A Regenerative Route for Eugenia Uniflora L. (Myrtaceae) Through in Vitro Germination and Micropropagation

Total Page:16

File Type:pdf, Size:1020Kb

A Regenerative Route for Eugenia Uniflora L. (Myrtaceae) Through in Vitro Germination and Micropropagation Ann. For. Res. 57(1): 39-45, 2014 ANNALS OF FOREST RESEARCH DOI: 10.15287/afr.2014.179 www.afrjournal.org A regenerative route for Eugenia uniflora L. (Myrtaceae) through in vitro germination and micropropagation P.R. Diniz da Silva, R.G. Rispoli, M.M. Minozzo, L.H. Jobim, M. Junges, V.M. Stefenon Diniz da Silva P.R., Rispoli R.G., Minozzo M.M., Jobim L.H., Junges M., V.M. Ste- fenon 2014. A regenerative route for Eugenia unifl ora L. (Myrtaceae) through in vitro germination and micropropagation. Ann. For. Res. 57(1): 39-45, 2014. Abstract. Eugenia uniflora is a tree species native from Central and South America, largely employed in the popular medicine, in the cosmetics and pharmaceutical industries and also consumed in natura. Aiming to pro- vide plant material with high sanity and genetic uniformity for the estab- lishment of commercial plantations, we developed a protocol for seeds disinfestation, in vitro germination and in vitro propagation of this spe- cies through organogenesis. Fruits of E. uniflora were obtained from wild trees growing in the Pampa biome, Southern Brazil. Seeds were disinfest- ed using ethanol 70% (10 min) and NaOCl 1.25% (10 or 25 min). Shoot apexes and nodal segments of non-contaminated plantlets were cultivated in verification medium AS30 during 20 days, posteriorly in ½MS medium supplemented with sucrose, IBA and BAP during 45 days and acclimatized in greenhouse. Disinfesting seeds with ethanol 70% (10 min) and NaOCl 1.25% (25 min) allowed germination with significantly lower contami- nation (2.0%) and production of healthy explants for the micropropaga- tion. No difference concerning size and contamination was observed for the propagation using shoot apexes or nodal segments as explant. Accli- matized plants revealed normal phenotype and healthy appearance. This regenerative route can be applied for mass clonal propagation from seeds of cross-pollinated or self-pollinated selected trees aiming the establish- ment of commercial plantations of E. uniflora and other Myrtaceae species. Keywords Brazilian cherry, organogenesis, tree breeding, conservation of genetic resources. Authors. Paulo Roberto Diniz da Silva, Rosa Gomes Rispoli, Mônica Munareto Minozzo, Laura Honório Jobim, Marina Junges, Valdir Marcos Stefenon (val- [email protected]) - Federal University of the Pampa, Av. Antonio Trilha, 1847, 97300-000, São Gabriel, RS, Brazil. Manuscript received February 12, 2014; revised May 06, 2014; accepted May 12, 2014; online fi rst May 15, 2014. 39 Ann. For. Res. 57(1): 39-45, 2014 Research article Introduction ed and deforested areas, as well as in urban forestry and in non-wood products forestry. Eugenia unifl ora L. (Myrtaceae, Myrtoideae) Although in vitro techniques have been is a tree species native to Central and South recommended for the reproduction and germ- America. In Brazil, it is found in different bi- plasm conservation of E. unifl ora (Pilatti et omes along rivers in riparian forests, in coastal al. 2011), only a few studies (Uematsu et al. forest formations and in semidecidual forests 1999, Souza et al. 2008, Lattuada 2010) have (Margis et al. 2002, Salgueiro et al. 2004). This focused on the micropropagation of shoots species is an important source of food for a va- from plants growing in greenhouse. In addi- riety of birds and mammals in the forests and tion, obtaining explants free of bacterial and has major signifi cance in the natural regenera- fungal contamination is a major concern for tion (Almeida et al. 2012). the micropropagation of selected plants of E. Due to the small to medium size and the unifl ora (Lattuada 2008). multi-branched stem, E. unifl ora lacks value Since, in developing countries, rural popu- as a timber species, but is largely employed lation derive a signifi cant part of their food in the popular medicine, in the cosmetics and requirements and economic profi ts from for- pharmaceutical industries and also consumed est species (FAO 1986), the micropropagation in natura, as juice and ice cream (Almeida may advance the forestry use of E. unifl ora in et al. 2012, Costella et al. 2012). In addition, South America, through the establishment of this light-demanding tree species can be em- clonal plantations of selected trees. In such a ployed in the restoration of degraded areas and case, the development of genetic improvement deforested zones. The potential of E. unifl ora programs is important and the use of controlled for forestry includes a growing concern in col- cross-pollination or self-pollination of selected lecting and conserving the species germplasm trees followed by in vitro germination of the across the world. Over 300 selected genotypes seeds and micropropagation of the plantlets is are conserved in germplasm banks in Brazil, an attractive alternative. USA, Australia, Africa, Central America and Following this rationality, towards the ad- Asia (Lattuada 2008). vance of genetic improvement programs for E. Despite the broad utility and commercial unifl ora and the establishment of commercial perspectives for this species, the establish- plantations of this species, this study aimed to ment of E. unifl ora orchards in South Brazil develop a protocol for disinfestation of select- has been practiced mainly for household con- ed seeds, in vitro germination and in vitro sumption, without commercial aspirations. multiplication of E. unifl ora through organo- Moreover, the nursery stocks of E. unifl ora are genesis. typically propagated through randomly col- lected seedlings, so that such plantations lack morphological, physiological and genetic uni- Material and methods formity, making the commercialization of the fruits diffi cult. The in vitro micropropagation Studied species and sample collection is a viable method for mass propagation of tree species, providing plants with high sanity and Eugenia unifl ora is a rather versatile species clonal homogeneity. Thus, the development of and grows in several different habitats includ- in vitro regenerative protocols in E. unifl ora ing riparian forests, arid and semiarid environ- has direct applications for clonal mass propa- ments. It can be found as a medium tree 4-5 m gation of selected plants and may be integrated tall, reaching up to 12 m. The plants are her- into breeding programs, restoration of degrad- maphrodites, with small white fl owers having 40 Diniz da Silva et al. A regenerative route for Eugenia uniflora L. ... four petals and several stamens. Insects polli- In vitro multiplication nate the species and fl owering happens twice a year, in January and September. Fruit ripening After 45 days, the non-contaminated plantlets occurs in February and October, approximate- from each treatment (10 min and 25 min im- ly fi ve to six weeks after fl owering. Seeds are mersion in NaOCl) that presented more than recalcitrant (Pilatti et al. 2011) and their dis- 3.0 cm length were incised in 1.5 cm segments persion occurs through animals, mainly birds as proposed by Souza et al. (2007). The ex- (Almeida et al. 2012). Natural self-pollination plants (shoot apex or nodal segment) were in- seems to occur, but the fruit development is oculated in 180 x 20 mm test tubes containing not effective, reaching less than 7.0% of the 10 mL of verifi cation medium AS30, composed self-pollinated fl owers (Franzon 2008). by agar 7.5 g L-1 and sucrose 30 g L-1 (Figure The seeds employed in this study were ob- 1B). Before explant inoculation, test tubes tained from four wild genotypes growing in were sealed with plastic fi lm and autoclaved the Brazilian Pampa, Rio Grande do Sul State, during 17 min at 121ºC and 1.2 atm. This me- Southern Brazil. These genotypes were select- dium was employed to verify the existence of ed based on the large size and appealing color endogenous bacteria and fungi, which could of the fruits, which reach commercial require- emerge after germination. The explants were ments. For this experiment, 100 healthy ripe evaluated after one, nine and 20 days of inocu- fruits were randomly collected during the sum- lation in this medium. The size of the explants mer season of the year 2012, stored in paper and the number of buds were registered in the bags and transported to the laboratory within 20th day of culture. 24 hours. After 20 days in the verifi cation medium, non-contaminated shoot apices and nodal seg- Seeds disinfestation and in vitro germina- ments were transferred to test tubes containing tion 10 mL of ½MS medium (Murashig & Skoog 1962) pH 5.8 (Figure 1C). Based on our prior After removed from the fruits, seeds were di- tests of the culture medium composition for E. vided in two samples of 50 seeds each. Seeds unifl ora, the ½MS medium was supplemented were surface disinfected in a fl ow chamber with 30 g L-1 of sucrose, 0.1 mg L-1 indolebutyr- with ethanol 70% (1 min), 1.25% sodium hy- ic acid (IBA), 0.2 mg L-1 6-benzylaminopurine pochlorite solution (NaOCl) during 10 min (50 (BAP) and solidifi ed with 6.0 g L-1 of agar. All seeds) or 25 min (50 seeds) and rinsed three reagents were purchased from Sigma-Aldrich. times in sterile distillated water. Each seed was The ½MS medium was distributed in 180x20 individually inoculated in test tubes containing mm test tubes (10 mL/tube), tubes were sealed 10 mL of germination medium (Figure 1A), with plastic fi lm and autoclaved as described composed by 6.0 g L-1 agar (Sigma-Aldrich, above. St Louis, MO) in ultrapure water. Before ex- Explants were cultured during 45 days in a plant inoculation, the germination medium completely randomized blocks design, with was distributed in 180 x 20 mm test tubes (10 two treatments (shoot apices and nodal seg- mL/tube), which were sealed with plastic fi lm ments) and 40 replicates.
Recommended publications
  • Eugenia Uniflora L. Essential Oil As a Potential Anti-Leishmania Agent: Effects on Leishmania Amazonensis and Possible Mechanisms of Action
    Hindawi Publishing Corporation Evidence-Based Complementary and Alternative Medicine Volume 2013, Article ID 279726, 10 pages http://dx.doi.org/10.1155/2013/279726 Research Article Eugenia uniflora L. Essential Oil as a Potential Anti-Leishmania Agent: Effects on Leishmania amazonensis and Possible Mechanisms of Action Klinger Antonio da Franca Rodrigues,1 Layane Valéria Amorim,1 Jamylla Mirck Guerra de Oliveira,1 Clarice Noleto Dias,2 Denise Fernandes Coutinho Moraes,2 Eloisa Helena de Aguiar Andrade,3 Jose Guilherme Soares Maia,3 Sabrina Maria Portela Carneiro,1 and Fernando Aécio de Amorim Carvalho1 1 Medicinal Plants Research Center, Federal University of Piau´ı, 64049-550 Teresina, PI, Brazil 2 Laboratory of Pharmacognosy II, Department of Pharmacy, Federal University of Maranhao,˜ 65085-580 Sao˜ Lu´ıs, MA, Brazil 3 Postgraduate Program in Chemistry, Federal University of Para,´ 66075-900 Belem,´ PA, Brazil Correspondence should be addressed to Klinger Antonio da Franca Rodrigues; [email protected] Received 13 October 2012; Revised 14 December 2012; Accepted 17 January 2013 Academic Editor: Liliana V. Muschietti Copyright © 2013 Klinger Antonio da Franca Rodrigues et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Eugenia uniflora L. is a member of the Myrtaceae family and is commonly known as Brazilian cherry tree. In this study, we evaluated the chemical composition of Eugenia uniflora L. essential oil (EuEO) by using gas chromatography-mass spectrometry (GC-MS) and assessed its anti-Leishmania activity. We also explored the potential mechanisms of action and cytotoxicity of EuEO.
    [Show full text]
  • Pollination and Quality of Seeds and Plantlets of Eugenia Uniflora L
    Hoehnea 46(1): e052018, 4 tab., 4 fig., 2019 http://dx.doi.org/10.1590/2236-8906-05/2018 Pollination and quality of seeds and plantlets of Eugenia uniflora L. Adriana de Oliveira Fidalgo1,2, Aline Testoni Cécel1, Juliana Ferrari de Oliveira Mazzi1 and Claudio José Barbedo1 Received: 29 January 2018; accepted: 12 November 2018 How to cite: Fidalgo, A.O., Cécel, A.T., Mazzi, J.F.O. & Barbedo, C.J. 2019. Pollination and quality of seeds and plantlets of Eugenia uniflora L. Hoehnea 46: e052018. http://dx.doi.org/10.1590/2236-8906-05/2018. ABSTRACT - (Pollination and quality of seeds and plantlets of Eugenia uniflora L.). This work evaluated the effect of pollination on the quality of seeds and plantlets of Eugenia uniflora L., as well as on the regenerative capacity of the seeds. Twelve individuals were monitored for their phenology and their floral visitors. Recently-opened flowers were subjected to self-pollination (SP), cross-pollination (CP) and natural pollination/control (C) treatments. The seeds obtained were evaluated for their germination and the resulting seedlings were transferred to a greenhouse and evaluated for their height, stem diameter, number of leaves, leaf area and fresh and dry mass of root, stem, and leaves. SP, CP and C seeds were fractionated into two and four parts and evaluated for their ability to germinate and produce normal seedlings. Seeds and seedlings from manual cross-pollination were the most vigorous. The worst performance of the natural pollination (C) evidenced the pollen limitation caused by the scarcity of efficient pollinators in the study area.
    [Show full text]
  • Redalyc.Chemical Composition and Antioxidant Activity of Jatobá- Do-Cerrado (Hymenaea Stigonocarpa Mart.) Flour
    Ciência e Tecnologia de Alimentos ISSN: 0101-2061 [email protected] Sociedade Brasileira de Ciência e Tecnologia de Alimentos Brasil Pereira da SILVA, Cintia; Bezerra SOUSA, Mariana Séfora; SIGUEMOTO, Érica Sayuri; Manólio SOARES, Rosana Aparecida; Gomes ARÊAS, José Alfredo Chemical composition and antioxidant activity of jatobá- do-cerrado (Hymenaea stigonocarpa Mart.) flour Ciência e Tecnologia de Alimentos, vol. 34, núm. 3, julio-septiembre, 2014, pp. 597-603 Sociedade Brasileira de Ciência e Tecnologia de Alimentos Campinas, Brasil Available in: http://www.redalyc.org/articulo.oa?id=395940096024 How to cite Complete issue Scientific Information System More information about this article Network of Scientific Journals from Latin America, the Caribbean, Spain and Portugal Journal's homepage in redalyc.org Non-profit academic project, developed under the open access initiative Food Science and Technology ISSN 0101-2061 DDOI http://dx.doi.org/10.1590/1678-457X.6405 Chemical composition and antioxidant activity of jatobá-do-cerrado (Hymenaea stigonocarpa Mart.) flour Cintia Pereira da SILVA1, Mariana Séfora Bezerra SOUSA1, Érica Sayuri SIGUEMOTO1, Rosana Aparecida Manólio SOARES1, José Alfredo Gomes ARÊAS1* Abstract The Brazilian Savannah, known as “Cerrado,” has an extensive biodiversity, but it is under explored. Among the native vegetables is the jatobá-do-cerrado (Hymenaea stigonocarpa Mart.), a legume with great potential for exploration for its content of dietary fiber. Legumes are an important source of nutrient compounds, such as phenolic compounds and vitamins that have antioxidant properties. This study aimed at determining the chemical composition and antioxidant activity of the jatobá flour. The jatobá flour showed high fiber content (insoluble and soluble fiber 47.8 and 12.8 g.100–1 g , respectively), significant amounts of carotenoids such as beta-carotene and lutein, and some minerals such as calcium: 145 mg.100 g–1, magnesium: 125 mg.100 g–1, and potassium: 1352 mg.100 g–1.
    [Show full text]
  • Eugenia Dysenterica DC.) Coated with Chitosan and Associated with Refrigeration
    Vol. 14(24), pp. 2035-2046, 17 June, 2015 DOI: 10.5897/AJB2015.14646 Article Number: DB0746353710 ISSN 1684-5315 African Journal of Biotechnology Copyright © 2015 Author(s) retain the copyright of this article http://www.academicjournals.org/AJB Full Length Research Paper Evaluation of the postharvest quality of Cagaita fruits (Eugenia dysenterica DC.) coated with chitosan and associated with refrigeration Freitas, BSM1, Plácido GR2*, Cagnin, C1, Caliari, M3, Silva, RM1, Silva, CLC1, Cavalcante, MD1, Souza, JLF4, Célia, JA4 and Oliveira, KB4 1Food Engineering Course, Instituto Federal Goiano – Campus Rio Verde, Rio Verde, Goiás, Brazil. 2Animal Sciences, Instituto Federal Goiano – Campus Rio Verde, Rio Verde, Goiás, Brazil. 3Food Science and Technology, Escola de Agronomia e Engenharia de Alimentos, Universidade Federal de Goiás, Goiânia, GO, Brazil. 4Animal Production Course, Instituto Federal Goiano – Campus Rio Verde, Rio Verde, Goiás, Brazil. Received 16 April, 2015; Accepted 11 June, 2015 Cagaita fruits are subject to seasonality and perishability. This work aims to use scanning electron microscopy (SEM) to evaluate the physicochemical characteristics, texture, color and physical structure of cagaita fruits coated with different chitosan concentrations. The fruits were divided as follows: T0 (uncoated fruits), T1 (fruits coated with 1% (v/v) chitosan), T2 (fruits coated with 2% (v/v) chitosan) and T3 (fruits coated with 3% (v/v) chitosan). They were analyzed at 0, 10, 20 and 30 days of storage. Titratable acidity and soluble solids content showed no conservation of fruit characteristics; they showed better results for uncoated fruits, as well as weight loss, vitamin C and peak strain. The color of cagaita fruits confirmed ripening during storage regardless of treatment.
    [Show full text]
  • Florida Exotic Pest Plant Councils 2017 List Of
    CATEGORY II (continued) Gov. The 2017 list was prepared by the Scientific Name** Common Name List Zone FLEPPC List Definitions: Exotic – a species FLEPPC Plant List Committee Florida Exotic Pest Plant Tradescantia spathacea oyster plant C, S introduced to Florida, purposefully or accidentally, from a (Rhoeo spathacea, Rhoeo discolor) natural range outside of Florida. Native – a species Patricia L. Howell, Chair 2012-2017, Broward Tribulus cistoides puncture vine, burr-nut N, C, S Council’s 2017 List of whose natural range includes Florida. Naturalized County Parks, Natural Resources and Land Vitex trifolia simple-leaf chaste tree C, S Management Section, [email protected] Washingtonia robusta Washington fan palm C, S exotic – an exotic that sustains itself outside cultivation Invasive Plant Species Wisteria sinensis Chinese wisteria N, C (it is still exotic; it has not “become” native). Invasive Stephen H. Brown, UF / IFAS Lee County Xanthosoma sagittifolium malanga, elephant ear N, C, S exotic – an exotic that not only has naturalized, Extension, Parks and Recreation Division, The mission of the Florida Exotic Pest Plant but is expanding on its own in Florida native plant [email protected] Council is to support the management of invasive Recent changes to plant names exotic plants in Florida’s natural areas by communities. Janice Duquesnel, Florida Park Service, Florida providing a forum for the exchange of scientific, Department of Environmental Protection, educational and technical information. Old Name New Name Abbreviations: Government List (Gov. List): [email protected] www.fleppc.org Possession, propagation, sale, and/or transport of Aleurites fordii Vernicia fordii David W.
    [Show full text]
  • Exempted Trees List
    Prohibited Plants List The following plants should not be planted within the City of North Miami. They do not require a Tree Removal Permit to remove. City of North Miami, 2017 Comprehensive List of Exempted Species Pg. 1/4 Scientific Name Common Name Abrus precatorius Rosary pea Acacia auriculiformis Earleaf acacia Adenanthera pavonina Red beadtree, red sandalwood Aibezzia lebbek woman's tongue Albizia lebbeck Woman's tongue, lebbeck tree, siris tree Antigonon leptopus Coral vine, queen's jewels Araucaria heterophylla Norfolk Island pine Ardisia crenata Scratchthroat, coral ardisia Ardisia elliptica Shoebutton, shoebutton ardisia Bauhinia purpurea orchid tree; Butterfly Tree; Mountain Ebony Bauhinia variegate orchid tree; Mountain Ebony; Buddhist Bauhinia Bischofia javanica bishop wood Brassia actino-phylla schefflera Calophyllum antillanum =C inophyllum Casuarina equisetifolia Australian pine Casuarina spp. Australian pine, sheoak, beefwood Catharanthus roseus Madagascar periwinkle, Rose Periwinkle; Old Maid; Cape Periwinkle Cestrum diurnum Dayflowering jessamine, day blooming jasmine, day jessamine Cinnamomum camphora Camphortree, camphor tree Colubrina asiatica Asian nakedwood, leatherleaf, latherleaf Cupaniopsis anacardioides Carrotwood Dalbergia sissoo Indian rosewood, sissoo Dioscorea alata White yam, winged yam Pg. 2/4 Comprehensive List of Exempted Species Scientific Name Common Name Dioscorea bulbifera Air potato, bitter yam, potato vine Eichhornia crassipes Common water-hyacinth, water-hyacinth Epipremnum pinnatum pothos; Taro
    [Show full text]
  • Activity of Crude Extracts from Brazilian Cerrado Plants Against Clinically
    Correia et al. BMC Complementary and Alternative Medicine (2016) 16:203 DOI 10.1186/s12906-016-1164-3 RESEARCH ARTICLE Open Access Activity of crude extracts from Brazilian cerrado plants against clinically relevant Candida species Amabel Fernandes Correia1,2,6, Dâmaris Silveira3, Yris Maria Fonseca-Bazzo3, Pérola Oliveira Magalhães3, Christopher William Fagg4, Elton Clementino da Silva4, Suelí Maria Gomes5, Lenora Gandolfi1,6, Riccardo Pratesi1,6 and Yanna Karla de Medeiros Nóbrega1,6,7* Abstract Background: Medicinal plants have traditionally been used in many parts of the world as alternative medicine. Many extracts and essential oils isolated from plants have disclosed biological activity, justifying the investigation of their potential antimicrobial activity. In this study, the in vitro antifungal activity of six Brazilian Cerrado medicinal plant species were evaluated against clinically relevant Candida species. Methods: The crude extract plants were evaluated against American Type Culture Collection (ATCC) standard strains of Candida spp. using disk diffusion method and determining the minimum inhibitory concentration (MIC). The chemical study results were confirmed by HPLC method. Results: All six plant species showed antifungal activity. Among the species studied, Eugenia dysenterica and Pouteria ramiflora showed significant inhibitory activity against C. tropicalis at lowest MIC value of 125 and 500 μg/disc, respectively. The Eugenia dysenterica also disclosed MIC value of 125 μg/disc against C. famata, 250 μg/disc against C. krusei and 500 μg/disc against C. guilliermondii and C. parapsilosis. Pouteria torta, Bauhinia rufa, Erythroxylum daphnites and Erythroxylum subrotundum showed activity against the yeast strains with MIC value of 1000 μg/disc. The chemical study of the most bioactive extracts of Eugenia dysenterica and Pouteria ramiflora revealed catechin derivatives and flavonoids as main components.
    [Show full text]
  • Development and Characterization of New Microsatellites for Eugenia Dysenterica DC (Myrtaceae)
    Development and characterization of new microsatellites for Eugenia dysenterica DC (Myrtaceae) M.P.C. Telles1, J.B. Silva1, L.V. Resende1, R.P. Vianello2, L.J. Chaves3, T.N. Soares1 and R.G. Collevatti1 1Laboratório de Genética & Biodiversidade, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Goiânia, GO, Brasil 2Laboratório de Biotecnologia, Empresa Brasileira de Pesquisa Agropecuária Arroz e Feijão, Santo Antônio de Goiás, GO, Brasil 3Escola de Agronomia, Universidade Federal de Goiás, Goiânia, GO, Brasil Corresponding author: M.P.C. Telles E-mail: [email protected] Genet. Mol. Res. 12 (3): 3124-3127 (2013) Received May 31, 2012 Accepted July 31, 2012 Published February 6, 2013 DOI http://dx.doi.org/10.4238/2013.February.6.3 ABSTRACT. Microsatellite markers were developed for population genetic analyses of the Neotropical tree Eugenia dysenterica DC (Myrtaceae), after construction of a shotgun genomic library for microsatellite discovery. Nine primers were designed, of which 5 yielded amplified product. These primers were polymorphic for 97 individuals collected in 3 distinct localities. The number of alleles per locus (primer) ranged from 3 to 11 and expected heterozygosities varied from 0.309 to 0.884. The probability of locus identity was ~1.88 x 10-4 and the probability of paternity exclusion was ~0.9367. The 5 microsatellite primer pairs may be suitable for population genetic studies such as parentage and fine-scale genetic analyses of this species. Key words: Cagaita; Cerrado; Genetic diversity; Shotgun library; Microsatellite Genetics and Molecular Research 12 (3): 3124-3127 (2013) ©FUNPEC-RP www.funpecrp.com.br Eugenia dysenterica microsatellites 3125 INTRODUCTION Eugenia dysenterica (Myrtaceae) is a Neotropical tree widely distributed in the Brazilian savannas of the Cerrado Biome, Central Brazil.
    [Show full text]
  • In Vitro Evaluation of Eugenia Dysenterica in Primary Culture of Human Gingival Fibroblast Cells
    ORIGINAL RESEARCH Craniofacial Biology In vitro evaluation of Eugenia dysenterica in primary culture of human gingival fibroblast cells Cláudio Rodrigues Rezende COSTA(a) Abstract: Eugenia dysenterica is a Brazilian tree investigated for its Bruna Rabelo AMORIM(a) properties and bioactive compounds, which are believed to have both Sandra Márcia Mazutti da SILVA(b) pharmacological and phytochemical therapeutic effects. The leaves of this Ana Carolina ACEVEDO(a) tree contain tannins, flavonoids, terpenes, and saponins, with reportedly Pérola de Oliveira MAGALHÃES(b) beneficial effects to the human body. Despite these therapeutic applications, Eliete Neves Silva GUERRA(a) its effects have never been tested on oral tissues. Therefore, the aim of the present study was to evaluate the cytotoxic and antioxidant effects and the anti-inflammatory and repair properties of the acetone fraction of E. dysenterica on primary culture of human gingival fibroblasts and on the (a) Universidade de Brasília – UNB, Faculty of Health Sciences, Laboratory of Oral immortalized murine macrophage cell line (RAW 264.7). For this purpose, Histopathology, Brasília, DF, Brazil. a metabolic activity assay, a wound healing assay, a nitric oxide assay, and (b) Universidade de Brasília – UNB, Faculty RT-qPCR were performed. The assays revealed a cytoprotective effect of Health Sciences, Laboratory of Natural of this plant, suggested by the increase in the expression of SOD1 and Products, Brasília, DF, Brazil. NRF2. An antioxidant potential effect was observed in the DPPH• assay. However, the fraction of E. dysenterica did not show anti-inflammatory activity. In conclusion, Eugenia dysenterica may promote cytoprotection when associated with chlorhexidine digluconate because of its antioxidant effect.
    [Show full text]
  • Cytoprotective Effect of Eugenia Uniflora L. Against the Waste
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Arabian Journal of Chemistry (2016) xxx, xxx–xxx King Saud University Arabian Journal of Chemistry www.ksu.edu.sa www.sciencedirect.com ORIGINAL ARTICLE Cytoprotective effect of Eugenia uniflora L. against the waste contaminant mercury chloride Francisco A.B. Cunha a,b, Antonio I. Pinho a,b, Joycy F.S. Santos a, Celestina E. Sobral-Souza c, Rosimeire S. Albuquerque c, Edinardo F.F. Matias c, Nadghia F. Leite c, Saulo R. Tintino c, Jose´G.M. Costa c, Aline A. Boligon b, Emily P. Waczuk b, Joa˜ o B.T. Rocha b, Thais Posser b, Henrique D.M. Coutinho c,*, Lucindo J. Quintans-Ju´nior d, Jeferson L. Franco b a Departamento de Cieˆncias Biolo´gicas da Universidade Regional do Cariri – URCA, Crato, CE, Brazil b Programa de Po´s Graduac¸a˜o em Bioquı´mica Toxicolo´gica, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil c Departamento de Quı´mica Biolo´gica da Universidade Regional do Cariri – URCA, Crato, CE, Brazil d Departamento de Fisiologia da Universidade Federal de Sergipe – UFS, Aracaju, SE, Brazil Received 22 January 2016; accepted 27 April 2016 KEYWORDS Abstract Environmental stressors such as mercury are important for the search of substances to Mercurium chloride; lower induced oxidative damage. Accordingly, secondary metabolites from plants with antioxidant Negative geotactic effect; activity represent an interesting alternative. The aim of this work was to evaluate the cytoprotective Chelating effect; effect of the ethanol extract of Eugenia uniflora against mercury chloride.
    [Show full text]
  • Myrtle Rust Reviewed the Impacts of the Invasive Plant Pathogen Austropuccinia Psidii on the Australian Environment R
    Myrtle Rust reviewed The impacts of the invasive plant pathogen Austropuccinia psidii on the Australian environment R. O. Makinson 2018 DRAFT CRCPLANTbiosecurity CRCPLANTbiosecurity © Plant Biosecurity Cooperative Research Centre, 2018 ‘Myrtle Rust reviewed: the impacts of the invasive pathogen Austropuccinia psidii on the Australian environment’ is licenced by the Plant Biosecurity Cooperative Research Centre for use under a Creative Commons Attribution 4.0 Australia licence. For licence conditions see: https://creativecommons.org/licenses/by/4.0/ This Review provides background for the public consultation document ‘Myrtle Rust in Australia – a draft Action Plan’ available at www.apbsf.org.au Author contact details R.O. Makinson1,2 [email protected] 1Bob Makinson Consulting ABN 67 656 298 911 2The Australian Network for Plant Conservation Inc. Cite this publication as: Makinson RO (2018) Myrtle Rust reviewed: the impacts of the invasive pathogen Austropuccinia psidii on the Australian environment. Plant Biosecurity Cooperative Research Centre, Canberra. Front cover: Top: Spotted Gum (Corymbia maculata) infected with Myrtle Rust in glasshouse screening program, Geoff Pegg. Bottom: Melaleuca quinquenervia infected with Myrtle Rust, north-east NSW, Peter Entwistle This project was jointly funded through the Plant Biosecurity Cooperative Research Centre and the Australian Government’s National Environmental Science Program. The Plant Biosecurity CRC is established and supported under the Australian Government Cooperative Research Centres Program. EXECUTIVE SUMMARY This review of the environmental impacts of Myrtle Rust in Australia is accompanied by an adjunct document, Myrtle Rust in Australia – a draft Action Plan. The Action Plan was developed in 2018 in consultation with experts, stakeholders and the public. The intent of the draft Action Plan is to provide a guiding framework for a specifically environmental dimension to Australia’s response to Myrtle Rust – that is, the conservation of native biodiversity at risk.
    [Show full text]
  • Plinia Trunciflora
    Genetics and Molecular Biology, 40, 4, 871-876 (2017) Copyright © 2017, Sociedade Brasileira de Genética. Printed in Brazil DOI: http://dx.doi.org/10.1590/1678-4685-GMB-2017-0096 Genome Insight Complete sequence and comparative analysis of the chloroplast genome of Plinia trunciflora Maria Eguiluz1, Priscila Mary Yuyama2, Frank Guzman2, Nureyev Ferreira Rodrigues1 and Rogerio Margis1,2 1Programa de Pós-Graduação em Genética e Biologia Molecular, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil. 2Departamento de Biofísica, Centro de Biotecnologia, Laboratório de Genomas e Populações de Plantas, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil. Abstract Plinia trunciflora is a Brazilian native fruit tree from the Myrtaceae family, also known as jaboticaba. This species has great potential by its fruit production. Due to the high content of essential oils in their leaves and of anthocyanins in the fruits, there is also an increasing interest by the pharmaceutical industry. Nevertheless, there are few studies fo- cusing on its molecular biology and genetic characterization. We herein report the complete chloroplast (cp) genome of P. trunciflora using high-throughput sequencing and compare it to other previously sequenced Myrtaceae genomes. The cp genome of P. trunciflora is 159,512 bp in size, comprising inverted repeats of 26,414 bp and sin- gle-copy regions of 88,097 bp (LSC) and 18,587 bp (SSC). The genome contains 111 single-copy genes (77 pro- tein-coding, 30 tRNA and four rRNA genes). Phylogenetic analysis using 57 cp protein-coding genes demonstrated that P. trunciflora, Eugenia uniflora and Acca sellowiana form a cluster with closer relationship to Syzygium cumini than with Eucalyptus.
    [Show full text]