme: Software Engineering and Management submitted to Graz University of Technology Supervisor: Daniel Gruss Institute for Applied Information Processing and Communication Graz, May 2019 i AFFIDAVIT I declare that I have authored this thesis independently, that I have not used other than the declared sources/resources, and that I have explicitly indicated all material which has been quoted either literally or by content from the sources used. The text document uploaded to TUGRAZonline is identical to the present master's thesis. Date Signature EIDESSTATTLICHE ERKLARUNG¨ Ich erkl¨arean Eides statt, dass ich die vorliegende Arbeit selbstst¨andig verfasst, andere als die angegebenen Quellen/Hilfsmittel nicht benutzt, und die den benutzten Quellen w¨ortlich und inhaltlich entnommenen Stellen als solche kenntlich gemacht habe. Das in TUGRAZonline hochgeladene Textdokument ist mit der vorliegenden Masterarbeit identisch. Datum Unterschrift Abstract Speculative execution is a feature integrated into most modern CPUs. Although intro- duced as a way to enhance the performance of processors, the release of Spectre attacks showed that it is a significant security risk. Since CPUs from various vendors, includ- ing Intel, AMD, ARM, and IBM, implement speculative execution, all different kinds of devices are affected by Spectre attacks, for example, desktop PCs and smartphones. Spectre attacks exploit the branch prediction mechanisms of the CPU and then use a cache covert channel to leak secret data. Several attack variants have been discovered since the release, including Spectre-PHT which targets the Pattern History Table of the CPU.
    [Show full text]
  • Defeating Invisible Enemies:Firmware Based
    Defeating Invisible Enemies: Firmware Based Security in OpenPOWER Systems — Linux Security Summit 2017 — George Wilson IBM Linux Technology Center Linux Security Summit / Defeating Invisible Enemies / September 14, 2017 / © 2017 IBM Corporation Agenda Introduction The Case for Firmware Security What OpenPOWER Is Trusted Computing in OpenPOWER Secure Boot in OpenPOWER Current Status of Work Benefits of Open Source Software Conclusion Linux Security Summit / Defeating Invisible Enemies / September 14, 2017 / © 2017 IBM Corporation 2 Introduction Linux Security Summit / Defeating Invisible Enemies / September 14, 2017 / © 2017 IBM Corporation 3 Disclaimer These slides represent my views, not necessarily IBM’s All design points disclosed herein are subject to finalization and upstream acceptance The features described may not ultimately exist or take the described form in a product Linux Security Summit / Defeating Invisible Enemies / September 14, 2017 / © 2017 IBM Corporation 4 Background The PowerPC CPU has been around since 1990 Introduced in the RS/6000 line Usage presently spans embedded to server IBM PowerPC servers traditionally shipped with the PowerVM hypervisor and ran AIX and, later, Linux in LPARs In 2013, IBM decided to open up the server architecture: OpenPOWER OpenPOWER runs open source firmware and the KVM hypervisor with Linux guests Firmware and software designed and developed by the IBM Linux Technology Center “OpenPOWER needs secure and trusted boot!” Linux Security Summit / Defeating Invisible Enemies / September 14, 2017 / © 2017 IBM Corporation 5 The Case for Firmware Security Linux Security Summit / Defeating Invisible Enemies / September 14, 2017 / © 2017 IBM Corporation 6 Leaks Wikileaks Vault 7 Year 0 Dump NSA ANT Catalog Linux Security Summit / Defeating Invisible Enemies / September 14, 2017 / © 2017 IBM Corporation 7 Industry Surveys UEFI Firmware Rootkits: Myths and Reality – Matrosov Firmware Is the New Black – Analyzing Past Three Years of BIOS/UEFI Security Vulnerabilities – Branco et al.
    [Show full text]
  • SC20를 통해 본 HPC 기술 동향 HPC Technology Through SC20
    Electronics and Telecommunications Trends SC20를 통해 본 HPC 기술 동향 HPC Technology Through SC20 어익수 (I.S. Eo, [email protected]) 슈퍼컴퓨팅기술연구센터 책임연구원 모희숙 (H.S. Mo, [email protected]) 슈퍼컴퓨팅기술연구센터 책임연구원 박유미 (Y.M. Park, [email protected]) 슈퍼컴퓨팅기술연구센터 책임연구원/센터장 한우종 (W.J. Han, [email protected]) 인공지능연구소 책임연구원/연구위원 ABSTRACT High-performance computing (HPC) is the underpinning for many of today’s most exciting new research areas, to name a few, from big science to new ways of fighting the disease, to artificial intelligence (AI), to big data analytics, to quantum computing. This report captures the summary of a 9-day program of presentations, keynotes, and workshops at the SC20 conference, one of the most prominent events on sharing ideas and results in HPC technology R&D. Because of the exceptional situation caused by COVID-19, the conference was held entirely online from 11/9 to 11/19 2020, and interestingly caught more attention on using HPC to make a breakthrough in the area of vaccine and cure for COVID-19. The program brought together 103 papers from 21 countries, along with 163 presentations in 24 workshop sessions. The event has covered several key areas in HPC technology, including new memory hierarchy and interconnects for different accelerators, evaluation of parallel programming models, as well as simulation and modeling in traditional science applications. Notably, there was increasing interest in AI and Big Data analytics as well. With this summary of the recent HPC trend readers may find useful information to guide the R&D directions for challenging new technologies and applications in the area of HPC.
    [Show full text]
  • Designware IP for Cloud Computing Socs
    DesignWare IP for Cloud Computing SoCs Overview Hyperscale cloud data centers continue to evolve due to tremendous Internet traffic growth from online collaboration, smartphones and other IoT devices, video streaming, augmented and virtual reality (AR/VR) applications, and connected AI devices. This is driving the need for new architectures for compute, storage, and networking such as AI accelerators, Software Defined Networks (SDNs), communications network processors, and solid state drives (SSDs) to improve cloud data center efficiency and performance. Re-architecting the cloud data center for these latest applications is driving the next generation of semiconductor SoCs to support new high-speed protocols to optimize data processing, networking, and storage in the cloud. Designers building system-on-chips (SoCs) for cloud and high performance computing (HPC) applications need a combination of high-performance and low-latency IP solutions to help deliver total system throughput. Synopsys provides a comprehensive portfolio of high-quality, silicon-proven IP that enables designers to develop SoCs for high-end cloud computing, including AI accelerators, edge computing, visual computing, compute/application servers, networking, and storage applications. Synopsys’ DesignWare® Foundation IP, Interface IP, Security IP, and Processor IP are optimized for high performance, low latency, and low power, while supporting advanced process technologies from 16-nm to 5-nm FinFET and future process nodes. High-Performance Computing Today’s high-performance computing (HPC) solutions provide detailed insights into the world around us and improve our quality of life. HPC solutions deliver the data processing power for massive workloads required for genome sequencing, weather modeling, video rendering, engineering modeling and simulation, medical research, big data analytics, and many other applications.
    [Show full text]
  • TAKING OCP to the NEXT LEVEL – WORKLOAD OPTIMIZATION Krishna Paul Principal Engineer Data Center Group
    TAKING OCP TO THE NEXT LEVEL – WORKLOAD OPTIMIZATION Krishna Paul Principal Engineer Data Center Group Consume. Collaborate. Collaborate. Contribute. Contribute. OPEN COMPUTE HISTORY OF COMMITMENT AND LEADERSHIP 2011 +25 +80 Founding Contributions and Products Board Member Enablements with Partners of OCP Consume. Collaborate. Collaborate. Contribute. Contribute. GETTING TO $10B IN OCP DEPLOYMENT Workload Open Management Integrated Optimized Solutions Consume. Collaborate. Collaborate. Contribute. Contribute. NEW OCP COMPUTE PLATFORMS THIS YEAR Mount Olympus Next Gen Platform Cooper Lake Processor Platforms for Cascade Lake Processor 2S 4S (2x 2S) 8S (4x 2S) Consume. Collaborate. Collaborate. Contribute. Contribute. *Other names and brands may be claimed as property of others. INTEL® HIGH-DENSITY, CLOUD-OPTIMIZED PLATFORM Cloud-Optimized Platform 2U 450mm x 780mm 4S Intel® Xeon® Scalable processors 48 DDR4 memory slots, SATA/SAS/NVMe 2.5” SSD drive bays Available in second half 2019 *Other names and brands may be claimed as property of others. Consume. Collaborate. Collaborate. Contribute. Contribute. OCP CARDS SUPPORT NEW AI ACCELERATORS INTEL® NERVANA™ NEURAL NETWORK PROCESSOR (NNP) FOR TRAINING: FOR INFERENCE: Nervana™ Dedicated deep learning training acceleration Dedicated deep learning inference acceleration Optimized memory and interconnects 10nm Intel® process node In production in 2019 In production in 2019 Intel is a proud partner of the community Consume. Collaborate. Collaborate. Contribute. Contribute. *Other names and brands may be claimed as property of others. ANNOUNCING A NEW CPU-TO-DEVICE INTERCONNECT STANDARD COMPUTE EXPRESS LINK (CXL) ▪ New CXL specification and consortium ▪ Memory coherent, high-speed interconnect ▪ Initial spec donated by Intel ▪ Intel® believes there is an opportunity for an OCP working group to define new form factors for CXL ▪ Optimized stack with x16 PCI Express Gen 5 physical and electrical connection (32 GT/s) ▪ Use cases include AI, networking, media, graphics and more ▪ Availability expected 2021 Consume.
    [Show full text]
  • Foundation Overview February 2014
    OpenPOWER Overview May 2015 Keith Brown Director, IBM Systems Technical Strategy & Product Security [email protected] http://openpowerfoundation.org/ © 2015 OpenPOWER Foundation What is the OpenPOWER Ecosystem? Cloud Software Existing ISV community of 800+ Standard Operating Open Environment Source All major Linux distros (System Mgmt) Software Communities Operating Open sourced Power8 System / KVM firmware stack New OSS Firmware OpenPOWER Resources for porting and Firmware Community optimizing on Hardware OpenPOWER OpenPOWERFoundation.org Technology 2 © 2015 OpenPOWER Foundation A Fast Start for OpenPOWER! The year • Collaborative solutions, standards, and reference designs available • Independent members solutions and systems ahead • Sector growth in technical computing and cloud • Global growth with increasing depth in all layers • Broad adoption across hardware, software, and end users 3 © 2015 OpenPOWER Foundation Fueling an Open Development Community 4 © 2015 OpenPOWER Foundation Critical workloads run on Linux on Power Web, Java Apps and Infrastructure Analytics & Research HPC applications for Life Sciences • Highly threaded • Compute intensive • Throughput oriented • High memory bandwidth • Scale out capable • Floating point • High quality of service • High I/O rates Business Applications Database • High quality of service • Handle peak workloads • Scalability • Scalability • Flexible infrastructure • High quality of service • Large memory footprint • Resiliency and security 5 © 2015 OpenPOWER Foundation IBM, Mellanox, and NVIDIA
    [Show full text]
  • Literature Review and Implementation Overview: High Performance
    LITERATURE REVIEW AND IMPLEMENTATION OVERVIEW: HIGH PERFORMANCE COMPUTING WITH GRAPHICS PROCESSING UNITS FOR CLASSROOM AND RESEARCH USE APREPRINT Nathan George Department of Data Sciences Regis University Denver, CO 80221 [email protected] May 18, 2020 ABSTRACT In this report, I discuss the history and current state of GPU HPC systems. Although high-power GPUs have only existed a short time, they have found rapid adoption in deep learning applications. I also discuss an implementation of a commodity-hardware NVIDIA GPU HPC cluster for deep learning research and academic teaching use. Keywords GPU · Neural Networks · Deep Learning · HPC 1 Introduction, Background, and GPU HPC History High performance computing (HPC) is typically characterized by large amounts of memory and processing power. HPC, sometimes also called supercomputing, has been around since the 1960s with the introduction of the CDC STAR-100, and continues to push the limits of computing power and capabilities for large-scale problems [1, 2]. However, use of graphics processing unit (GPU) in HPC supercomputers has only started in the mid to late 2000s [3, 4]. Although graphics processing chips have been around since the 1970s, GPUs were not widely used for computations until the 2000s. During the early 2000s, GPU clusters began to appear for HPC applications. Most of these clusters were designed to run large calculations requiring vast computing power, and many clusters are still designed for that purpose [5]. GPUs have been increasingly used for computations due to their commodification, following Moore’s Law (demonstrated arXiv:2005.07598v1 [cs.DC] 13 May 2020 in Figure 1), and usage in specific applications like neural networks.
    [Show full text]
  • Intel FPGA Product Catalog Devices: 10 Nm Device Portfolio Intel Agilex FPGA and Soc Overview
    • Cover TBD INTEL® FPGA PRODUCT CATALOG Version 19.3 CONTENTS Overview Acceleration Platforms and Solutions Intel® FPGA Solutions Portfolio 1 Intel FPGA Programmable Acceleration Overview 61 Devices Intel Acceleration Stack for Intel Xeon® CPU with FPGAs 62 Intel FPGA Programmable Acceleration Cards 63 10 nm Device Portfolio - Intel AgilexTM - Intel Programmable Acceleration Card with 63 FPGA and SoC Overview 2 Intel Arria 10 GX FPGA - Intel Agilex FPGA Features 4 - Intel FPGA Programmable Acceleration Card D5005 64 Generation 10 Device Portfolio - Intel FPGA Programmable Acceleration Card N3000 65 - Generation 10 FPGAs and SoCs 6 - Intel FPGA Programmable Acceleration Card 66 - Intel Stratix® 10 FPGA and SoC Overview 7 Comparison - Intel Stratix 10 FPGA Features 9 Accelerated Workload Solutions 67 - Intel Stratix 10 SoC Features 11 - Intel Stratix 10 TX Features 13 - Intel Stratix 10 MX Features 15 Design Tools, OS Support, and Processors - Intel Stratix 10 DX Features 17 Intel Quartus® Prime Software 68 - Intel Arria® 10 FPGA and SoC Overview 20 DSP Builder for Intel FPGAs 71 - Intel Arria 10 FPGA Features 21 Intel FPGA SDK for OpenCL™ 72 - Intel Arria 10 SoC Features 23 - Intel Cyclone® 10 FPGA Overview 25 Intel SoC FPGA Embedded Development Suite 73 - Intel Cyclone 10 GX FPGA Features 26 SoC Operating System Support 74 - Intel Cyclone 10 LP FPGA Features 27 Nios® II Processor 75 - Intel MAX® 10 FPGA Overview 29 - Intel MAX 10 FPGA Features 30 Nios II Processor Embedded Design Suite 76 Nios II Processor Operating System Support 28
    [Show full text]
  • Exploiting Cache Side Channels on CPU-FPGA Cloud Platforms
    Exploiting Cache Side-Channels on CPU-FPGA Cloud Platforms Cache-basierte Seitenkanalangriffe auf CPU-FPGA Cloud Plattformen Masterarbeit im Rahmen des Studiengangs Informatik der Universität zu Lübeck vorgelegt von Thore Tiemann ausgegeben und betreut von Prof. Dr. Thomas Eisenbarth Lübeck, den 09. Januar 2020 Abstract Cloud service providers invest more and more in FPGA infrastructure to offer it to their customers (IaaS). FPGA use cases include the acceleration of artificial intelligence applica- tions. While physical attacks on FPGAs got a lot of attention by researchers just recently, nobody focused on micro-architectural attacks in the context of FPGA yet. We take the first step into this direction and investigate the timing behavior of memory reads on two Intel FPGA platforms that were designed to be used in a cloud environment: a Programmable Acceleration Card (PAC) and a Xeon CPU with an integrated FPGA that has an additional coherent local cache. By using the Open Programmable Acceleration Engine (OPAE) and the Core Cache Interface (CCI-P), our setup represents a realistic cloud scenario. We show that an Acceleration Functional Unit (AFU) on either platform can, with the help of a self-designed hardware timer, distinguish which of the different parts of the memory hierarchy serves the response for memory reads. On the integrated platform, the same is true for the CPU, as it can differentiate between answers from the FPGA cache, the CPU cache, and the main memory. Next, we analyze the effect of the caching hints offered by the CCI-P on the location of written cache lines in the memory hierarchy and show that most cache lines get cached in the LLC of the CPU.
    [Show full text]
  • Linux and Open Source: the View from IBM
    Linux @ IBM Linux and Open Source: The View From IBM Jim Elliott, Advocate, Strategic Growth Businesses IBM Canada Ltd. ibm.com/vm/devpages/jelliott SHARE Session 9200 February 28, 2005 © 2005 IBM Corporation Linux @ IBM Linux and Open Source: The View from IBM Session 9200 Linux and Open Source are game-changing technologies. Jim will provide a review of Linux and Open Source from IBM's point of view covering: – Overview, Value and Marketplace: A brief update on Linux and Open Source and the value to customers – Usage: How Linux and Open Source are being used by customers today and our view of the future – IBM and Open Source: How IBM is using Open Source software internally and IBM involvement in the Open Source community 2 SHARE Session 9200 February 28, 2005 Linux @ IBM Linux Overview, Value, and Marketplace “Linux will do for applications what the Internet did for networks.” Irving Wladawsky-Berger, IBM LinuxWorld, January 2000 SHARE Session 9200 February 28, 2005 © 2005 IBM Corporation Linux @ IBM Advancing Technology What if … ... everything is connected and intelligent? ... networking and transactions are inexpensive? ... computing power is unlimited? Adoption of Processor Storage Bandwidth Number of Interaction open standards speed networked costs devices 4 SHARE Session 9200 February 28, 2005 Linux @ IBM The road to On Demand is via Open Computing Open Source Open Architecture Open Standards 5 SHARE Session 9200 February 28, 2005 Linux @ IBM Open Source Software www.opensource.org What is Open Source? – Community develops, debugs, maintains – “Survival of the fittest” – peer review – Generally high quality, high performance software – Superior security – on par with other UNIXes Why does IBM consider Open Source important? – Can be a major source of innovation – Community approach – Good approach to developing emerging standards – Enterprise customers are asking for it 6 SHARE Session 9200 February 28, 2005 Linux @ IBM Freedom of Choice “Free software is a matter of liberty, not price.
    [Show full text]
  • Arm HPC Software Stack and HPC Tools
    Arm HPC Software Stack and HPC Tools Centre for Development of Advanced Computing (C-DAC) / National Supercomputing Mission (NSM) Arm in HPC Course Phil Ridley [email protected] 2nd March 2021 © 2021 Arm Agenda • HPC Software Ecosystem • Overview • Applications • Community Support • Compilers, Libraries and Tools • Open-source and Commercial – Compilers – Maths Libraries • Profiling and Debugging 2 © 2021 Arm Software Ecosystem © 2021 Arm HPC Ecosystem Applications Performance Open-source, owned, coMMercial ISV codes, … Engineering … PBS Pro, Altair LSF, IBM SLURM, ArM Forge (DDT, MAP), Rogue Wave, HPC Toolkit, Schedulers Containers, Interpreters, etc. Management Cluster Scalasca, VaMpir, TAU, … Singularity, PodMan, Docker, Python, … HPE CMU, Bright, Middleware Mellanox IB/OFED/HPC-X, OpenMPI, MPICH, MVAPICH2, OpenSHMEM, OpenUCX, HPE MPI xCat Compilers Libraries Filesystems , Warewulf OEM/ODM’s ArM, GNU, LLVM, Clang, Flang, ArMPL, FFTW, OpenBLAS, BeeGFS, Lustre, ZFS, Cray-HPE, ATOS-Bull, Cray, PGI/NVIDIA, Fujitsu, … NuMPy, SciPy, Trilinos, PETSc, HDF5, NetCDF, GPFS, … Fujitsu, Gigabyte, … Hypre, SuperLU, ScaLAPACK, … , … Silicon OS RHEL, SUSE, CentOS, Ubuntu, … Suppliers Marvell, Fujitsu, Arm Server Ready Platform Mellanox, NVIDIA, … Standard firMware and RAS 4 © 2021 Arm General Software Ecosystem Workloads Drone.io Language & Library CI/CD Container & Virtualization Operating System Networking 5 © 2021 Arm – Easy HPC stack deployment on Arm https://developer.arm.com/solutions/hpc/hpc-software/openhpc Functional Areas Components include OpenHPC is a community effort to provide a Base OS CentOS 8.0, OpenSUSE Leap 15 common, verified set of open source packages for Administrative Tools Conman, Ganglia, Lmod, LosF, Nagios, pdsh, pdsh-mod- slurm, prun, EasyBuild, ClusterShell, mrsh, Genders, HPC deployments Shine, test-suite Arm and partners actively involved: Provisioning Warewulf Resource Mgmt.
    [Show full text]