Recycling of Archaeal Biomass As a New Strategy for Extreme Life in Dead Sea Deep Sediments

Total Page:16

File Type:pdf, Size:1020Kb

Recycling of Archaeal Biomass As a New Strategy for Extreme Life in Dead Sea Deep Sediments https://doi.org/10.1130/G45801.1 Manuscript received 12 November 2018 Revised manuscript received 8 March 2019 Manuscript accepted 10 March 2019 © 2019 The Authors. Gold Open Access: This paper is published under the terms of the CC-BY license. Published online 22 March 2019 Recycling of archaeal biomass as a new strategy for extreme life in Dead Sea deep sediments Camille Thomas1*, Vincent Grossi2*, Ingrid Antheaume2, and Daniel Ariztegui1 1Department of Earth Sciences, University of Geneva, Rue des Maraichers 13, 1205 Geneva, Switzerland 2Laboratoire de Géologie de Lyon, Université de Lyon, Centre National de la Recherche Scientifique (CNRS), 69622 Villeurbanne, France ABSTRACT composition of the microbial community and its Archaea and Bacteria that inhabit the deep subsurface (known as the deep biosphere) play potential metabolic strategies to survive the most a prevalent role in the recycling of sedimentary organic carbon. In such environments, this arid periods of the late Quaternary of the Dead process can occur over millions of years and requires microbial communities to cope with Sea basin, we characterized the lipid biomarker extremely limited sources of energy. Because of this scarcity, metabolic processes come at a composition of deep hypersaline halite and gyp- high energetic cost, but the ways heterotrophic microbial communities develop to minimize sum sediments. The good lipid preservation in energy expenses for a maximized yield remain unclear. Here, we report molecular biomarker these extreme horizons gives clues to metabolic evidence for the recycling of archaeal cell wall constituents in extreme evaporitic facies of pathways that allow for the survival of a thus-far- Dead Sea deep sediments. Wax esters derived from the recombination of hydrolyzed products unrecognized deep biosphere. of archaeal membrane lipids were observed in gypsum and/or halite sedimentary deposits down to 243 m below the lake floor, implying the reutilization of archaeal necromass possibly METHODS by deep subsurface bacteria. By recycling the building blocks of putatively better-adapted The material used in this study originated archaea, heterotrophic bacteria may build up intracellular carbon stocks and mitigate osmotic from the International Continental Scientific stress in this energy-deprived environment. This mechanism illustrates a new pathway of Drilling Program (ICDP) Dead Sea Deep Drill- carbon transformation in the subsurface and demonstrates how life can be maintained in ing Project (DSDDP) core 5017–1A retrieved extreme environments characterized by long-term isolation and minimal energetic resources. from the center of the Dead Sea in winter 2010–2011 (Fig. 1). Sediments were sampled INTRODUCTION (Oren, 1999a). The intracellular accumulation on site from core catchers using sterile tools In extreme environments, microbial meta- of ambient organic carbon is a common way and kept in the freezer at –20 °C until further bolic processes that lower the energetic cost of of economizing energy in harsh environments. processing. The main characteristics of samples maintaining life are favored (Hoehler and Jør- For example, under stressed growth conditions, analyzed for lipid biomarkers are given in Table gensen, 2013). Such settings are characterized some Bacteria species are known to accumu- DR1 in the GSA Data Repository1. Samples by low growth rates (Lomstein et al., 2012), and late intracellular lipid droplets (Alvarez et al., were freeze-dried, ground, and extracted using most energy is diverted to maintenance functions 1997; Wältermann and Steinbüchel, 2005) in the multiple sonication cycles (methanol 2×, metha- (van Bodegom, 2007), such as osmotic equilibra- form of polyhydroxyalkanoates, triglycerides, nol/dichloromethane [DCM] [1:1 v/v, 2×], and tion, oxygen stress defense, motility, and more or wax esters (WEs). However, the presence of DCM 3×). Elemental sulfur was removed with sustainable metabolic pathways. These selective such mechanisms in the deep biosphere has not activated copper. Lipid extracts were filtered conditions for life promote the dominance of pro- yet been documented, suggesting that they may and separated using a deactivated silica gel col- karyotes and generally favor Archaea relative to not be sufficiently effective in these low-energy umn (5% H2O) into five fractions of increasing Bacteria (Hoehler and Jørgensen, 2013). This is settings for bacteria to survive. polarity (hexane/DCM [9:1 v/v], hexane/DCM mostly due to the reduced membrane permeabil- The Dead Sea is the most saline lake on Earth [1:1 v/v], DCM, ethyl acetate, and methanol). ity of Archaea, which requires less maintenance and has deposited evaporitic minerals since the Fractions 3 and 4 were silylated with pyridine/ energy with respect to bacterial membranes early Quaternary (Stein, 2001). As a result, its bis(trimethylsilyl) trifluoroacetamide (BSTFA) (Valentine, 2007). This advantage is particu- subsurface environment constitutes one of the at 2:1 (v/v). Fraction 5 was trans-esterified by larly striking in environments characterized by most extreme ecosystems on the planet. The overnight incubation with 0.5 mL of toluene and high osmotic stress such as hypersaline environ- extreme chemistry of the water allows only for the 2 mL of 2% H2SO4 in methanol at 60 °C. Fol- ments. There, bacteria may use alternative strate- survival of halophilic archaea in the water column lowing the addition of NaCl (5%), the organic gies that allow competition with the putatively and recent halite sediments (Bodaker et al., 2010; phase was extracted with hexane:DCM (4:1 v/v, better-adapted archaea, for example, by recycling Thomas et al., 2015). Bacteria have rarely been 3×), washed with NaHCO3 (2%), and dried with available organic molecules as osmotic solutes observed in the most extreme sedimentary facies sodium sulfate before silylation. of the Dead Sea (halite or gypsum), suggesting All fractions were analyzed by gas chroma- *E-mails: camille .thomas@ unige .ch; vincent that these harsh conditions limit their growth tography mass spectrometry (GC-MS) on an HP .grossi@ univ -lyon1.fr (Thomas et al., 2015). To further investigate the 6890 Series Plus gas chromatograph equipped 1GSA Data Repository item 2019179, supplementary Figures DR1 and DR2 and Tables DR1 and DR2, is available online at http://www .geosociety .org /datarepository /2019/, or on request from editing@ geosociety .org. CITATION: Thomas, C., Grossi, V., Antheaume, I., and Ariztegui, D., 2019, Recycling of archaeal biomass as a new strategy for extreme life in Dead Sea deep sediments: Geology, v. 47, p. 479–482, https:// doi .org /10 .1130 /G45801.1 Geological Society of America | GEOLOGY | Volume 47 | Number 5 | www.gsapubs.org 479 Downloaded from http://pubs.geoscienceworld.org/gsa/geology/article-pdf/47/5/479/4680560/479.pdf by guest on 24 September 2021 depth (mblf) ARCHAEAL BACTERIAL 34° 36° O WEST 050100 150200 250300 350400 450 plasma membrane plasma membrane 32° BANK Dead Sea lithology MEDITERRANEAN (North SEA Basin) GAZA STRIP 0.6 Drilling close-up of 0.4 TOC site (%) plasma membrane 0.2 structure 31° 5017-1 0 polar head polar head 30 intact ISRAEL archaeal glycerol & phospholipids glycerol & EGYPT 20 core lipids ether linkages ester linkages (µg/g TOC) 10 JORDAN 0 core lipids 6 hydrolyzed 4 archaeal core lipids isoprenoid linear 2 (µg/g TOC) 50 km chains chains RED SEA 0 hydrolyzed Figure 1. Localization of Dead Sea cores. 0.2 isoprenoid core lipids wax esters Material used in this study originated from 0.1 (µg/g TOC) International Continental Scientific Drill- 0 ing Program (ICDP) Dead Sea Deep Drilling 10 Project (DSDDP) drilling site 5017–1. bacterial wax ester 5 fatty acids biosynthesis ratio with a cool on-column injector, and coupled to 0 ester linkage bromide an Agilent 5975C (VL MSD) mass spectrom- 0.06 concentration eter. The GC was equipped with an HP5 column 0.02 (mol.L-1) 0255075100 125150 175200 (30 m × 0.25 mm × 0.25 µm, RESTEK). Samples age (ka) WAX ESTER-PRODUCING BACTERIA were injected at 60 °C (held for 30 s), and the Figure 2. Occurrence of wax esters (WEs) and other lipid biomarkers in Dead Sea core 5017–1 oven temperature was increased to 130 °C at a (gypsum and halite intervals are shown in black; dashed lines indicate position of samples rate of 20 °C/min, then to 250 °C (5 °C/min) and analyzed). “Hydrolyzed core lipids” refer to degradation products of archaeol and extended 300 °C (3 °C/min), and finally held isothermal for archaeol, which are presented as alkyl chains. TOC—total organic carbon; mblf—meters below 45 min. Stepwise dilution of external standards lake floor. Bacterial fatty acids ratio (sum of methyl-branched C15 and C17 over sum of linear C15 and C fatty acids) indicates presence of bacteria potentially involved in WE production. Sampled allowed quantification. Isoprenoid fatty acids 17 layers are compared to bromide concentration in sediment pore waters (used as a proxy for are less polar than linear acids and partly eluted lake-water dilution/concentration; Levy et al., 2017) and fitted to 14C ages (Kitagawa et al., 2016) in fraction F4. A ratio based on specific bacte- and U/Th ages (Torfstein et al., 2015). Formation of WE building blocks is schematized on right- rial fatty acids was calculated using the sum of hand side of figure. Red items indicate an archaeal origin; blue items indicate a bacterial origin. methyl-branched C15 and C17 fatty acids over the sum of linear C15 and C17 fatty acids. Changes in so far (Wang et al., 2019). WEs are formed by sediments (Thomas et al., 2015), was also found to this ratio indicate a shift in bacterial community. condensation of fatty acids and alcohols available be enriched in halite and gypsum facies. In most Compound-specific carbon isotope (δ13C) in the environment and provide easily accessible of the sedimentary intervals where WEs occurred, analyses were done using a HP7890B GC (intracellular) sources of carbon (Wältermann archaeol and extended archaeol were found in coupled to an Isoprime visION isotope ratio mass and Steinbüchel, 2005).
Recommended publications
  • The Pennsylvania State University the Graduate School Department
    The Pennsylvania State University The Graduate School Department of Geosciences MOLECULAR AND ISOTOPIC INVESTIGATIONS OF THE BIOGEOCHEMISTRY OF ARCHAEAL ETHER LIPIDS A Thesis in Geosciences by Courtney Hanna Turich © 2006 Courtney Hanna Turich Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy December 2006 ii The thesis of Courtney Hanna Turich was reviewed and approved* by the following: Katherine H. Freeman Professor of Geosciences Graduate Program Chair Thesis Advisor Chair of Committee Mary Ann Bruns Associate Professor of Crop and Soil Sciences Michael A. Arthur Professor of Geosciences Christopher House Associate Professor of Geosciences A. Daniel Jones Professor of Chemistry *Signatures are on file in the Graduate School iii ABSTRACT Once thought to inhabit only extreme environments, the Archaea are now known to occur globally in oceans, marshes, lakes, sediments, and soils. Archaea abundance and metabolic diversity link these microbes to important biogeochemical transformations. Archaea also generate abundant and diagnostic membrane lipids that are widespread in modern environments as well as the sedimentary record. These lipid compounds offer important evidence for past Archaea distribution and activity, and are a key means for understanding archaeal contributions to biogeochemical cycles, especially carbon and nitrogen, over Earth’s history. To link records of naturally occurring lipid to their biological and metabolic origins, I studied archaeal lipid distributions from a global set of modern waters in order to test the hypothesis that specific lipid assemblages will correspond to specific genotypic groups. Cluster analysis showed that marine lipid distribution patterns fell into two groups: the epipelagic zone and mesopelagic/upwelling zones.
    [Show full text]
  • Lipid Analysis of CO2-Rich Subsurface Aquifers Suggests an Autotrophy-Based Deep Biosphere with Lysolipids Enriched in CPR Bacteria
    The ISME Journal (2020) 14:1547–1560 https://doi.org/10.1038/s41396-020-0624-4 ARTICLE Lipid analysis of CO2-rich subsurface aquifers suggests an autotrophy-based deep biosphere with lysolipids enriched in CPR bacteria 1,2 3,4 1,3 3 3 Alexander J. Probst ● Felix J. Elling ● Cindy J. Castelle ● Qingzeng Zhu ● Marcus Elvert ● 5,6 6 1 7,9 7 Giovanni Birarda ● Hoi-Ying N. Holman ● Katherine R. Lane ● Bethany Ladd ● M. Cathryn Ryan ● 8 3 1 Tanja Woyke ● Kai-Uwe Hinrichs ● Jillian F. Banfield Received: 20 November 2018 / Revised: 5 February 2020 / Accepted: 25 February 2020 / Published online: 13 March 2020 © The Author(s) 2020. This article is published with open access Abstract Sediment-hosted CO2-rich aquifers deep below the Colorado Plateau (USA) contain a remarkable diversity of uncultivated microorganisms, including Candidate Phyla Radiation (CPR) bacteria that are putative symbionts unable to synthesize membrane lipids. The origin of organic carbon in these ecosystems is unknown and the source of CPR membrane lipids remains elusive. We collected cells from deep groundwater brought to the surface by eruptions of Crystal Geyser, sequenced 1234567890();,: 1234567890();,: the community, and analyzed the whole community lipidome over time. Characteristic stable carbon isotopic compositions of microbial lipids suggest that bacterial and archaeal CO2 fixation ongoing in the deep subsurface provides organic carbon for the complex communities that reside there. Coupled lipidomic-metagenomic analysis indicates that CPR bacteria lack complete lipid biosynthesis pathways but still possess regular lipid membranes. These lipids may therefore originate from other community members, which also adapt to high in situ pressure by increasing fatty acid unsaturation.
    [Show full text]
  • Interpreting Sources and Endocrine Active Components of Trace Organic Contaminant Mixtures in Minnesota Lakes
    INTERPRETING SOURCES AND ENDOCRINE ACTIVE COMPONENTS OF TRACE ORGANIC CONTAMINANT MIXTURES IN MINNESOTA LAKES by Meaghan E. Guyader © Copyright by Meaghan E. Guyader, 2018 All Rights Reserved A thesis submitted to the Faculty and the Board of Trustees of the Colorado School of Mines in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Civil and Environmental Engineering). Golden, Colorado Date _____________________________ Signed: _____________________________ Meaghan E. Guyader Signed: _____________________________ Dr. Christopher P. Higgins Thesis Advisor Golden, Colorado Date _____________________________ Signed: _____________________________ Dr. Terri S. Hogue Professor and Department Head Department of Civil and Environmental Engineering ii ABSTRACT On-site wastewater treatment systems (OWTSs) are a suspected source of widespread trace organic contaminant (TOrC) occurrence in Minnesota lakes. TOrCs are a diverse set of synthetic and natural chemicals regularly used as cleaning agents, personal care products, medicinal substances, herbicides and pesticides, and foods or flavorings. Wastewater streams are known to concentrate TOrC discharges to the environment, particularly accumulating these chemicals at outfalls from centralized wastewater treatment plants. Fish inhabiting these effluent dominated environments are also known to display intersex qualities. Concurrent evidence of this phenomenon, known as endocrine disruption, in Minnesota lake fish drives hypotheses that OWTSs, the primary form of wastewater treatment in shoreline residences, may contribute to TOrC occurrence and the endocrine activity in these water bodies. The causative agents specific to fish in this region remain poorly understood. The objective of this dissertation was to investigate OWTSs as sources of TOrCs in Minnesota lakes, and TOrCs as potential causative agents for endocrine disruption in resident fish.
    [Show full text]
  • Author's Response
    GEORG–AUGUST-UNIVERSITY OF GOETTINGEN Geoscience Centre Department of Geobiology GZG Reinhardt, Manuel Goldschmidtstr. 3 Univ.Göttingen▪ GZG▪Abt.Geobiologie▪Goldschmidtstr.3▪37077 Göttingen▪Germany 37077 Göttingen Germany Phone: +49(0)551-39 13756 E-mail: [email protected] http://www. geobiologie.uni-goettingen.de Associate editor Biogeosciences Dr. Marcel van der Meer Göttingen, 04/18/2019 Submission of the revised manuscript bg-2018-513 Dear Marcel van der Meer, Also on behalf of my co-authors I would like to thank you, Jan W. de Leeuw, and the two anonymous reviewers for the thoughtful comments. As requested, we included the previously suggested corrections into the manuscript (see replies to RC1– 3, March 9th). In order to help you to track our changes and modifications, we attached the following documents: (i) Reply to your comments (ii) Replies to all reviewer comments (RC1–3 from March 9th) (iii) Tracked changes version of the manuscript (iv) Tracked changes version of the supplement We trust that the revised manuscript will meet the requirements of you and the reviewers. Yours sincerely, Manuel Reinhardt Comment from the editor: “I do think there is one issue you could spend a bit more time on explaining or clarifying. You use the Pleistocene settings as analogs for Archean hydrothermal cherts and I think you need to spend a little bit more time on this to make it more than a way to “sell” your Pleistocene study. The analogy is comparable deposits, hydrothermal cherts, right? I think it is entirely valid to test your approach, methods and types of analysis on a more modern setting to see what works and what doesn’t, what type of information you get etc., before actually working on these really old deposits.
    [Show full text]
  • Phylogenetics of Archaeal Lipids Amy Kelly 9/27/2006 Outline
    Phylogenetics of Archaeal Lipids Amy Kelly 9/27/2006 Outline • Phlogenetics of Archaea • Phlogenetics of archaeal lipids • Papers Phyla • Two? main phyla – Euryarchaeota • Methanogens • Extreme halophiles • Extreme thermophiles • Sulfate-reducing – Crenarchaeota • Extreme thermophiles – Korarchaeota? • Hyperthermophiles • indicated only by environmental DNA sequences – Nanoarchaeum? • N. equitans a fast evolving euryarchaeal lineage, not novel, early diverging archaeal phylum – Ancient archael group? • In deepest brances of Crenarchaea? Euryarchaea? Archaeal Lipids • Methanogens – Di- and tetra-ethers of glycerol and isoprenoid alcohols – Core mostly archaeol or caldarchaeol – Core sometimes sn-2- or Images removed due to sn-3-hydroxyarchaeol or copyright considerations. macrocyclic archaeol –PMI • Halophiles – Similar to methanogens – Exclusively synthesize bacterioruberin • Marine Crenarchaea Depositional Archaeal Lipids Biological Origin Environment Crocetane methanotrophs? methane seeps? methanogens, PMI (2,6,10,15,19-pentamethylicosane) methanotrophs hypersaline, anoxic Squalane hypersaline? C31-C40 head-to-head isoprenoids Smit & Mushegian • “Lost” enzymes of MVA pathway must exist – Phosphomevalonate kinase (PMK) – Diphosphomevalonate decarboxylase – Isopentenyl diphosphate isomerase (IPPI) Kaneda et al. 2001 Rohdich et al. 2001 Boucher et al. • Isoprenoid biosynthesis of archaea evolved through a combination of processes – Co-option of ancestral enzymes – Modification of enzymatic specificity – Orthologous and non-orthologous gene
    [Show full text]
  • Assessing the Use of Archaeal Lipids As Marine Environmental Proxies
    EA41CH14-Ingalls ARI 30 April 2013 15:56 Assessing the Use of Archaeal Lipids as Marine Environmental Proxies Ann Pearson1 and Anitra E. Ingalls2 1Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts 02138; email: [email protected] 2School of Oceanography, University of Washington, Seattle, Washington 98195; email: [email protected] Annu. Rev. Earth Planet. Sci. 2013. 41:359–84 Keywords First published online as a Review in Advance on paleothermometry, lipid biomarkers, TEX86, Thaumarchaeota, March 7, 2013 Euryarchaeota, marine prokaryotes The Annual Review of Earth and Planetary Sciences is online at earth.annualreviews.org Abstract by Harvard University on 12/05/13. For personal use only. This article’s doi: Archaea are abundant in marine and terrestrial aquatic environments, sed- 10.1146/annurev-earth-050212-123947 iments, and soils. They inhabit at least an 85◦C temperature range from Copyright c 2013 by Annual Reviews. the polar ocean to hydrothermal springs. Many Archaea produce membrane All rights reserved lipids called glycerol dialkyl glycerol tetraethers (GDGTs). Experiments on Annu. Rev. Earth Planet. Sci. 2013.41:359-384. Downloaded from www.annualreviews.org pure and enrichment cultures as well as an empirical correlation for ma- rine sediments (the TEX86 index) together show positive relationships be- tween temperature and the number of cyclopentane or cyclohexane rings in GDGTs. The resulting TEX86 paleotemperature proxy has been applied across a wide range of geologic history and depositional settings. The ex- act relationship between TEX86 and temperature, however, remains poorly understood. Environmental systems and cultures have different temperature dependencies, and the ecological niche(s) of aquatic Archaea are still a sub- ject of active investigation.
    [Show full text]
  • Open Thesis 17May2011.Pdf
    The Pennsylvania State University The Graduate School Department of Geosciences BIOGEOCHEMISTRY OF ISOPRENOID PRODUCTION AND ANAEROBIC HYDROCARBON BIODEGRADATION A Dissertation in Geosciences by Katherine S. Dawson © 2011 Katherine S. Dawson Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2011 The dissertation of Katherine S. Dawson was reviewed and approved* by the following: Jennifer L. Macalady Assistant Professor of Geosciences Dissertation Co-Advisor Co-Chair of Committee Katherine H. Freeman Professor of Geosciences Dissertation Co-Advisor Co-Chair of Committee Christopher H. House Associate Professor of Geosciences John M. Regan Associate Professor of Environmental Engineering Chris J. Marone Professor of Geosciences Associate Head for Graduate Programs and Research in Geosciences *Signatures are on file in the Graduate School iii ABSTRACT This dissertation is an exploration of microbial isoprenoid production and destruction by anaerobic hydrocarbon biodegradation. Isoprenoids are methyl-branched hydrocarbons, and include biomarkers from all three domains of life such as archaeal lipids, hopanoids, and sterols. Isoprenoid production was examined through variation in the molecular structure of archaeal lipids across a hypersaline gradient (Chapter 5). This study identified unsaturated analogues of archaeol in four halophilic archaeal strains and revealed an increase in the percentage of unsaturated lipids with increasing salinity. Anaerobic isoprenoid biodegradation was examined through the enrichment of bacteria under anaerobic conditions utilizing pristane as a carbon source (Chapter 2). Further analysis of anaerobic degradation utilized 13C-labelled phytane as a stable isotope tracer (Chapter 3). In both cases, a microbial community dominated by denitrifying Beta- and Gammaproteobacteria was responsible for the degradation of pristane and phytane.
    [Show full text]
  • Using Archaeol to Investigate the Location of Methanogens in the Ruminant Digestive Tract
    Livestock Science 164 (2014) 39–45 Contents lists available at ScienceDirect Livestock Science journal homepage: www.elsevier.com/locate/livsci Using archaeol to investigate the location of methanogens in the ruminant digestive tract C.A. McCartney a,b,n, I.D. Bull b, R.J. Dewhurst a,1 a Teagasc, Animal and Grassland Research and Innovation Centre, Grange, Dunsany, Co. Meath, Ireland b School of Chemistry, University of Bristol, Cantock's Close, Bristol, BS8 1TS, UK article info abstract Article history: The quantification of archaeol, a methanogen membrane lipid, may provide an alternative Received 28 August 2013 method to estimate methanogen abundance. The focus of this study was to determine the Received in revised form location of methanogens in the ruminant digestive tract using this biomarker. Archaeol 13 February 2014 was quantified in samples obtained from four lactating cows with rumen cannulae that Accepted 24 February 2014 grazed on either white clover (WC) or perennial ryegrass (PRG) in a changeover design study with three 3-week periods. Faeces were collected over the final 5 d of each period Keywords: and total rumen contents (TRC) were obtained on the final 2 days (day 1: 9 am; day Archaeol 2: 3 pm). Solid-associated microbes (SAM) and liquid-associated microbes (LAM) were Faeces also isolated from the TRC. Concentrations of archaeol in the TRC showed a significant diet Methanogen by time interaction, which may be related to diurnal grazing patterns and different rumen Rumen conditions associated with PRG or WC diets. There was significantly more archaeol associated with SAM than LAM, which may reflect difficulties of methanogen proliferation in the liquid phase.
    [Show full text]
  • Quantitative Analysis of Terpenic Compounds in Microsamples of Resins by Capillary Liquid Chromatography
    molecules Article Quantitative Analysis of Terpenic Compounds in Microsamples of Resins by Capillary Liquid Chromatography H. D. Ponce-Rodríguez 1,2 , R. Herráez-Hernández 1,* , J. Verdú-Andrés 1,* and P. Campíns-Falcó 1 1 MINTOTA Research Group, Department of Analytical Chemistry, Faculty of Chemistry, University of Valencia, Dr Moliner 50, 46100 Burjassot, Valencia, Spain; [email protected] (H.D.P.-R.); [email protected] (P.C.-F.) 2 Department of Chemical Control, Faculty of Chemistry and Pharmacy, National Autonomous University of Honduras, Ciudad Universitaria, 11101 Tegucigalpa, Honduras * Correspondence: [email protected] (R.H.-H); [email protected] (J.V.-A) Academic Editors: Pavel B. Drasar, Vladimir A. Khripach and Maria Carla Marcotullio Received: 10 October 2019; Accepted: 8 November 2019; Published: 10 November 2019 Abstract: A method has been developed for the separation and quantification of terpenic compounds typically used as markers in the chemical characterization of resins based on capillary liquid chromatography coupled to UV detection. The sample treatment, separation and detection conditions have been optimized in order to analyze compounds of different polarities and volatilities in a single chromatographic run. The monoterpene limonene and the triterpenes lupeol, lupenone, β-amyrin, and α-amyrin have been selected as model compounds. The proposed method provides linear responses and precision (expressed as relative standard deviations) of 0.6% to 17%, within the 1 0.5–10.0 µg mL− concentration interval; the limits of detection (LODs) and quantification (LOQs) 1 1 were 0.1–0.25 µg mL− and 0.4–0.8 µg mL− , respectively.
    [Show full text]
  • Genomic Analysis of Uncultured Microbes in Marine Sediments
    University of Tennessee, Knoxville TRACE: Tennessee Research and Creative Exchange Doctoral Dissertations Graduate School 12-2017 Singled Out: Genomic analysis of uncultured microbes in marine sediments Jordan Toby Bird University of Tennessee, [email protected] Follow this and additional works at: https://trace.tennessee.edu/utk_graddiss Recommended Citation Bird, Jordan Toby, "Singled Out: Genomic analysis of uncultured microbes in marine sediments. " PhD diss., University of Tennessee, 2017. https://trace.tennessee.edu/utk_graddiss/4829 This Dissertation is brought to you for free and open access by the Graduate School at TRACE: Tennessee Research and Creative Exchange. It has been accepted for inclusion in Doctoral Dissertations by an authorized administrator of TRACE: Tennessee Research and Creative Exchange. For more information, please contact [email protected]. To the Graduate Council: I am submitting herewith a dissertation written by Jordan Toby Bird entitled "Singled Out: Genomic analysis of uncultured microbes in marine sediments." I have examined the final electronic copy of this dissertation for form and content and recommend that it be accepted in partial fulfillment of the equirr ements for the degree of Doctor of Philosophy, with a major in Microbiology. Karen G. Lloyd, Major Professor We have read this dissertation and recommend its acceptance: Mircea Podar, Andrew D. Steen, Erik R. Zinser Accepted for the Council: Dixie L. Thompson Vice Provost and Dean of the Graduate School (Original signatures are on file with official studentecor r ds.) Singled Out: Genomic analysis of uncultured microbes in marine sediments A Dissertation Presented for the Doctor of Philosophy Degree The University of Tennessee, Knoxville Jordan Toby Bird December 2017 Copyright © 2017 by Jordan Bird All rights reserved.
    [Show full text]
  • Identification of CDP-Archaeol Synthase, a Missing Link of Ether Lipid Biosynthesis in Archaea
    Chemistry & Biology Article Identification of CDP-Archaeol Synthase, a Missing Link of Ether Lipid Biosynthesis in Archaea Samta Jain,1,2,4 Antonella Caforio,1,2 Peter Fodran,3 Juke S. Lolkema,1,2 Adriaan J. Minnaard,3 and Arnold J.M. Driessen1,2,* 1Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9747 AG Groningen, the Netherlands 2Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, the Netherlands 3Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 7, 9747 AG Groningen, the Netherlands 4Present address: Department of Medicine, Section of Infectious Diseases, Boston University School of Medicine, Boston, MA 02118, USA *Correspondence: [email protected] http://dx.doi.org/10.1016/j.chembiol.2014.07.022 SUMMARY composition (Lombard et al., 2012a). Understanding the bio- synthetic pathways leading to the formation and regulation of Archaeal membrane lipid composition is distinct membrane lipid composition would help decipher the unknown from Bacteria and Eukarya, consisting of isoprenoid aspects of early evolution. Although ether phospholipids or fatty chains etherified to the glycerol carbons. Biosyn- acid based ether lipids are also found in a few bacteria and thesis of these lipids is poorly understood. Here we eukarya (Lorenzen et al., 2014), they differ from the isoprenoid identify and characterize the archaeal membrane derived archaeal ether lipids. The unique structure of archaeal protein CDP-archaeol synthase (CarS) that catalyzes membrane lipids is believed to be vital for the adaptation of these organisms to the extreme environmental conditions the transfer of the nucleotide to its specific archaeal (Koga and Morii, 2007; van de Vossenberg et al., 1998), but lipid substrate, leading to the formation of a CDP- this basic lipid architecture is found in all archaea including the activated precursor (CDP-archaeol) to which polar mesophilic Thaumarchaeota.
    [Show full text]
  • Green and Sustainable Valorization of Bioactive Phenolic Compounds from Pinus By-Products
    molecules Review Green and Sustainable Valorization of Bioactive Phenolic Compounds from Pinus By-Products Pedro Ferreira-Santos , Elisa Zanuso , Zlatina Genisheva, Cristina M. R. Rocha and José A. Teixeira * CEB—Centre of Biological Engineering, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; [email protected] (P.F.-S.); [email protected] (E.Z.); [email protected] (Z.G.); [email protected] (C.M.R.R.) * Correspondence: [email protected]; Tel.: +253-604-406 Academic Editor: Vassiliki Oreopoulou Received: 2 June 2020; Accepted: 23 June 2020; Published: 25 June 2020 Abstract: In Europe, pine forests are one of the most extended forests formations, making pine residues and by-products an important source of compounds with high industrial interest as well as for bioenergy production. Moreover, the valorization of lumber industry residues is desirable from a circular economy perspective. Different extraction methods and solvents have been used, resulting in extracts with different constituents and consequently with different bioactivities. Recently, emerging and green technologies as ultrasounds, microwaves, supercritical fluids, pressurized liquids, and electric fields have appeared as promising tools for bioactive compounds extraction in alignment with the Green Chemistry principles. Pine extracts have attracted the researchers’ attention because of the positive bioproperties, such as anti-inflammatory, antimicrobial, anti-neurodegenerative, antitumoral, cardioprotective, etc., and potential industrial applications as functional foods, food additives as preservatives, nutraceuticals, pharmaceuticals, and cosmetics. Phenolic compounds are responsible for many of these bioactivities. However, there is not much information in the literature about the individual phenolic compounds of extracts from the pine species.
    [Show full text]