DMD #48819

Supplemental Data

Title: Application of Hybrid Approach Based on Empirical and Physiological Concept for

Predicting Pharmacokinetics in Humans

-Usefulness of Exponent on Prospective Evaluation of Predictability-

Authors: Hiroyuki Sayama, Hiroshi Komura, Motohiro Kogayu

Journal Title: Drug Metabolism and Disposition

1

DMD #48819

Supplemental Table 1 In vitro and in vivo data for allometric scaling of CL and Vss

fup RB in vitro CLint (mL/min/kg) in vivo CL (mL/min/kg) in vivo Vss (mL/kg) Refference Human Human Human Dog Monkey Rabbit Rat Mouse Human Dog Monkey Rabbit Rat Mouse Human Dog Monkey Rabbit Rat Mouse Acivicin ------580 500 600 -- 650 930 63 Alfentanil ------800 953 -- 1069 975 -- 8 Amiodarone ------66000 4600 5110 -- 72300 -- 23 Amlodipine ------21000 25000 -- -- 32000 27000 101 Amphotericin B ------4011 5025 -- 1855 2300 3121 85 Amsacrine ------1560 2800 -- 1700 4500 7420 80 Antipyrine 1 1 0.28 3.95 -- 4.07 1.58 -- 0.62 a 8.18 a -- 7.32 a 3.53 a -- 584 a 738 a -- 903 a 657 a 720 5, 6, 12, 52, 76, 91, 118 Biperiden ------6200 9500 3600 19300 14000 -- 23, 70 Bosentan -- -- 0.68 0.87 -- 15.89 5.71 7.91 2.00 1.3 -- 72 38.1 31.43 ------49, 52 Caffeine 0.96 1 0.40 0.83 -- 1.18 2.55 -- 1.32 a 1.83 a -- 5.03 a 5.02 a -- 614 a 887 a 830 508 a 763 a 760 9, 10, 11, 17, 52, 81, 98 Cefazolin ------107 271 128 142 225 192 89 Cefmetazole ------143 235 138 220 490 368 89 Cefoperazone ------144 277 126 237 287 309 89 Cefotetan ------133 249 167 237 250 241 89 Cefpiramide ------111 454 100 109 264 660 89 Ceftizoxime ------200 239 a 268 a -- 392 a 653 a 67, 73 Chlordiazepoxide ------250 2540 -- -- 1454 -- 73, 86, 102 Chlorpheniramine ------3170 4050 -- 10100 -- -- 90 ------11200 18600 8000 -- 29100 -- 23, 90 Ciprofloxacin ------2100 4014 a 1800 3093 a 4600 -- 1, 2, 73, 95 Cyclosporine ------1450 1650 -- 3160 4540 2733 a 3, 27, 66, 88, 110 Diazepam 0.032 0.58 2.16 121.2 -- -- 92.23 -- 0.5 a 21.4 a -- -- 84.22 a -- 1085 a 7136 a -- 5500 4715 a -- 43, 93 Diclofenac ------59 a 189 a 170 57 370 -- 64, 84, 103, 107, 117 a Recalculated from plasma concentration-time profiles reported in the reference articles.

2

DMD #48819

Supplemental Table 1 Continued

fup RB in vitro CLint (mL/min/kg) in vivo CL (mL/min/kg) in vivo Vss (mL/kg) Refference Human Human Human Dog Monkey Rabbit Rat Mouse Human Dog Monkey Rabbit Rat Mouse Human Dog Monkey Rabbit Rat Mouse Didanosine ------810 950 920 -- 990 900 41 Diltiazem 0.2 1.03 5.86 10.66 -- -- 191.49 -- 13.02 a 33.33 a -- -- 89.23 a -- 3110 a 3581 a 3500 -- 3400 a -- 23, 33, 54, 69, 86, 93 Dofetilide ------2800 4000 -- -- 3100 6300 97 Enprofylline ------510 638 -- 206 342 452 108 Epiroprim 0.11 1.1 1.85 2.76 8.45 -- 45.24 38.21 3.57 a 10.82 a 24.82 a -- 42.30 a 151.48 a 2501 a 8006 a 3151 a -- 4122 a 8356 a 60 Erythromycin ------886 2700 -- 6875 8400 4500 18 Ethosuximide ------630 590 800 960 700 2000 5, 21, 79 Felodipine 0.004 23.13 56.06 -- -- 127.37 -- 8.9 a 20.73 a -- -- 90.42 a -- 3262 a 2559 a -- -- 9006 a -- 4, 20, 93, 109 Fentanyl ------5207 10533 -- -- 4574 -- 8, 86 Fexofenadine ------771 -- 302 -- 4254 -- 37, 47, 75 Flindokalner ------2350 3200 5400 -- 3400 -- 23 Fluconazole ------710 700 -- 880 800 1100 39 Flunitrazepam ------4580 13000 -- -- 3810 -- 86, 102 Fluvastatin ------420 700 3700 290 7300 1000 56, 104, 105, 106 Garenoxacin ------1000 1300 1000 -- 900 -- 23 Gentamicin ------330 320 -- 338 a 398 a -- 73, 87, 99, 115 ------18000 37000 6600 -- 10400 -- 23 Interferon-alpha A ------449 190 190 130 261 233 48 Ketamine ------2700 4526 -- -- 3929 -- 8 Lamifiban ------290 750 290 -- 240 -- 50 Lamivudine ------1300 870 1160 -- 2700 -- 41 Lidocaine ------1080 -- 706 -- 3110 -- 90, 94 Lorazepam -- -- 0.93 71.46 -- -- 16.69 -- 1.1 26.1 -- -- 27.2 ------93 a Recalculated from plasma concentration-time profiles reported in the reference articles.

3

DMD #48819

Supplemental Table 1 Continued

fup RB in vitro CLint (mL/min/kg) in vivo CL (mL/min/kg) in vivo Vss (mL/kg) Refference Human Human Human Dog Monkey Rabbit Rat Mouse Human Dog Monkey Rabbit Rat Mouse Human Dog Monkey Rabbit Rat Mouse Metazosin ------426 -- -- 847 5955 7100 46 Methadone ------3800 7600 8200 -- 7580 -- 23 Methohexitone ------4664 1815 -- 1320 3871 -- 8 Methotrexate ------308 377 -- 200 1095 a 2194 13, 14, 28, 36, 59 Mibefradil -- -- 2.84 24.48 -- 59.13 23.72 -- 7 36 -- 64 94 ------52 Midazolam 0.019 0.55 28.68 130.28 -- 73.92 483.12 -- 4.4 a 48.95 a -- 14.23 a 59.62 a -- 713 a 1582 a 3350 734 a 1648 a 2000 26, 30, 52, 72, 74, 81 Mifepristone ------300 10500 32500 -- 4300 -- 23 Mofarotene -- -- 6.17 3.95 -- -- 10.1 7.25 11 5.8 -- -- 16 27 ------52 Moxalactam ------138 197 162 234 276 241 89 Moxifloxacin ------2000 2700 4900 -- 3600 3700 96 Naloxone -- -- 51.5 126.73 -- -- 239.8 -- 25 42.5 -- -- 48.8 ------93 Napsagatran ------343 690 263 986 615 -- 53 Nicardipine 0.068 0.71 22.51 63.17 -- -- 118.58 -- 7.68 a 38.65 a -- -- 29.77 a -- 489 a 797 a 1375 a -- 808 a -- 31, 71, 86, 93 Nifedipine ------780 1150 500 -- 127 -- 23 Nilvadipine -- -- 41.02 43.03 -- -- 130.44 -- 20 15.3 -- -- 94 ------93 Nitrendipine 0.02 -- 37.01 31.98 -- -- 105.41 -- 19.23 a 17.17 a -- -- 11.28 a -- 5731 a 1543 a -- 377 a -- 45, 65, 93 Ofloxacin ------1780 1150 1600 -- 1660 -- 23 Oleandomycin ------771 1600 -- -- 6800 5500 18 Oxazepam 0.043 -- 1.23 4.74 -- -- 5.71 -- 1.58 a 4.33 a -- -- 20.22 a -- 861 a 1418 a -- -- 1258 a -- 16, 86, 93, 100, 112 Pentobarbital ------990 -- -- 1300 1640 -- 38, 91 Phencyclidine ------6200 17000 -- 23200 9000 5 Prednisolone ------860 -- -- 1370 1370 -- 24, 38, 73 Propafenone 0.024 0.7 5.52 7.80 -- -- 9.83 14.16 14.63 a 28.7 a -- -- 34.67 a 142.37 a 3492 a 2748 a -- 4500 1919 a 3130 a 34, 44, 82, 83, 86 a Recalculated from plasma concentration-time profiles reported in the reference articles.

4

DMD #48819

Supplemental Table 1 Continued

fup RB in vitro CLint (mL/min/kg) in vivo CL (mL/min/kg) in vivo Vss (mL/kg) Refference Human Human Human Dog Monkey Rabbit Rat Mouse Human Dog Monkey Rabbit Rat Mouse Human Dog Monkey Rabbit Rat Mouse 0.068 0.81 12.95 75.01 -- -- 223.99 10.15 a 40.9 a -- -- 96.8 a -- 2421 a 1544 a 5308 a -- 4720 a -- 7, 22, 29, 52, 91 ------3500 -- 427 5030 5800 5840 40, 90, 114 Ranitidine ------1200 1722 a -- -- 216 a -- 19, 35, 73 Recainam ------1400 1200 3800 3600 3200 -- 92 Remoxipride ------700 1600 1100 -- 4500 3200 23, 116 Sematilide ------740 1400 -- 1813 2167 -- 32 Semaxanib ------980 1400 1450 -- 1600 -- 23 Sildenafil ------1200 5200 -- -- 1100 1000 113 Stavudine ------530 -- 920 -- 700 760 41 Sumatriptan ------1635 2027 -- 4143 2642 -- 15 Susalimod ------120 190 80 170 1200 310 77 ------205 1778 -- 2711 2857 -- 111 Theophylline 0.51 0.83 0.34 0.59 -- 0.89 0.79 -- 0.82 a 1.52 a -- 3.18 a 1.9 a -- 579 a 710 a -- 923 a 857 a 840 5, 25, 42, 52, 57, 86, 119 Thiopentone ------1757 1499 -- 613 943 -- 8 Tolcapone 0.001 0.6 3.7 5.53 -- 16.26 11.42 -- 1.43 a 1.45 a -- 10.82 a 5.7 a -- 124 a 220 a -- 153 a 98 a -- 51 Tolterodine ------1800 1500 -- -- 23000 16000 78 Triazolam ------1260 1400 -- -- 2240 -- 86, 102 Valproic Acid ------150 306 -- -- 657 331 58 Verapamil 0.082 0.84 4.61 8.36 -- -- 5.19 -- 11.78 a 23.43 a -- -- 34.22 a -- 3329 a 3582 a -- -- 3016 a -- 55, 61, 62, 83, 86 Vinorelbine ------75600 49600 11400 -- 24400 -- 23 Warfarin ------122 148 143 -- 113 -- 68 Zalcitabine ------540 -- 870 -- 1540 590 41 Zidovudine ------1400 1000 1080 -- 1610 730 41 a Recalculated from plasma concentration-time profiles reported in the reference articles.

5

DMD #48819

Supplemental Table 2 Physiological Parameters used in the PBPK model Fraction Tissue Volume Tissue Concentration Tissue to Plasma Ratio Tissue Volume Blood Flow Tissue Neutral Neutral Extracellular Intracellular of Acidic Phospholipids (mL/kg) (mL/min/kg) Albumin Lipoprotein Lipid Phospholipid Water Water (mg/g) Venous blood 51.4 ------Arterial blood 25.7 ------Lung 7.6 68.3 0.022 0.0128 0.336 0.446 3.91 0.212 0.168 Adipose 233.8 3.7 0.853 0.0016 0.135 0.017 0.4 0.049 0.068 Bone 105.1 3.7 0.017 0.0017 0.1 0.346 0.67 0.1 0.05 Brain 20 8.9 0.039 0.0015 0.162 0.62 0.4 0.048 0.041 Heart 4.7 3 0.014 0.0111 0.32 0.456 2.25 0.157 0.16 Muscle 400 12.6 0.01 0.0072 0.118 0.63 1.53 0.064 0.059 Kidney 4.4 14.1 0.012 0.0242 0.273 0.483 5.03 0.13 0.137 Liver 25.7 4.5 0.014 0.024 0.161 0.573 4.56 0.086 0.161 Spleen 2.6 1.1 0.0077 0.0113 0.207 0.579 3.18 0.097 0.207 Small intestine 17.1 13 0.038 0.0125 0.282 0.475 2.41 0.158 0.141 Skin 37.1 3.7 0.06 0.0044 0.382 0.291 1.32 0.277 0.096

6

DMD #48819

20 AC5 Mean 2.09 ± 2.37 Mean 7.89 ± 7.30 4 15 Range -3.65 to 8.95 Range 0.50 to 25.0 3 10 2 Frequency 5 1

0 0 -3 -1 1 3 5 7 9 1 5 9 13 17 21 25

20 BD5 Mean 2.99 ± 1.73 Mean 6.64 ± 6.04 4 15 Range -0.04 to 5.30 Range 0.50 to 19.2 3 10 2 Frequency 5 1

0 0 -3 -1 1 3 5 7 9 1 5 9 13 17 21 25 clogP Observed Human CL (mL/min/kg)

Supplemental Figure 1

A and B, Distribution of clogP on the dataset of all compounds (A) and 15 model compounds used for the prediction of plasma concentration-time profiles in humans (B). C and D,

Distribution of observed human CL on the dataset of all compounds (C) and 15 model compounds used for the prediction of plasma concentration-time profiles in humans (D).

7

DMD #48819

Supplemental Figure 2

Scheme of the generic PBPK model used for simulation of plasma concentration profiles. For more details, refer to Materials and Methods.

8

DMD #48819

References

1: Abadía AR, Aramayona JJ, Muñoz MJ, Pla Delfina JM, Saez MP, and Bregante MA (1994)

Disposition of ciprofloxacin following intravenous administration in dogs. J Vet

Pharmacol Ther 17: 384–388.

2: Aramayona JJ, Mora J, Fraile LJ, García MA, Abadía AR, and Bregante MA (1996)

Penetration of enrofloxacin and ciprofloxacin into breast milk, and pharmacokinetics of

the drugs in lactating rabbits and neonatal offspring. Am J Vet Res 57: 547–553.

3: Awni WM and Sawchuk RJ (1985) The pharmacokinetics of cyclosporine. I. Single dose

and constant rate infusion studies in the rabbit. Drug Metab Dispos 13: 127–132.

4: Bäärnhielm C, Dahlbäck H, and Skånberg I (1986) In vivo pharmacokinetics of felodipine

predicted from in vitro studies in rat, dog and man. Acta Pharmacol Toxicol 59: 113–122.

5: Bachmann K (1989) Predicting toxicokinetic parameters in humans from toxicokinetic data

acquired from three small mammalian species. J Appl Toxicol 9: 331–338.

6: Bekersky I, Maggio AC, Mattaliano V Jr, Boxenbaum HG, Maynard DE, Cohn PD, and

Kaplan SA (1977) Influence of phenobarbital on the disposition of clonazepam and

antipyrine in the dog. J Pharmacokinet Biopharm 5: 507–512.

7: Belpaire FM, de Smet F, Vynckier LJ, Vermeulen AM, Rosseel MT, Bogaert MG, and

Chauvelot-Moachon L (1990) Effect of aging on the pharmcokinetics of ,

metoprolol and propranolol in the rat. J Pharmacol Exp Ther 254: 116–122.

8: Björkman S and Redke F (2000) Clearance of fentanyl, alfentanil, methohexitone,

thiopentone and ketamine in relation to estimated hepatic blood flow in several animal

9

DMD #48819

species: application to prediction of clearance in man. J Pharm Pharmacol 52:

1065–1074.

9: Blanchard J and Sawers SJ (1983) Comparative pharmacokinetics of caffeine in young and

elderly men. J Pharmacokinet Biopharm 11: 109–126.

10: Bonati M, Latini R, Tognoni G, Young JF, and Garattini S (1984) Interspecies comparison

of in vivo caffeine pharmacokinetics in man, monkey, rabbit, rat, and mouse. Drug Metab

Rev 15: 1355–1383.

11: Boothe DM, Cullen JM, Calvin JA, Jenkins WL, Brown SA, Green RA, and Corrier DE

(1994) Antipyrine and caffeine dispositions in clinically normal dogs and dogs with

progressive liver disease. Am J Vet Res 55: 254–261.

12: Boxenbaum H and Ronfeld R (1983) Interspecies pharmacokinetic scaling and the

Dedrick plots. Am J Physiol 245: R768–775.

13: Bremnes RM, Slørdal L, Wist E, and Aarbakke J (1989) Formation and elimination of

7-hydroxymethotrexate in the rat in vivo after methotrexate administration. Cancer Res

49: 2460–2464.

14: Chen ML and Chiou WL (1983) Pharmacokinetics of methotrexate and

7-hydroxy-methotrexate in rabbits after intravenous administration. J Pharmacokinet

Biopharm 11: 499–513.

15: Cosson VF, Fuseau E, Efthymiopoulos C, and Bye A (1997) Mixed effect modeling of

sumatriptan pharmacokinetics during drug development. I: Interspecies allometric scaling.

J Pharmacokinet Biopharm 25: 149–167.

10

DMD #48819

16: Dingemanse J, Sollie FA, Breimer DD, and Danhof M (1988) Pharmacokinetic modeling

of the anticonvulsant response of oxazepam in rats using the pentylenetetrazol threshold

concentration as pharmacodynamic measure. J Pharmacokinet Biopharm 16: 203–228.

17: Dorrbecker SH, Ferraina RA, Dorrbecker BR, and Kramer PA (1987) Caffeine and

paraxanthine pharmacokinetics in the rabbit: concentration and product inhibition effects.

J Pharmacokinet Biopharm 15: 117–132.

18: Duthu GS (1985) Interspecies correlation of the pharmacokinetics of erythromycin,

oleandomycin, and tylosin. Journal of pharmaceutical sciences, 74: 943–946.

19: Eddershaw PJ, Chadwick AP, Higton DM, Fenwick SH, Linacre P, Jenner WN, Bell JA,

and Manchee GR (1996) Absorption and disposition of ranitidine hydrochloride in rat and

dog. Xenobiotica 26: 947–956.

20: Edgar B, Regårdh CG, Lundborg P, Romare S, Nyberg G, and Rönn O (1978)

Pharmacokinetic and pharmacodynamic studies of felodipine in healthy subjects after

various single, oral and intravenous doses. Biopharm Drug Dispos 8: 235–248.

21: el Sayed MA, Löscher W, and Frey HH (1978) Pharmacokinetics of ethosuximide in the

dog. Arch Int Pharmacodyn Ther 234: 180–192.

22: Evans GH, Nies AS, and Shand DG (1973) The disposition of propranolol. 3. Decreased

half-life and volume of distribution as a result of plasma binding in man, monkey, dog

and rat. J Pharmacol Exp Ther 186: 114–122.

23: Evans CA, Jolivette LJ, Nagilla R, and Ward KW (2006) Extrapolation of preclinical

pharmacokinetics and molecular feature analysis of “discovery-like” molecules to predict

11

DMD #48819

human pharmacokinetics. Drug Metab Dispos 34: 1255–1265.

24: Garg V and Jusko WJ (1994) Effects of indomethacin on the pharmacokinetics and

pharmacodynamics of prednisolone in rats. J Pharm Sci 83: 747–750.

25: Gascón AR, Calvo B, Hernández RM, Domínguez-Gil A, and Pedraz JL (1994)

Interspecies scaling of cimetidine-theophylline pharmacokinetic interaction: interspecies

scaling in pharmacokinetic interactions. Pharm Res 11: 945–950.

26: Granvil CP, Yu AM, Elizondo G, Akiyama TE, Cheung C, Feigenbaum L, Krausz KW,

and Gonzalez FJ (2003) Expression of the human CYP3A4 gene in the small intestine of

transgenic mice: in vitro metabolism and pharmacokinetics of midazolam. Drug Metab

Dispos 31: 548–558.

27: Gridelli B, Scanlon L, Pellicci R, LaPointe R, DeWolf A, Seltman H, Diven W, Shaw B,

Starzl T, and Sanghvi A (1986) Cyclosporine metabolism and pharmacokinetics following

intravenous and oral administration in the dog. Transplantation 41: 388–391.

28: Guo P, Wang X, Liu L, Belinsky MG, Kruh GD, and Gallo JM (2007) Determination of

methotrexate and its major metabolite 7-hydroxymethotrexate in mouse plasma and brain

tissue by liquid chromatography-tandem mass spectrometry. J Pharm Biomed Anal 43:

1789–1795.

29: Hayes A and Cooper RG. (1971) Studies on the absorption, distribution and excretion of

propranolol in rat, dog and monkey. J Pharmacol Exp Ther 176: 302–311.

30: Heizmann P, Eckert M, and Ziegler WH (1983) Pharmacokinetics and bioavailability of

midazolam in man. Br J Clin Pharmacol 16 Suppl 1, 43S–49S.

12

DMD #48819

31: Higuchi S and Shiobara Y (1980) Comparative pharmacokinetics of nicardipine

hydrochloride, a new vasodilator, in various species. Xenobiotica 10: 447–454.

32: Hinderling PH, Dilea C, Koziol T, and Millington G (1993) Comparative kinetics of

sematilide in four species. Drug Metab Dispos 21: 662–669.

33: Höglund P and Nilsson LG (1988) Physiological disposition of intravenously

administered 14C-labeled diltiazem in healthy volunteers. Ther Drug monit 10: 401–409.

34: Hollmann M, Brode E, Hotz D, Kaumeier S, and Kehrhahn OH (1983) Investigations on

the pharmacokinetics of propafenone in man. Arzneimittelforschung 33: 763–770.

35: Huang SM, Tsai TR, Yeh PH, and Tsai TH (2005) Measurement of unbound ranitidine in

blood and bile of anesthetized rats using microdialysis coupled to liquid chromatography

and its pharmacokinetic application. J Chromatogr A 1073: 297–302.

36: Hübner G, Sander O, Degner FL, Türck D, and Rau R (1997) Lack of pharmacokinetic

interaction of meloxicam with methotrexate in patients with rheumatoid arthritis. J

Rheumatol 24: 845–851.

37: Jaisue S, Gerber JP, and Davey AK (2010) Pharmacokinetics of fexofenadine following

LPS administration to rats. Xenobiotica 40: 743–750.

38: Jansson R, Bredberg U, and Ashton M (2008) Prediction of drug tissue to plasma

concentration ratios using a measured volume of distribution in combination with

lipophilicity. J Pharm Sci 97: 2324–2339.

39: Jezequel SG (1994) Fluconazole: interspecies scaling and allometric relationships of

pharmacokinetic properties. J Pharm Pharmacol 46: 196–199.

13

DMD #48819

40: Karbwang J, Davis TM, Looareesuwan S, Molunto P, Bunnag D, and White NJ (1993) A

comparison of the pharmacokinetic and pharmacodynamic properties of quinine and

quinidine in healthy Thai males. Br J Clin Pharmacol 35: 265–271.

41: Kaul S, Dandekar KA, Schilling BE, and Barbhaiya RH (1999) Toxicokinetics of

2’,3'-didehydro-3'-deoxythymidine, stavudine (D4T) Drug Metab Dispos 27: 1–12.

42: Kawai H, Kokubun S, Matsumoto T, Kojima J, and Onodera K (2000) Pharmacokinetic

study of theophylline in dogs after intravenous administration with and without

ethylenediamine. Methods Find Exp Clin Pharmacol 22: 179–184.

43: Klotz U, Antonin KH, and Bieck PR (1976) Pharmacokinetics and plasma binding of

diazepam in man, dog, rabbit, guinea pig and rat. J Pharmacol Exp Ther 199: 67–73.

44: Komura H and Iwaki M (2005) Nonlinear pharmacokinetics of propafenone in rats and

humans: application of a substrate depletion assay using hepatocytes for assessment of

nonlinearity. Drug Metab Dispos 33: 726–732.

45: Krause HP, Ahr HJ, Beermann D, Siefert HM, Suwelack D, and Weber H (1988) The

pharmacokinetics of nitrendipine. I. Absorption, plasma concentrations, and excretion

after single administration of [14C]nitrendipine to rats and dogs. Arzneimittelforschung

38: 1593–1599.

46: Lapka R, Rejholec V, Sechser T, Peterková M, and Smíd M (1989) Interspecies

pharmacokinetic scaling of metazosin, a novel alpha-adrenergic antagonist. Biopharm

Drug Dispos 10: 581–589.

47: Lappin G, Shishikura Y, Jochemsen R, Weaver RJ, Gesson C, Houston B, Oosterhuis B,

14

DMD #48819

Bjerrum OJ, Rowland M, and Garner C (2010) Pharmacokinetics of fexofenadine:

evaluation of a microdose and assessment of absolute oral bioavailability. Eur J Pharm

Sci 40: 125–131.

48: Lave T, Levet-Trafit B, Schmitt-Hoffmann AH, Morgenroth B, Richter W, and Chou RC

(1995) Interspecies scaling of interferon disposition and comparison of allometric scaling

with concentration-time transformations. J Pharm Sci 84: 1285–1290.

49: Lave T, Coassolo P, Ubeaud G, Brandt R, Schmitt C, Dupin S, Jaeck D, and Chou RC

(1996) Interspecies scaling of bosentan, a new endothelin receptor antagonist and

integration of in vitro data into allometric scaling. Pharm Res 13: 97–101.

50: Lave T, Saner A, Coassolo P, Brandt R, Schmitt-Hoffmann AH, and Chou RC (1996)

Animal pharmacokinetics and interspecies scaling from animals to man of lamifiban, a

new platelet aggregation inhibitor. J Pharm Pharmacol 48: 573–577.

51: Lave T, Dupin S, Schmitt M, Kapps M, Meyer J, Morgenroth B, Chou RC, Jaeck D, and

Coassolo P (1996) Interspecies scaling of tolcapone, a new inhibitor of

catechol-O-methyltransferase (COMT) Use of in vitro data from hepatocytes to predict

metabolic clearance in animals and humans. Xenobiotica 26: 839–851.

52: Lave T, Dupin S, Schmitt C, Chou RC, Jaeck D, and Coassolo P (1997) Integration of in

vitro data into allometric scaling to predict hepatic metabolic clearance in man:

application to 10 extensively metabolized drugs. J Pharm Sci 86: 584–590.

53: Lavé T, Portmann R, Schenker G, Gianni A, Guenzi A, Girometta MA, and Schmitt M

(1999) Interspecies pharmacokinetic comparisons and allometric scaling of napsagatran,

15

DMD #48819

a low molecular weight thrombin inhibitor. J Pharm Pharmacol 51: 85–91.

54: Lee YH, Lee MH, and Shim CK (1992) Decreased systemic clearance of diltiazem with

increased hepatic metabolism in rats with uranyl nitrate-induced acute renal failure.

Pharm Res 9: 1599–1606.

55: Lee YH, Perry BA, Lee HS, Kunta JR, Sutyak JP, and Sinko PJ (2001) Differentiation of

gut and hepatic first-pass effect of drugs: 1. Studies of verapamil in ported dogs. Pharm

Res 18: 1721–1728.

56: Lindahl A, Sjöberg A, Bredberg U, Toreson H, Ungell AL, and Lennernäs H (2004)

Regional intestinal absorption and biliary excretion of fluvastatin in the rat: possible

involvement of mrp2. Mol Pharm 1: 347–356.

57: Lombardi TP, Bertino JS Jr, Goldberg A, Middleton E Jr, and Slaughter RL (1987) The

effects of a beta-2 selective adrenergic agonist and a beta-nonselective antagonist on

theophylline clearance.J Clin Pharmacol 27: 523–529.

58: Löscher W (1978) Serum protein binding and pharmacokinetics of valproate in man, dog,

rat and mouse. J Pharmacol Exp Ther 204: 255–261.

59: Lu GW, Jun HW, Dzimianski MT, Qiu HC, and McCall JW (1995) Pharmacokinetic

studies of methotrexate in plasma and synovial fluid following i.v. bolus and topical

routes of administration in dogs. Pharm Res 12: 1474–1477.

60: Luttringer O, Theil FP, Poulin P, Schmitt-Hoffmann AH, Guentert TW, and Lavé T (2003)

Physiologically based pharmacokinetic (PBPK) modeling of disposition of epiroprim in

humans. J Pharm Sci 92: 1990–2007.

16

DMD #48819

61: Manitpisitkul P and Chiou WL (1993) Intravenous verapamil kinetics in rats: marked

arteriovenous concentration difference and comparison with humans. Biopharm Drug

Dispos 14: 555–566.

62: McAllister RG Jr and Kirsten EB (1982) The pharmacology of verapamil. IV. Kinetic and

dynamic effects after single intravenous and oral doses. Clin Pharmacol Ther 31:

418–426.

63: McGovren JP, Williams MG, and Stewart JC (1988) Interspecies comparison of acivicin

pharmacokinetics. Drug Metab Dispos 16: 18–22.

64: Merle-Melet M, Seta N, Farinotti R, and Carbon C (1989) Reduction in biliary excretion

of ceftriaxone by diclofenac in rabbits. Antimicrob Agents Chemother 33: 1506–1510.

65: Mikus G, Fischer C, Heuer B, Langen C, and Eichelbaum M (1987) Application of stable

isotope methodology to study the pharmacokinetics, bioavailability and metabolism of

nitrendipine after i.v. and p.o. administration. Br J Clin Pharmacol 24: 561–569.

66: Min DI, Lee M, Ku YM, and Flanigan M (2000) Gender-dependent racial difference in

disposition of cyclosporine among healthy African American and white volunteers. Clin

Pharmacol Ther 68: 478–486.

67: Murakawa T, Sakamoto H, Fukada S, Nakamoto S, Hirose T, Itoh N, and Nishida M

(1980) Pharmacokinetics of ceftizoxime in animals after parenteral dosing. Antimicrob

Agents Chemother 17: 157–164.

68: Nagashima R and Levy G (1969) Comparative pharmacokinetics of coumarin

anticoagulants. V. Kinetics of warfarin elimination in the rat, dog, and rhesus monkey

17

DMD #48819

compared to man. J Pharm Sci 58: 845–849.

69: Nakamura S, Suzuki T, Sugawara Y, Usuki S, Ito Y, Kume T, Yoshikawa M, Endo H,

Ohashi M, and Harigaya S (1987) Metabolic fate of diltiazem. Distribution, excretion and

protein binding in rat and dog. Arzneimittelforschung 37: 1244–1252.

70: Nakashima E, Yokogawa K, Ichimura F, Kurata K, Kido H, Yamaguchi N, and Yamana T

(1987) A physiologically based pharmacokinetic model for biperiden in animals and its

extrapolation to humans. Chem Pharm Bull 35: 718–725.

71: Naritomi Y, Terashita S, Kimura S, Suzuki A, Kagayama A, and Sugiyama Y (2001)

Prediction of human hepatic clearance from in vivo animal experiments and in vitro

metabolic studies with liver microsomes from animals and humans. Drug Metab Dispos

29: 1316–1324.

72: Nishimura T, Amano N, Kubo Y, Ono M, Kato Y, Fujita H, Kimura Y, and Tsuji A (2007)

Asymmetric intestinal first-pass metabolism causes minimal oral bioavailability of

midazolam in cynomolgus monkey. Drug Metab Dispos 35: 1275–1284.

73: Obach RS, Lombardo F, and Waters NJ (2008) Trend analysis of a database of

intravenous pharmacokinetic parameters in humans for 670 drug compounds. Drug

Metab Dispos 36: 1385–1405.

74: Odou P, Barthélémy C, Chatelier D, Luyckx M, Brunet C, Dine T, Gressier B, Cazin M,

Cazin JC, and Robert H (1999) Pharmacokinetics of midazolam: comparison of

sublingual and intravenous routes in rabbit. Eur J Drug Metab Pharmacokinet 24: 1–7.

75: Ogasawara A, Kume T, and Kazama E (2007) Effect of oral ketoconazole on intestinal

18

DMD #48819

first-pass effect of midazolam and fexofenadine in cynomolgus monkeys. Drug Metab

Dispos 35: 410–418.

76: Ohkawa Y, Matsumura M, Kurosaki Y, Kurumi M, Sasaki K, and Nakayama T (2001)

Effects of 4-hydroxyantipyrine and its 4-O-sulfate on antipyrine as biodistribution

promoter. Biol Pharm Bull 24: 529–534.

77: Påhlman I (1998) Pharmacokinetics of susalimod, a highly biliary-excreted

sulphasalazine analogue, in various species. Nonpredictable human clearance by

allometric scaling. Pharm Pharmacol Commun 4: 493–498.

78: Påhlman I, Kankaanranta S, and Palmér L (2001) Pharmacokinetics of tolterodine, a

muscarinic receptor antagonist, in mouse, rat and dog. Interspecies relationship

comparing with human pharmacokinetics. Arzneimittelforschung 51: 134–144.

79: Patel IH, Levy RH, and Bauer TG (1975) Pharmacokinetic properties of ethosuximide in

monkeys. I. Single-dose intravenous and oral administration. Epilepsia 16: 705–716.

80: Paxton JW, Kim SN, and Whitfield LR (1990) Pharmacokinetic and toxicity scaling of

the antitumor agents amsacrine and CI-921, a new analogue, in mice, rats, rabbits, dogs,

and humans. Cancer Res, 50: 2692–2697.

81: Poulin P and Theil FP (2002) Prediction of pharmacokinetics prior to in vivo studies. 1.

Mechanism-based prediction of volume of distribution. J Pharm Sci 91: 129–156.

82: Puigdemont A, Guitart R, de Mora F, and Arboix M (1991) Prediction of the disposition

of propafenone in humans and dogs from pharmacokinetic parameters in other animal

species. J Pharm Sci 80: 1106–1109.

19

DMD #48819

83: Reder-Hilz B, Ullrich M, Ringel M, Hewitt N, Utesch D, Oesch F, and Hengstler JG.

(2004) Metabolism of propafenone and verapamil by cryopreserved human, rat, mouse

and dog hepatocytes: comparison with metabolism in vivo. Naunyn Schmiedebergs Arch

Pharmacol 369: 408–417.

84: Reyes-Gordillo K, Muriel P, Castañeda-Hernández G, and Favari L (2007)

Pharmacokinetics of diclofenac in rats intoxicated with CCL4, and in the regenerating

liver. Biopharm Drug Dispos 28: 415–422.

85: Robbie G and Chiou WL (1998) Elucidation of human amphotericin B pharmacokinetics:

identification of a new potential factor affecting interspecies pharmacokinetic scaling.

Pharm Res 15: 1630–1636.

86: Rodgers T and Rowland M (2007) Mechanistic approaches to volume of distribution

predictions: understanding the processes. Pharm Res 24: 918–933.

87: Ross BP, DeCruz SE, Lynch TB, Davis-Goff K, and Toth I (2004) Design, synthesis, and

evaluation of a liposaccharide drug delivery agent: application to the gastrointestinal

absorption of gentamicin. J Med Chem 47: 1251–1258.

88: Sangalli L, Bortolotti A, Jiritano L, and Bonati M (1988) Cyclosporine pharmacokinetics

in rats and interspecies comparison in dogs, rabbits, rats, and humans. Drug Metab

Dispos 16: 749–753.

89: Sawada Y, Hanano M, Sugiyama Y, and Iga T (1984) Prediction of the disposition of

beta-lactam antibiotics in humans from pharmacokinetic parameters in animals. J

Pharmacokinet Biopharm 12: 241–261.

20

DMD #48819

90: Sawada Y, Hanano M, Sugiyama Y, Harashima H, and Iga T (1984) Prediction of the

volumes of distribution of basic drugs in humans based on data from animals. J

Pharmacokinet Biopharm 12: 587–596.

91: Sawada Y, Hanano M, Sugiyama Y, and Iga T (1985) Prediction of the disposition of nine

weakly acidic and six weakly basic drugs in humans from pharmacokinetic parameters in

rats. J Pharmacokinet Biopharm 13: 477–492.

92: Scatina JA, Kimmel HB, Weinstein V, Troy SM, Sisenwine SF, and Cayen MN (1990)

Species differences in the pharmacokinetics of recainam, a new anti-arrhythmic drug.

Biopharm Drug Dispos 11: 445–461.

93: Schneider G, Coassolo P, and Lavé T (1999) Combining in vitro and in vivo

pharmacokinetic data for prediction of hepatic drug clearance in humans by artificial

neural networks and multivariate statistical techniques. J Med Chem 42: 5072–5076.

94: Shibasaki S, Kawamata Y, Ueno F, Koyama C, Itho H, Nishigaki R, and Umemura K

(1988) Effects of cimetidine on lidocaine distribution in rats. J Pharmacobiodyn 11:

785–793.

95: Siefert HM, Maruhn D, Maul W, Förster D, and Ritter W (1986) Pharmacokinetics of

ciprofloxacin. 1st communication: absorption, concentrations in plasma, metabolism and

excretion after a single administration of [14C]ciprofloxacin in albino rats and rhesus

monkeys. Arzneimittelforschung 36: 1496–1502.

96: Siefert HM, Domdey-Bette A, Henninger K, Hucke F, Kohlsdorfer C, and Stass HH

(1999) Pharmacokinetics of the 8-methoxyquinolone, moxifloxacin: a comparison in

21

DMD #48819

humans and other mammalian species. J Antimicrob Chemother 43 Suppl B: 69–76.

97: Smith DA, Rasmussen HS, Stopher DA, and Walker DK (1992) Pharmacokinetics and

metabolism of dofetilide in mouse, rat, dog and man. Xenobiotica 22: 709–719.

98: Smith C, Ma F, and Lau CE (1999) Dose independent pharmacokinetics of caffeine after

intravenous administration under a chronic food-limited regimen. Drug Metabol Drug

Interact 15: 83–96.

99: Smith DJ, Gambone LM, Tarara T, Meays DR, Dellamary LA, Woods CM, and Weers J

(2001) Liquid dose pulmonary instillation of gentamicin PulmoSpheres formulations:

tissue distribution and pharmacokinetics in rabbits. Pharm Res 18: 1556–1561.

100: Sonne J, Loft S, Døssing M, Vollmer-Larsen A, Olesen KL, Victor M, Andreasen F, and

Andreasen PB (1988) Bioavailability and pharmacokinetics of oxazepam. European J

Clin Pharmacol 35: 385–389.

101: Stopher DA, Beresford AP, Macrae PV, and Humphrey MJ (1988) The metabolism and

pharmacokinetics of amlodipine in humans and animals. J Cardiovasc Pharmacol 12

Suppl 7: S55–59.

102: Sui X, Sun J, Wu X, Li H, Liu J, and He Z (2008) Predicting the volume of distribution

of drugs in humans. Curr Drug Metab, 9: 574–580.

103: Tang W, Stearns RA, Kwei GY, Iliff SA, Miller RR, Egan MA, Yu NX, Dean DC,

Kumar S, Shou M, Lin JH, and Baillie TA (1999) Interaction of diclofenac and quinidine

in monkeys: stimulation of diclofenac metabolism. J Pharmacol Exp Ther 291:

1068–1074.

22

DMD #48819

104: Tse FL and Labbadia D (1992) Absorption and disposition of fluvastatin, an inhibitor of

HMG-CoA reductase, in the rabbit. Biopharm Drug Dispos 13: 285–294.

105: Tse FL, Smith HT, Ballard FH, and Nicoletti J (1990) Disposition of fluvastatin, an

inhibitor of HMG-COA reductase, in mouse, rat, dog, and monkey. Biopharm Drug

Dispos 11: 519–531.

106: Tse FL, Jaffe JM, and Troendle A (1992) Pharmacokinetics of fluvastatin after single and

multiple doses in normal volunteers. J Clin Pharmacol 32: 630–638.

107: Tsuchiya T, Terakawa M, Ishibashi K, Noguchi H, and Kato R (1980) Disposition and

enterohepatic circulation of diclofenac in dogs. Arzneimittelforschung 30: 1650–1653.

108: Tsunekawa Y, Hasegawa T, Nadai M, Takagi K, and Nabeshima T (1992) Interspecies

differences and scaling for the pharmacokinetics of xanthine derivatives. J Pharm

Pharmacol 44: 594–599.

109: Valle M, Esteban M, Rodríguez-Sasiaín JM, Calvo R, and Aguirre C (1996)

Characteristics of serum protein binding of felodipine. Res Commun Mol Pathol

Pharmacol 94: 73–88.

110: van Herwaarden AE, Smit JW, Sparidans RW, Wagenaar E, van der Kruijssen CM,

Schellens JH, Beijnen JH, and Schinkel AH (2005) Midazolam and cyclosporin a

metabolism in transgenic mice with liver-specific expression of human CYP3A4. Drug

Metab Dispos 33: 892–895.

111: van Hoogdalem EJ, Soeishi Y, Matsushima H, and Higuchi S (1997) Disposition of the

selective alpha1A-adrenoceptor antagonist tamsulosin in humans: comparison with data

23

DMD #48819

from interspecies scaling. J Pharm Sci 86: 1156–1161.

112: Wala EP, Sloan JW, Martin WR, and Pruitt TA (1990) The effects of

flumazenil-precipitated abstinence on the pharmacokinetics of chronic oxazepam in dogs.

Pharmacol Biochem Behav 35: 347–350.

113: Walker DK, Ackland MJ, James GC, Muirhead GJ, Rance DJ, Wastall P, and Wright PA

(1999) Pharmacokinetics and metabolism of sildenafil in mouse, rat, rabbit, dog and man.

Xenobiotica 29: 297–310.

114: Watari N, Wakamatsu A, and Kaneniwa N (1989) Comparison of disposition parameters

of quinidine and quinine in the rat. J Pharmacobiodyn 12: 608–615.

115: Whittem T, Parton K, and Turner K (1996) Effect of polyaspartic acid on

pharmacokinetics of gentamicin after single intravenous dose in the dog. Antimicrob

Agents Chemother 40: 1237–1241.

116: Widman M, Nilsson LB, Bryske B, and Lundström J (1993) Disposition of remoxipride

in different species. Species differences in metabolism. Arzneimittelforschung 43:

287–297.

117: Willis JV, Kendall MJ, Flinn RM, Thornhill DP, and Welling PG (1979) The

pharmacokinetics of diclofenac sodium following intravenous and oral administration.

Eur J Clin Pharmacol 16: 405–410.

118: Witkamp RF, Lohuis JA, Nijmeijer SM, Kolker HJ, Noordhoek J, and van Miert AS

(1991) Species- and sex-related differences in the plasma clearance and metabolite

formation of antipyrine. A comparative study in four animal species: cattle, goat, rat and

24

DMD #48819

rabbit. Xenobiotica 21: 1483–1492.

119: Yu SY, Chung HC, Kim EJ, Kim SH, Lee I, Kim SG, and Lee MG (2002) Effects of

acute renal failure induced by uranyl nitrate on the pharmacokinetics of intravenous

theophylline in rats: the role of CYP2E1 induction in 1,3-dimethyluric acid formation. J

Pharm Pharmacol 54: 1687–1692.

25