Oxidation Mechanisms of Hafnium Carbide and Hafnium Diboride in the Temperature Range 1400 to 2100°C

Total Page:16

File Type:pdf, Size:1020Kb

Oxidation Mechanisms of Hafnium Carbide and Hafnium Diboride in the Temperature Range 1400 to 2100°C C. BRENT BARGERON, RICHARD C. BENSON, ROBB W. NEWMAN, A. NORMAN JETTE, and TERRY E. PHILLIPS OXIDATION MECHANISMS OF HAFNIUM CARBIDE AND HAFNIUM DIBORIDE IN THE TEMPERATURE RANGE 1400 TO 2100°C Two ultra-high-temperature materials, hafnium carbide and hafnium diboride, were oxidized in the temperature range 1400 to 2100°C. The two materials oxidized in distinctly different ways. The carbide formed a three-layer system consisting of a layer of residual carbide, a layer of reduced (partially oxidized) hafnium oxide containing carbon, and a layer of fully oxidized hafnium dioxide. The diboride oxidized into only two layers. For the diboride system, the outer layer, mainly hafnium dioxide, contained several intriguing physical structures. INTRODUCTION Materials that can provide protection at temperatures aspects of research that has been performed over the past above l700°C in an oxidative environment are needed for four or five years.2-5 important applications. To be usefully employed as a turbine blade coating, for example, a substance would EXPERIMENTAL METHODS need to withstand many excursions from normal ambient The experimental arrangement for the oxidation pro­ conditions into the high-temperature regime and back cess has been described in detail previously.2-4 An induc­ again without cracking, spalling, or ablating. Other ap­ tion furnace consisting of two concentric zirconia tubes plications, such as a combustion chamber liner, might with a graphite susceptor between them was used to heat require only one high-temperature exposure. Not only do the specimen. (A susceptor is the heating element in an the chemical properties need to be considered, but the induction furnace.) The specimen temperature was mea­ physical, microscopic structure of a candidate material sured with an optical pyrometer through a sapphire win­ can also determine how well it will function under ex­ dow. Gas flow through the furnace of about 20 cm/s was treme conditions. To illustrate, a substance fabricated by controlled with a system of solenoid valves that main­ hot-pressing a powder will generally have micrometer­ tained a flow of argon until the desired temperature was size pores throughout, which allow hot oxidative gases reached, at which time oxygen, at a partial pressure of 55 to diffuse at a significantly higher rate than in a material torr, was added to the furnace atmosphere. After a spec­ of the same chemical composition made by chemical ified oxidation time, the atmosphere was switched back vapor deposition (CYD). Carefully manufactured CYD to pure argon, the furnace was turned off, and the spec­ films do not have pores or cracks, so hot gases must imen was allowed to cool to room temperature. diffuse through the lattice of the bulk material, a much The specimen was then removed from the zirconia slower process than diffusion through pores or openings. tube, photographed at several magnifications, embedded The oxidation mechanisms of CYD films of two impor­ in epoxy, cut to reveal a cross section of the oxidized film, tant high-temperature materials are discussed in this and finally polished using a series of successively finer article. Hafnium carbide and hafnium diboride melt at diamond grit. Normally, samples were sectioned by cut­ 3950 and 3250°C, respectively. In an oxygen atmosphere, ting perpendicular to the surface. Occasionally, however, both form hafnium dioxide, which melts at about a specimen was cut at a very small angle to the surface 2900°C. In addition to at least one solid oxide, both to expose broader sections of oxide and residual material substances produce other oxidation products. Hafnium for X-ray diffraction measurements. Thickness measure­ carbide yields either CO or CO2, and hafnium diboride ments of the various layers were made with a calibrated produces boric oxide, which becomes a liquid at 450°C Olympus metallurgical microscope, and cross-sectional and vaporizes at 1860°C. Obviously the presence of photographs were taken. The polished cross sections were gases and liquids in a protective film can have significant also examined by X-ray microanalysis in a scanning ramifications. Further, a structural phase transition that electron microscope (SEM). occurs in hafnium dioxide at about 1700°C should not To characterize certain layers, electrical resistance was be overlooked. This transition entails an accompanying measured as a function of temperature. Leads were at­ 3.4% volume changel that can result in cracking or spall­ tached successively to the polished surfaces of the indi­ ing. The work presented here is a selection of various vidual layers, and the specimen was then placed in a f ohns Hopkins APL Technical Digest, Vo lume 14, Number 1 (/993) 29 C. B. Bargeron et ai. cryostat, where the resistance was measured as the tem­ observe hollow channels in the protrusions. Some of the perature was lowered to near 10K and then returned to stovepipes have a height almost equal to the film thick­ room temperature. The hardness numbers were deter­ ness. The formation of these structures is apparently an mined for the oxidized hafnium carbide film using stan­ intricate process that includes the transport and deposi­ dard procedures employing a Knoop indenter. Polished tion of hafnium dioxide by liquid or gaseous B20 3. Figure surfaces were also employed for the latter measurements. 4 is a stereopair of photographs of one of the stovepipes, revealing in dramatic fashion not only the hollow center RESULTS of the protrusion but also a large channel going into the A photograph of the hafnium diboride film before ox­ oxidized layer at the left of the structure's base. idation is shown in Figure l. The polycrystalline film has Two examples of oxide growth morphology formed at well-formed crystallites with flat faces and well-defined 1900°C are shown in Figure 5. The hafnium diboride edges. The overall integrity of the coating is good; only exposed for 100 s (Fig. 5A) has an interesting growth an occasional crack is present. On the basis of the exam­ pattern in which the oxide has periodically separated into inations of cross sections revealing the film/substrate in­ thin laminae. The film exposed to oxygen for 300 s (Fig. terface, the attachment of the coating to the substrate is 5B) provides an example of the formation of large voids. believed to be excellent. Similar observations were made In both examples, the separation of oxide and the remain­ for the hafnium carbide films. ing diboride is apparent. Figure 2 shows a cross section of the film after expo­ Examination of cross sections of hafnium carbide re­ sure to oxygen for 1800 s at 1520°C. At this temperature, vealed a phenomenon different from that of hafnium a relatively compact oxide forms. Cracks in the oxide diboride in that an additional layer had formed between between many of the grains were probably formed during the residual carbide and the white outer layer of oxide. cooling or post-oxidation handling. Oxide formed at this In the light microscope, the new layer appeared gray (Fig. temperature appears to adhere to the residual diboride. At 6). In the SEM, the interlayer was observed to be compact higher oxidation temperatures, however, separation be­ and fine grained compared with the porous outer oxygen tween the oxide and diboride is common and is probably layer shown in Figure 7. This new layer was very intrigu­ caused by different temperature coefficients of expansion ing from the point of view of protecting the substrate, for the oxide and diboride. since compact layers are expected to allow much slower Near the boiling point of boric oxide C::d860°C), the transport of gases than porous materials. To characterize oxidized hafnium diboride develops some interesting the interlayer, further analysis was performed. morphology. Figure 3 is a stereopair of photographs of Figures 8A, 8B , and 8C show X-ray microanalysis the oxide after exposure to oxygen for 540 s at 1850°C. spectra of the residual carbide, the interlayer, and the Many blunt posts protrude from the surface, a few of outer oxide layer, respectively. As noted earlier,3 the big which have no cover over the top, suggesting that they change in the oxygen-to-hafnium peak ratio occurs be­ are hollow, resembling stovepipes. In stereo, one may tween the residual carbide and the interlayer. In other Epoxy Oxide Diboride 20 ttm Figure 2. Cross section of film after exposure to 55 torr of oxygen for 1800 s at 1520°C. The oxide is compact but has some cracks I 40 ttm I between the grains. The cracks probably formed during cooling or Figure 1. Surface of hafnium diboride film showing crystallites post-experimental handling. Oxide formed at this temperature with flat faces and well-defined edges. appears to adhere to the diboride in most places. 30 Johns Hopkins APL Technical Digest, Vo lume 14, Number 1 (1 993) Oxidation Mechanisms of Hafnium Carbide and Hafnium Diboride Epoxy Figure 3. A stereopair of photographs of the cross section of a film oxidized in 55 torr of oxygen for 540 s at 1850°C, showing unusual protrusions from the f· oxide surface, Viewing in stereo reveals 'c·:-: , .. ,.s'O,C' " Oxide that these structures are hollow (see also Fig . 4), resembling stovepipes, with a well-formed central channel. In fact, many channels occur throughout the Gap films oxidized at this temperature, sev­ eral of which can be observed in this stereopair. Note also that the oxide is Diboride separated from the residual diboride. == Substrate 200 JLm Figure 4. A higher-magnification stereopair of photographs of the stove­ pipe on the left in Figure 3. Viewing in stereo reveals a hollow, smooth-walled central tube leading out of the oxide. The cracking in the wall is probably due to post-experimental handling.
Recommended publications
  • Thermochemical Processes
    Thermochemical Processes Principles and Models Thermochemical Processes Principles and Models C.B. Alcock DSc, FRSC OXFORD AUCKLAND BOSTON JOHANNESBURG MELBOURNE NEW DELHI Butterworth-Heinemann Linacre House, Jordan Hill, Oxford OX2 8DP 225 Wildwood Avenue, Woburn, MA 01801-2041 A division of Reed Educational and Professional Publishing Ltd First published 2001 C.B. Alcock 2001 All rights reserved. No part of this publication may be reproduced in any material form (including photocopying or storing in any medium by electronic means and whether or not transiently or incidentally to some other use of this publication) without the written permission of the copyright holder except in accordance with the provisions of the Copyright, Designs and Patents Act 1988 or under the terms of a licence issued by the Copyright Licensing Agency Ltd, 90 Tottenham Court Road, London, England W1P 9HE. Applications for the copyright holder’s written permission to reproduce any part of this publication should be addressed to the publishers British Library Cataloguing in Publication Data Alcock, C. B. Thermochemical processes:principles and models 1 Thermodynamics 2 Chemical processes 3 Materials at high temperatures I Title 660.20969 Library of Congress Cataloguing in Publication Data Alcock, C. B. Thermochemical processes:principles and models/C.B. Alcock. p. cm. Includes bibliographical references. ISBN 0 7506 5155 5 1 Thermodynamics 2 Chemical processes 3 Materials at high temperatures I Title TP155.2.T45 T47 2000 6600.2969–dc21 00-049367 ISBN 0 7506 5155
    [Show full text]
  • Hfc STRUCTURAL FOAMS SYNTHESIZED from POLYMER PRECURSORS
    HfC STRUCTURAL FOAMS SYNTHESIZED FROM POLYMER PRECURSORS Except where reference is made to the work of others, the work described in this dissertation is my own or was done in collaboration with my advisory committee. This dissertation does not include proprietary or classified information. ________________________________________ Haibo Fan Certificate of Approval: ______________________________ _____________________________ ZhongYang Cheng Bryan A. Chin, Chair Assistant Professor Professor Materials Engineering Materials Engineering ______________________________ ______________________________ Dong-Joo Kim William C. Neely Assistant Professor Professor Materials Engineering Chemistry and Biochemistry ___________________ Stephen L. McFarland Dean Graduate School HfC STRUCTURAL FOAMS SYNTHESIZED FROM POLYMER PRECURSORS Haibo Fan A Dissertation Submitted to the Graduate Faculty of Auburn University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Auburn, Alabama December 16, 2005 HfC STRUCTURAL FOAMS SYNTHESIZED FROM POLYMER PRECURSORS Haibo Fan Permission is granted to Auburn University to make copies of this dissertation at its discretion, upon request of individuals or institutions and at their expense. The author reserves all publication rights. ______________________________ Signature of Author ______________________________ Date iii VITA Haibo Fan, son of Chaoying Fan and Yulan Shi, was born on November 18, 1976, in Ugrat Front Banner, Inner-Mongolia, the People’s Republic of China. He graduated from Ugrat Front Banner No.1 High School in 1994. He studied at Tianjin University for four years and graduated with a Bachelor of Engineering degree in Mechanical Engineering in July 1998. He entered Auburn University in August 2000 to pursue his M.S. and Ph.D. degrees in Materials Engineering. He received his M.S. degree in May 2003.
    [Show full text]
  • Development of High Temperature Diffusion Barriers and a Transient
    Development of high temperature diffusion barriers and a transient liquid-phase wafer bonding for thermoelectric MEMS energy harvester Dissertation to achieve the academic degree of Doctor of Engineering (Dr.-Ing.) at the Technical Faculty Christian-Albrechts-University of Kiel authored by Nando Budhiman Kiel, October 2015 iii Date of defense: 02.02.2016 First Reviewer: Prof. Dr. Bernhard Wagner Second Reviewer: Prof. Dr. Lorenz Kienle Abstract In microsystem technology, a thermoelectric generator (TEG) can be fabricated in micro-scale structures (µTEG) using a surface silicon micromachining. In order to convert heat up to 600 ◦C into electrical power, a poly-SiGe semiconductor could be a suitable thermoelectric material. However, to the best of the author’s knowledge, a development of a µTEG for these high temper- ature applications has not been published so far because, for such high temperature applications, the reliability and the stability of incorporating materials, e.g., an electrical interconnection be- tween poly-SiGe structures, can be challenging. The interconnection can be fabricated using a wafer bonding technique, where p-poly-SiGe legs on a wafer are bonded with n-poly-SiGe legs on the other wafer. This technique requires a bond solder, the components of which are deposited on a plating base. In respect to high temperature applications, the bond solder must not up to 600 ◦C heat melt and must remain conductive, and the plating base must have a high thermal stability, i.e., prevents diffusion (diffusion barrier) into the semiconductor layer and must also remain conductive. For this purpose, TiW-based and Ta-based diffusion barriers, which serve as the plating bases, and a Nickel-Tin Transient Liquid-Phase (Ni-Sn TLP) wafer bonding are developed.
    [Show full text]
  • Diffusion Study of Electrodeposited Copper-Nickel Multilayer
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by ethesis@nitr Diffusion study of Electrodeposited Copper-Nickel Multilayer A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Technology (Dual Degree) In Metallurgical and Materials Engineering Submitted By Chinmaya Prasad Dakua Roll No: 710MM1170 Department of Metallurgical and Materials Engineering National Institute of Technology Rourkela 2015 Diffusion study of Electrodeposited Copper-Nickel Multilayer A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF Master of Technology (Dual Degree) In Metallurgical and Materials Engineering Submitted By Chinmaya Prasad Dakua Roll No: 710MM1170 Under the guidance of Prof. Dr. A. Basu Department of Metallurgical and Materials Engineering National Institute of Technology Rourkela 2015 National Institute of Technology Rourkela CERTIFICATE This is to certify that the thesis entitled, “Diffusion study of Electrodeposited Copper-Nickel Multilayer”, submitted by Chinmaya Prasad Dakua in partial fulfillment of the requirements for the award of Master of Technology Degree in Metallurgical and Materials Engineering at the National Institute of Technology, Rourkela is an authentic work carried out by him under our supervision and guidance. To the best of our knowledge, the matter embodied in the thesis has not been submitted to any other University/ Institute for the award of any degree or diploma. Prof. Dr. Anindya Basu Department of Metallurgical and Materials Engineering National Institute of Technology Date: Rourkela – 769008 i ACKNOWLEDGEMENT With deep regards and profound respect, I avail this opportunity to express my deep sense of gratitude and indebtedness to Dr.
    [Show full text]
  • Diffusion Effect of Intermetallic Layers on Adhesion and Mechanical
    Fundamentals of Nanotechnology Golnaz Bassiri Diffusion effect of intermetallic layers on adhesion and mechanical properties of electrical contacts Abstract Multilayer thin films are used as metallic contacts or relays in microelectrome- chanical systems (MEMS). The sublayers of this sandwich are chosen based on the application of the MEMS. The Au, Ag and Cu are commonly used as a conduction layer and Cr, Ti, Pt and etc. are usually employed as an adhesion layer or diffusion barrier. Heat treatment, oxygen treatment, and methods of fabrication have an ef- fect on the diffusion of the central layer into the conduction layer, thus effective the properties of the overall film. While heat treatment of multilayer films increases the diffusion, oxygen treatment in some cases forms a diffusion barrier. While diffusion of intermetallic layers increases the adhesion, it also results in increasing the contact resistance which is not satisfactory. This paper presents the research done on the dif- fusion effect of the intermetallic contact layers on electrical properties, such as contact resistance or resistivity and mechanical properties such as adhesion. It will introduce the importance of the analysis and identification of the optimum combination of the intermetellaic layers, and the motivation of the research in employing it to the MEMS application. Also the literature review, background, and the application of the research will be discussed. 1 Background and Introduction The microelectromechanical systems (MEMS) are employed widely as intelligent integrated electrical systems, such as DC electrical contacts and relays, hybrid circuits (high frequency), optical detectors, mirrors, and radio frequency (RF) switches [1]. Although the micro size the system have many advantages, the small size results in large surface area to volume ratio which increases the effect of the surface forces on the performance of the systems[2].
    [Show full text]
  • WO 2016/074683 Al 19 May 2016 (19.05.2016) W P O P C T
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2016/074683 Al 19 May 2016 (19.05.2016) W P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C12N 15/10 (2006.01) kind of national protection available): AE, AG, AL, AM, AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, (21) International Application Number: BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, PCT/DK20 15/050343 DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, (22) International Filing Date: HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, 11 November 2015 ( 11. 1 1.2015) KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, (25) Filing Language: English PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, SC, (26) Publication Language: English SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: PA 2014 00655 11 November 2014 ( 11. 1 1.2014) DK (84) Designated States (unless otherwise indicated, for every 62/077,933 11 November 2014 ( 11. 11.2014) US kind of regional protection available): ARIPO (BW, GH, 62/202,3 18 7 August 2015 (07.08.2015) US GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, (71) Applicant: LUNDORF PEDERSEN MATERIALS APS TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, [DK/DK]; Nordvej 16 B, Himmelev, DK-4000 Roskilde DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (DK).
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,048,183 B2 Ganguli Et Al
    USOO9048183B2 (12) United States Patent (10) Patent No.: US 9,048,183 B2 Ganguli et al. (45) Date of Patent: Jun. 2, 2015 (54) NMOSMETAL GATE MATERIALS, (52) U.S. Cl. MANUFACTURING METHODS, AND CPC .......... HOIL 21/28008 (2013.01); C23C I6/06 EQUIPMENT USING CVD AND ALD (2013.01); C23C 16/32 (2013.01); PROCESSES WITH METAL BASED (Continued) PRECURSORS (58) Field of Classification Search (71) Applicant: Applied Materials, Inc., Santa Clara, None CA (US) See application file for complete search history. (56) References Cited (72) Inventors: Seshadri Ganguli, Sunnyvale, CA (US); Srinivas Gandikota, Santa Clara, CA U.S. PATENT DOCUMENTS (US); Yu Lei, Belmont, CA (US); Xinliang Lu, Fremont, CA (US); Sang 5,055,280 A 10/1991 Nakatani et al. Ho Yu, Cupertino, CA (US); Hoon Kim, 6,139,922 A 10/2000 Kaloyeros et al. Santa Clara, CA (US); Paul F. Ma, Santa (Continued) Clara, CA (US); Mei Chang, Saratoga, CA (US); Maitreyee Mahajani, FOREIGN PATENT DOCUMENTS Saratoga, CA (US); Patricia M. Liu, Saratoga, CA (US) KR 2003OOO9093. A 1, 2003 s OTHER PUBLICATIONS (73) Assignee: APPLIED MATERIALS, INC., Santa International Search Report PCT/US2011/033820 dated Jan. 5, Clara, CA (US) 2012. (*) Notice: Subject to any disclaimer, the term of this (Continued) patent is extended or adjusted under 35 Primary Examiner — Yasser A Abdelaziez U.S.C. 154(b) by 0 days. (74) Attorney, Agent, or Firm — Patterson & Sheridan, LLP (21) Appl. No.: 14/147,291 (57) ABSTRACT Embodiments provide methods for depositing metal-contain (22) Filed: Jan. 3, 2014 ing materials. The methods include deposition processes that form metal, metal carbide, metal silicide, metal nitride, and (65) Prior Publication Data metal carbide derivatives by a vapor deposition process, including thermal decomposition, CVD, pulsed-CVD, or US 2014/O12O712 A1 May 1, 2014 ALD.
    [Show full text]
  • Nanoscale Large-Area Opto/Electronics Via Adhesion Lithography
    Introduction Nanoscale Large-Area Opto/Electronics via Adhesion Lithography By Gwenhivir Wyatt-Moon A thesis submitted for the degree of Doctor of Philosophy Imperial College London Department of Physics i ii The work presented in this thesis was carried out in the Experimental Solid State Physics Group of Imperial College London between October 2014 and November 2017 under the supervision of Professor Thomas D. Anthopoulos. The material documented herein, except where explicit references are shown, is my own work. Gwenhivir Wyatt-Moon March 2018 The copyright of this thesis rests with the author and is made available under a Creative Commons Attribution Non-Commercial No Derivatives licence. Researchers are free to copy, distribute or transmit the thesis on the condition that they attribute it, that they do not use it for commercial purposes and that they do not alter, transform or build upon it. For any reuse or redistribution, researchers must make clear to others the licence terms of this work. iii Abstract As the feature size of devices in the electronics industry has hit the nanoscale, device fabrication costs have rapidly increased. Whilst commercial technologies such as photolithography are able to produce nanoscale feature size, they are costly and unsuitable for large area printable electronics. To allow for up-scaling of devices considerable research is now focused on new manufacturing processes. Alongside this, new materials such as organics, metal oxides and 2D materials have been developed, allowing for novel device applications to be realised. The ability to deposit these materials at low cost and on large area flexible substrates has been realised with solution processing techniques such as blade coating, inkjet, gravure and screen printing used to deposit materials.
    [Show full text]
  • Interaction Between Ni/Ti Nanomultilayers and Bulk Ti-6Al-4V During Heat Treatment
    metals Article Interaction between Ni/Ti Nanomultilayers and Bulk Ti-6Al-4V during Heat Treatment André João Cavaleiro 1,2,*, Ana Sofia Ramos 1 , Francisco Braz Fernandes 3, Carsten Baehtz 4 and Maria Teresa Vieira 1 1 CEMMPRE, Department of Mechanical Engineering, University of Coimbra, R. Luís Reis Santos, 3030-788 Coimbra, Portugal; sofi[email protected] (A.S.R.); [email protected] (M.T.V.) 2 INEGI, Instituto de Ciência e Inovação em Engenharia Mecânica e Engenharia Industrial–INEGI, Campus da FEUP, 400 4200-465 Porto, Portugal 3 CENIMAT/I3N, Department of Materials Science, Faculty of Sciences and Technology, Universidade Nova de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal; [email protected] 4 Helmholtz Zentrum Dresden Rossendorf HZDR, Institute of Ion Beam Physics and Materials Research, D-01314 Dresden, Germany; [email protected] * Correspondence: [email protected]; Tel.: +351-239790700 Received: 2 October 2018; Accepted: 25 October 2018; Published: 27 October 2018 Abstract: The diffusion bonding of Ti-6Al-4V to NiTi alloys assisted by Ni/Ti reactive multilayer thin films indicates the diffusion of Ni from the filler material towards bulk Ti-6Al-4V. As a consequence, the fragile NiTi2 intermetallic phase is formed at the joint interface. In this context, the aim of this work is to investigate the occurrence of Ni diffusion from Ni/Ti nanomultilayers towards Ti-6Al-4V substrates. For this purpose, multilayer coated Ti alloys were studied in situ at increasing temperatures using synchrotron radiation. After heat treatment, scanning electron microscopy (SEM) analyses were carried out and elemental map distributions were acquired by electron probe microanalysis (EPMA).
    [Show full text]
  • Alumina As Diffusion Barrier to Intermetallic Formation in Thermal Interface Materials Made from Indium and Copper
    ALUMINA AS DIFFUSION BARRIER TO INTERMETALLIC FORMATION IN THERMAL INTERFACE MATERIALS MADE FROM INDIUM AND COPPER By IBRAHIM KHALIFA SALEH A thesis submitted to the Faculty of the Graduate School of the University of Colorado in partial fulfillment of the requirement for the degree of Master of Science Department of Mechanical Engineering 2013 This thesis entitled: Alumina as diffusion barrier to intermetallic formation in thermal interface materials Made from indium and copper written by Ibrahim Khalifa Saleh has been approved for the Department of Mechanical Engineering Rishi Raj Conrad Stoldt Date The final copy of this thesis has been examined by the signatories, and we Find that both the content and the form meet acceptable presentation standards Of scholarly work in the above mentioned discipline. ABSTRACT Ibrahim Khalifa Saleh (M.Sc., Department of Mechanical Engineering) Alumina as diffusion barrier to intermetallic formation in thermal interface materials made from indium and copper. Thesis directed by associate Professor Rishi. Raj Indium and copper react at wide range of temperatures to form intermetallic compounds that have different physical, mechanical and thermal properties. Liquid Phase Sintered indium-copper composite long-term performance as thermal interface material is adversely affected by the evolution of the intermetallic. In this study, i) the effect of intermetallic formation and growth on the performance of Liquid Phase Sintered copper-indium composite, ii) the effectiveness of alumina as diffusion barrier between indium and copper, (iii) the thermal stability and wettability between indium and alumina, iv) indium and quartz wettability, v) indium and tungsten oxide wettability have been studied. Deleterious effect of the intermetallic formation and growth on the thermal and mechanical properties has been observed.
    [Show full text]
  • High-Temperature Mechanical Properties of Polycrystalline Hafnium Carbide and Hafnium Carbide Containing 13-Volume-Percent Hafnium Diboride Nasa Tn D-5008
    d HIGH-TEMPERATURE MECHANICAL PROPERTIES OF POLYCRYSTALLINE HAFNIUM CARBIDE AND HAFNIUM CARBIDE CONTAINING 13-VOLUME-PERCENT HAFNIUM DIBORIDE NASA TN D-5008 HIGH-TEMPERATURE MECHANICAL PROPERTIES OF POLYCRYSTALLINE HAFNIUM CARBIDE AND HAFNIUM CARBIDE CONTAINING 13-VOLUME- PERCENT HAFNIUM DIBORIDE By William A. Sanders and Hubert B. Probst Lewis Research Center Cleveland, Ohio NATIONAL AERONAUTICS AND SPACE ADMINISTRATION ~ For sale by the Clearinghouse for Federal Scientific and Technical Information Springfield, Virginia 22151 - CFSTl price $3.00 ABSTRACT Hot-pressed, single-phase HfC and HfC containing 13-vol % HfB2 were tested in three-point transverse rupture to temperatures as high as 4755' F (2625' C). Hot hard- ness tests were also run to 3200' F (1760' C). Separate effects on the transverse rup- ture behavior of HfC due to the HfB2 second phase and due to a grain- size difference are discussed on the basis of strength, deformation, and metallographic results. The probable mechanisms responsible for deformation are also discussed. In hot-hardness tests of HfC containing 13 vol % HfB2 second phase, a change in the temperature de- pendency of hot hardness at 2600' F (1425' C) is discussed and related to the degree of cracking around indentations. ii H I G H -TEM PERATURE MEC HANICAL PRO PE RTlES OF POLY C RY STALLINE HAFNIUM CARBIDE AND HAFNIUM CARBIDE CONTAINING 13 -VOLUME -PERCENT HAFN IUM D1 BOR I DE by William A. Sanders and Hubert 9. Probst Lewis Research Center SUMMARY Transverse rupture tests were conducted on single -phase hafnium carbide and hafnium carbide containing 13- volume- percent hafnium diboride as a distinct second phase.
    [Show full text]
  • Fabrication and Characterisation of Copper Diffusion Barrier Layers for Future Interconnect
    Dublin City University School of Physical Sciences Fabrication and characterisation of copper diffusion barrier layers for future interconnect applications Conor Byrne B.Sc. Doctor of Philosophy June 2015 Supervised by Professor Greg Hughes Declaration I hereby certify that this material, which I now submit for assessment on the programme of study leading to the award of doctor of philosophy is entirely my own work, that I have exercised reasonable care to ensure that the work is original, and does not to the best of my knowledge breach any law of copyright, and has not been taken from the work of others save and to the extent that such work has been cited and acknowledged within the text of my work. Signed: ____________________ (Candidate) ID No.: 58363145 Date: ________________ i Dedications and Acknowledgements Firstly I would like to thank my supervisor Greg Hughes, for his support, insight and supervision, without which this project could not have been undertaken, let alone completed. I could not have asked for a better supervisor. A big thanks to the Surface and Interfaces Research Group (SIRG) in DCU, Justin, Anthony, Paddy, Lee, Rob, Anita, Venkat, Conor, Kumar, Tom and Tony Cafolla, you lot really put the “fun” in fundamental research (some of you put the mental in too!) and to everyone else involved. I would like to thank all the staff in DCU that have supported me throughout this study, Lisa Peyton, Pat Wogan, Des Lavelle, to name but a few (I wish I could mention everyone by name). A massive thanks to my girlfriend Xaz, for putting up with me over the past seven years.
    [Show full text]