MTCR/TEM/2019/Annex 11Th October 2019 MISSILE TECHNOLOGY
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Thermochemical Processes
Thermochemical Processes Principles and Models Thermochemical Processes Principles and Models C.B. Alcock DSc, FRSC OXFORD AUCKLAND BOSTON JOHANNESBURG MELBOURNE NEW DELHI Butterworth-Heinemann Linacre House, Jordan Hill, Oxford OX2 8DP 225 Wildwood Avenue, Woburn, MA 01801-2041 A division of Reed Educational and Professional Publishing Ltd First published 2001 C.B. Alcock 2001 All rights reserved. No part of this publication may be reproduced in any material form (including photocopying or storing in any medium by electronic means and whether or not transiently or incidentally to some other use of this publication) without the written permission of the copyright holder except in accordance with the provisions of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London, England W1P 9HE. Applications for the copyright holder’s written permission to reproduce any part of this publication should be addressed to the publishers British Library Cataloguing in Publication Data Alcock, C. B. Thermochemical processes:principles and models 1 Thermodynamics 2 Chemical processes 3 Materials at high temperatures I Title 660.20969 Library of Congress Cataloguing in Publication Data Alcock, C. B. Thermochemical processes:principles and models/C.B. Alcock. p. cm. Includes bibliographical references. ISBN 0 7506 5155 5 1 Thermodynamics 2 Chemical processes 3 Materials at high temperatures I Title TP155.2.T45 T47 2000 6600.2969–dc21 00-049367 ISBN 0 7506 5155 -
(12) United States Patent (10) Patent No.: US 8,669,491 B2 Menon Et Al
USOO86694.91 B2 (12) United States Patent (10) Patent No.: US 8,669,491 B2 Menon et al. (45) Date of Patent: Mar. 11, 2014 (54) HARD-FACING ALLOYS HAVING IMPROVED 4.331,857 A * 5/1982 Crisci et al. ........... 219,137 WM 4,396,822 A * 8/1983 Kishida et al. ........ 219,137 WM CRACK RESISTANCE 4,423,119 A * 12/1983 Brown et al. ................. 428,558 4,800,131. A * 1/1989 Marshall et al. .............. 428/558 (76) Inventors: Ravi Menon, Goodlettsville, TN (US); 4,810,850 A * 3/1989 Tenkula et al. ... 219,146.1 Jack Garry Wallin, Scottsville, KY 4,822,415 A * 4, 1989 Dorfman et al. ................ 420.61 4,897,519 A * 1/1990 Clarket al. ................ 219/76.14 SE Fusilouis LeClaire, Bowling 4,987.288 A * 1/1991 Yonker, Jr. ..... ... 219,146.1 reen, (US) 5,095,191 A * 3/1992 Bushey et al. ........ 219/137 WM 5, 192,016 A * 3/1993 Araki et al. ................... 228,147 (*) Notice: Subject to any disclaimer, the term of this 5,250,355 A * 10/1993 Newman et al. ... 428,367 patent is extended or adjusted under 35 3:23 A : 2. E. SNaga Ca.it al..."316 ....... wi U.S.C. 154(b) by 1394 days. 5,744,782 A * 4/1998 Sampath et al. ........... 219,146.1 6,124,569 A * 9/2000 Bonnet et al. ...... ... 219,146.1 (21) Appl. No.: 11/356,409 6.228,183 B1* 5/2001 Bangaru et al. ............... 148/320 6,521,060 B1* 2/2003 Kurata et al. -
High-Temperature Mechanical Properties of Polycrystalline Hafnium Carbide and Hafnium Carbide Containing 13-Volume-Percent Hafnium Diboride Nasa Tn D-5008
d HIGH-TEMPERATURE MECHANICAL PROPERTIES OF POLYCRYSTALLINE HAFNIUM CARBIDE AND HAFNIUM CARBIDE CONTAINING 13-VOLUME-PERCENT HAFNIUM DIBORIDE NASA TN D-5008 HIGH-TEMPERATURE MECHANICAL PROPERTIES OF POLYCRYSTALLINE HAFNIUM CARBIDE AND HAFNIUM CARBIDE CONTAINING 13-VOLUME- PERCENT HAFNIUM DIBORIDE By William A. Sanders and Hubert B. Probst Lewis Research Center Cleveland, Ohio NATIONAL AERONAUTICS AND SPACE ADMINISTRATION ~ For sale by the Clearinghouse for Federal Scientific and Technical Information Springfield, Virginia 22151 - CFSTl price $3.00 ABSTRACT Hot-pressed, single-phase HfC and HfC containing 13-vol % HfB2 were tested in three-point transverse rupture to temperatures as high as 4755' F (2625' C). Hot hard- ness tests were also run to 3200' F (1760' C). Separate effects on the transverse rup- ture behavior of HfC due to the HfB2 second phase and due to a grain- size difference are discussed on the basis of strength, deformation, and metallographic results. The probable mechanisms responsible for deformation are also discussed. In hot-hardness tests of HfC containing 13 vol % HfB2 second phase, a change in the temperature de- pendency of hot hardness at 2600' F (1425' C) is discussed and related to the degree of cracking around indentations. ii H I G H -TEM PERATURE MEC HANICAL PRO PE RTlES OF POLY C RY STALLINE HAFNIUM CARBIDE AND HAFNIUM CARBIDE CONTAINING 13 -VOLUME -PERCENT HAFN IUM D1 BOR I DE by William A. Sanders and Hubert 9. Probst Lewis Research Center SUMMARY Transverse rupture tests were conducted on single -phase hafnium carbide and hafnium carbide containing 13- volume- percent hafnium diboride as a distinct second phase. -
Oxidation Mechanisms of Hafnium Carbide and Hafnium Diboride in the Temperature Range 1400 to 2100°C
C. BRENT BARGERON, RICHARD C. BENSON, ROBB W. NEWMAN, A. NORMAN JETTE, and TERRY E. PHILLIPS OXIDATION MECHANISMS OF HAFNIUM CARBIDE AND HAFNIUM DIBORIDE IN THE TEMPERATURE RANGE 1400 TO 2100°C Two ultra-high-temperature materials, hafnium carbide and hafnium diboride, were oxidized in the temperature range 1400 to 2100°C. The two materials oxidized in distinctly different ways. The carbide formed a three-layer system consisting of a layer of residual carbide, a layer of reduced (partially oxidized) hafnium oxide containing carbon, and a layer of fully oxidized hafnium dioxide. The diboride oxidized into only two layers. For the diboride system, the outer layer, mainly hafnium dioxide, contained several intriguing physical structures. INTRODUCTION Materials that can provide protection at temperatures aspects of research that has been performed over the past above l700°C in an oxidative environment are needed for four or five years.2-5 important applications. To be usefully employed as a turbine blade coating, for example, a substance would EXPERIMENTAL METHODS need to withstand many excursions from normal ambient The experimental arrangement for the oxidation pro conditions into the high-temperature regime and back cess has been described in detail previously.2-4 An induc again without cracking, spalling, or ablating. Other ap tion furnace consisting of two concentric zirconia tubes plications, such as a combustion chamber liner, might with a graphite susceptor between them was used to heat require only one high-temperature exposure. Not only do the specimen. (A susceptor is the heating element in an the chemical properties need to be considered, but the induction furnace.) The specimen temperature was mea physical, microscopic structure of a candidate material sured with an optical pyrometer through a sapphire win can also determine how well it will function under ex dow. -
Oxidation Behaviour of an Aluminium Nitride–Hafnium Diboride Ceramic Composite
Journal of the European Ceramic Society 25 (2005) 1789–1796 Oxidation behaviour of an aluminium nitride–hafnium diboride ceramic composite Davide Mattiaa,∗, Martine Desmaison-Bruta, Svetlana Dimovskib, Yury Gogotsib, Jean Desmaisona a SPCTS, UMR-CNRS 6638, Universit´e de Limoges, 123, av. A. Thomas, 87060 Limoges, France b Department of Material Science and Engineering and A.J. Drexel Nanotechnology Institute, Drexel University, 3141 Chestnut Street, Philadelphia, PA 19104, USA Available online 21 January 2005 Abstract An aluminium nitride–hafnium diboride electroconductive particulate composite was produced via hot isostatic pressing without sintering aids. Oxidation kinetics studies were performed up to 1350 ◦C under a flow of pure oxygen using a microbalance. The reaction products were analysed using SEM and XRD techniques. This composite had a high oxidation resistance up to 1200 ◦C. The kinetic curves had an asymptotic or paralinear shape. The formation of a protective oxide scale containing hafnia (HfO2) and aluminium borate (Al18B4O33) phases embedded in a glassy phase was observed. The evaporation of B2O3 was limited by the formation of refractory aluminium borate. Above 1200 ◦C, morphological observations showed the formation of a Maltese cross structure associated with the cracking of the oxide scale along the edges resulting in sigmoidal oxidation kinetics and in a high oxidation rate of the ceramic composite. © 2004 Elsevier Ltd. All rights reserved. Keywords: Aluminium nitride; Hafnium diboride; Aluminium borate; Particulate composite; Oxidation kinetics 1. Introduction In order to prevent boron oxide evaporation, which re- duces the oxidation resistance of boride monolithic ceramics, Non-oxide ceramics represent a wide family of materials composites in which the boron-containing ceramic is blended intensively studied in the last years in the search for better with silicon and/or aluminium-rich ceramic have been de- high temperature oxidation resistance and mechanical prop- veloped. -
University of Birmingham Synthesis of Ultra-Refractory Transition Metal
University of Birmingham Synthesis of ultra-refractory transition metal diboride compounds Fahrenholtz, William G.; Binner, Jon; Zou, Ji DOI: 10.1557/jmr.2016.210 Document Version Peer reviewed version Citation for published version (Harvard): Fahrenholtz, WG, Binner, J & Zou, J 2016, 'Synthesis of ultra-refractory transition metal diboride compounds', Journal of Materials Research, vol. 31, no. 18, pp. 2757-2772. https://doi.org/10.1557/jmr.2016.210 Link to publication on Research at Birmingham portal Publisher Rights Statement: Checked for eligibility: 04/10/2016. COPYRIGHT: © Materials Research Society 2016 Fahrenholtz, W.G., Binner, J. and Zou, J. (2016) ‘Synthesis of ultra-refractory transition metal diboride compounds’, Journal of Materials Research, 31(18), pp. 2757–2772. doi: 10.1557/jmr.2016.210. https://www.cambridge.org/core/journals/journal-of-materials-research/article/synthesis-of-ultra-refractory-transition-metal-diboride- compounds/439AC30524D1F1E2970F306B038DD857 General rights Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law. •Users may freely distribute the URL that is used to identify this publication. •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research. •User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?) •Users may not further distribute the material nor use it for the purposes of commercial gain. -
High Purity Inorganics
High Purity Inorganics www.alfa.com INCLUDING: • Puratronic® High Purity Inorganics • Ultra Dry Anhydrous Materials • REacton® Rare Earth Products www.alfa.com Where Science Meets Service High Purity Inorganics from Alfa Aesar Known worldwide as a leading manufacturer of high purity inorganic compounds, Alfa Aesar produces thousands of distinct materials to exacting standards for research, development and production applications. Custom production and packaging services are part of our regular offering. Our brands are recognized for purity and quality and are backed up by technical and sales teams dedicated to providing the best service. This catalog contains only a selection of our wide range of high purity inorganic materials. Many more products from our full range of over 46,000 items are available in our main catalog or online at www.alfa.com. APPLICATION FOR INORGANICS High Purity Products for Crystal Growth Typically, materials are manufactured to 99.995+% purity levels (metals basis). All materials are manufactured to have suitably low chloride, nitrate, sulfate and water content. Products include: • Lutetium(III) oxide • Niobium(V) oxide • Potassium carbonate • Sodium fluoride • Thulium(III) oxide • Tungsten(VI) oxide About Us GLOBAL INVENTORY The majority of our high purity inorganic compounds and related products are available in research and development quantities from stock. We also supply most products from stock in semi-bulk or bulk quantities. Many are in regular production and are available in bulk for next day shipment. Our experience in manufacturing, sourcing and handling a wide range of products enables us to respond quickly and efficiently to your needs. CUSTOM SYNTHESIS We offer flexible custom manufacturing services with the assurance of quality and confidentiality. -
Federal Register/Vol. 82, No. 129/Friday, July 7, 2017/Rules And
31442 Federal Register / Vol. 82, No. 129 / Friday, July 7, 2017 / Rules and Regulations Paragraph 6002 Class E Airspace DEPARTMENT OF COMMERCE a contribution to delivery systems (other Designated as Surface Areas. than manned aircraft) for such weapons. * * * * * Bureau of Industry and Security In 1993, the MTCR’s original focus on missiles for nuclear weapons delivery AWP CA E2 Arcata, CA [Modified] 15 CFR Parts 742, 744, 772, and 774 was expanded to include the Arcata Airport, CA proliferation of missiles for the delivery ° ′ ″ ° ′ ″ (Lat. 40 58 40 N., long. 124 06 31 W.) [Docket No. 170202139–7139–01] of all types of weapons of mass That airspace within a 4.1-mile radius of RIN 0694–AH33 destruction (WMD), i.e., nuclear, Arcata Airport. chemical and biological weapons. Such Paragraph 6004 Class E Airspace Revisions to the Export Administration proliferation has been identified as a Designated as an Extension to a Class D or Regulations Based on the 2016 Missile threat to international peace and Class E Surface Area. Technology Control Regime Plenary security. One way to address this threat * * * * * Agreements is to maintain vigilance over the transfer of missile equipment, material, and AGENCY: AWP CA E4 Arcata, CA [New] Bureau of Industry and related technologies usable for systems Arcata Airport, CA Security, Commerce. capable of delivering WMD. MTCR (Lat. 40°58′40″ N., long. 124°06′31″ W.) ACTION: Final rule. members voluntarily pledge to adopt the That airspace extending upward from the Regime’s export Guidelines and to SUMMARY: surface within 2.9 miles each side of the 153° The Bureau of Industry and restrict the export of items contained in bearing from Arcata Airport extending from Security (BIS) is amending the Export the Regime’s Annex. -
Transition Metal Borides: Synthesis, Characterization and Superconducting Properties
Transition Metal Borides: Synthesis, Characterization and Superconducting Properties Vom Fachbereich Chemie der Technischen Universität Darmstadt zur Erlangung des akademischen Grades eines Doctor rerum naturalium (Dr. rer. nat.) genehmigte Dissertation vorgelegt von MSc. Mehmet Kayhan aus Bursa, Turkei Referent: Prof. Dr. Barbara Albert Korreferent: Prof. Dr. Rolf Schäfer Tag der Einreichung: 03. Juni 2013 Tag der mündlichen Prüfung: 12. Juli 2013 Darmstadt 2013 D17 1 II To my daughter, my wife and my parents III ACKNOWLEDGEMENT I express my sincere gratitude towards Prof. Barbara Albert for allowing me to be a part of her research group and closely following my work during the course of my doctoral thesis with her inspiring suggestions and discussions. I am grateful to her for the constant motivation throughout this period and her support and help in professional as well as personal life. I appreciate the help of Dr. Kathrin Hofmann for the structure analysis with Rietveld refinement despite of her busy schedule. I’m indebted to Dr. Christian F. Litterscheid for his invaluable time, help and support through my studies. I am also thankful to all of my group members for their friendship, scientific comments and suggestions. I reserve my special thanks to Prof. Lambert Alff and Erwin Hildebrandt for the collaboration work on superconductivity measurements. I would like to also thank Dr. Anatoliy Senyshyn for neutron diffraction analysis and Dr. Dmytro Dzivenko for hardness measurements. I would like to keep the most special thanks to Emine Kayhan as my colleague, friend and my eternal love who did SEM-EDX measurements for me and as always, has given me endless love and support throughout my life. -
Thermal Properties of Zirconium Diboride - Transition Metal Boride Solid Solutions
Scholars' Mine Masters Theses Student Theses and Dissertations Spring 2014 Thermal properties of zirconium diboride - transition metal boride solid solutions Devon Lee McClane Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses Part of the Materials Science and Engineering Commons Department: Recommended Citation McClane, Devon Lee, "Thermal properties of zirconium diboride - transition metal boride solid solutions" (2014). Masters Theses. 7265. https://scholarsmine.mst.edu/masters_theses/7265 This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact [email protected]. 0 1 THERMAL PROPERTIES OF ZIRCONIUM DIBORIDE – TRANSITION METAL BORIDE SOLID SOLUTIONS by DEVON LEE MCCLANE A THESIS Presented to the Faculty of the Graduate School of the MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY In Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE IN MATERIALS SCIENCE AND ENGINERING 2014 Approved by William G. Fahrenholtz, Advisor Greg E. Hilmas, Co-Advisor Wayne Huebner 2 iii PUBLICATION THESIS OPTION The thesis has been prepared in the style utilized by the Journal of the American Ceramic Society. Pages 1-28 contain an Introduction and Literature Review for background purposes. Pages 29-59 entitled “Thermal Properties of (Zr,TM)B2 Solid Solutions with TM = Hf, Nb, W, Ti, and Y” was accepted for publication in the Journal of the American Ceramic Society in February of 2014. Pages 60-92 entitled “Thermal Properties of (Zr,TM)B2 Solid Solutions with TM = Ta, Mo, Re, V, and Cr” was submitted to the Journal of the American Ceramic Society in March of 2014. -
Category 1—Page 1
Commerce Control List Supplement No. 1 to Part 774 Category 1—page 1 CATEGORY 1 - SPECIAL MATERIALS AND to the ITAR” (see 22 CFR parts 120 through RELATED EQUIPMENT, CHEMICALS, 130, including USML Category XXI). (2) “MICROORGANISMS,” AND “TOXINS” See also 1C009. Related Definitions: N/A Note: The Food and Drug Administration Items: (FDA) and the Drug Enforcement Administration (DEA) may control exports of items subject to the a. Seals, gaskets, sealants or fuel bladders, EAR and on the Commerce Control List. BIS “specially designed” for “aircraft” or aerospace provides cross references to these other agency use, made from more than 50% by weight of any controls for convenience only. Therefore, please of the materials controlled by 1C009.b or consult relevant FDA and DEA regulations for 1C009.c; guidance related to the item you wish to export and do not rely solely on the EAR for information b. [Reserved] about other agency export control requirements. See Supplement No. 3 to part 730 (Other U.S. Government Departments and Agencies with 1A002 “Composite” structures or laminates, Export Control Responsibilities) for as follows (see List of Items Controlled). more information. License Requirements A. “END ITEMS,” “EQUIPMENT,” Reason for Control: NS, NP, AT “ACCESSORIES,” “ATTACHMENTS,” “PARTS,” “COMPONENTS,” AND Control(s) Country Chart “SYSTEMS” (See Supp. No. 1 to part 738) 1A001 “Parts” and “components” made from NS applies to entire entry NS Column 2 fluorinated compounds, as follows (see List of NP applies to 1A002.b.1 in NP Column 1 Items Controlled). the form of tubes with an inside diameter between 75 License Requirements mm and 400 mm AT applies to entire entry AT Column 1 Reason for Control: NS, AT Reporting Requirements Country Chart Control(s) (See Supp. -
Mechanical Properties and Oxidation Behaviour of Electroconductive Ceramic Composites M
Mechanical Properties and Oxidation Behaviour of Electroconductive Ceramic Composites M. Desmaison-Brut, D. Tetard, C. Tixier, Catherine Faure, E. Chabas To cite this version: M. Desmaison-Brut, D. Tetard, C. Tixier, Catherine Faure, E. Chabas. Mechanical Properties and Oxidation Behaviour of Electroconductive Ceramic Composites. 10th International Conference of the European Ceramic Society, Jun 2007, Berlin, Germany. pp.1315-1320. hal-00282732 HAL Id: hal-00282732 https://hal.archives-ouvertes.fr/hal-00282732 Submitted on 28 May 2008 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. J.G.Heinrich and C. Aneziris, Proc. 10th ECerS Conf., Göller Verlag, Baden-Baden, 2007, 1315-1320, ISBN: 3-87264-022-4 Mechanical Properties and Oxidation Behaviour of Electroconductive Ceramic Composites M. Desmaison-Brut*, D. Tétard, C. Tixier, C. Faure, E. Chabas University of Limoges - S.P.C.T.S. – UMR 6638 – 123, Avenue Albert Thomas 87060 Limoges Cedex, France Abstract diboride to the main silicon carbide phase, offers potentiality for uses at temperature greater than 1000°C. Dense electroconductive ceramic-ceramic composites In this work, electroconductive composites were silicon carbide-hafnium diboride (SiC-HfB 2) and silicon produced by the addition of a secondary HfC or HfB 2 carbide-hafnium carbide (SiC-HfC) were obtained by phase to SiC.