AN ALTERNATIVE ASYMPTOTIC ANALYSIS of RESIDUAL-BASED STATISTICS Elena Andreou and Bas J

Total Page:16

File Type:pdf, Size:1020Kb

AN ALTERNATIVE ASYMPTOTIC ANALYSIS of RESIDUAL-BASED STATISTICS Elena Andreou and Bas J AN ALTERNATIVE ASYMPTOTIC ANALYSIS OF RESIDUAL-BASED STATISTICS Elena Andreou and Bas J. M. Werker* Abstract—This paper presents an alternative method to derive the limiting estimated propensity score that can be a nonsmooth function distribution of residual-based statistics. Our method does not impose an explicit assumption of (asymptotic) smoothness of the statistic of interest of the estimated parameters and for which standard boot- with respect to the model’s parameters and thus is especially useful in cases strap inference is often not valid (Abadie & Imbens, 2008). where such smoothness is difficult to establish. Instead, we use a locally In applications where the statistic of interest is smooth, our uniform convergence in distribution condition, which is automatically sat- isfied by residual-based specification test statistics. To illustrate, we derive conditions can be checked along the traditional lines. In order the limiting distribution of a new functional form specification test for dis- to illustrate our approach, we derive the limiting distribution crete choice models, as well as a runs-based tests for conditional symmetry of a new test based on Kendall’s tau for omitted variables in in dynamic volatility models. binary choice models and a runs-based test for conditional symmetry in dynamic volatility models. I. Introduction Our proposed method applies to general model specifica- tions as long as they satisfy the uniform local asymptotic ESIDUAL-BASED tests are generally used for diag- normality (ULAN) condition. Most of the standard econo- R nostic checking of a proposed statistical model. Such metric models satisfy this condition (see section IIIA for a specification tests are covered in many textbooks and remain more detailed discussion). The ULAN condition is central in of interest in ongoing research. Similarly, residual-based esti- Hájek and Le Cam’s theory of asymptotic statistics (Bickel mators, often referred to as two-step estimators, are widely et al., 1993; Le Cam & Yang, 1990; Pollard, 2004; van der applied in econometric work. Traditionally the asymptotic Vaart, 1998). We use this theory to derive our results. Other distribution of residual-based statistics (be it tests or esti- advances in econometric theory using the LAN approach can mators) is derived using a particular model specification, be found in Abadir and Distaso (2007), Jeganathan (1995), some more or less stringent assumptions about the statistic, and Ploberger (2004). For ULAN models, our results offer and conditions on the first-step estimator employed. A key a simple yet general method to derive the asymptotic√ distri- assumption is some form of (asymptotic) smoothness of the bution of residual-based statistics using initial n-consistent statistic with respect to the parameter to be estimated as for- estimators. Under the conditions imposed, our main theo- malized first in Pierce (1982) and Randles (1982). Since then, rem, theorem 3.1, asserts that the residual-based statistic is this approach has been significantly extended (for example, asymptotically normally distributed with a variance that is Pollard, 1989; Newey & McFadden, 1994; Andrews, 1994). a simple function of the limiting variances and covariances We present a new and alternative approach that does of the innovation-based statistic, the central sequence (the not involve explicit smoothness conditions for the statis- ULAN equivalent of the derivative of the log likelihood), and tic of interest. Instead, we rely on a locally uniform weak the estimator.1 Using this approach, we can readily obtain the convergence assumption shown to be generally (automat- local power of such residual-based tests, which can also be ically) satisfied by residual-based statistics. Our approach interpreted in terms of specification tests with locally mis- offers a useful and unifying alternative, especially when specified alternatives such as in Bera and Yoon (1993). In smoothness conditions are nontrivial to establish or require particular, this allows US to assess in which situations the additional regularity. Some examples of such statistics are, local power of the residual-based test exceeds, falls below, or for instance, rank-based statistics (Hallin & Puri, 1991) equals that of the innovation-based test. and statistics based on nondifferentiable forecast error loss To illustrate our method, we consider two applications. functions (McCracken, 2000). Abadie and Imbens (2009) First, we derive the asymptotic distribution of a new non- present an application of our method to derive the asymp- parametric test for omitted variables in a binary choice totic distribution theory of matching estimators based on the model. Second, we discuss a runs-based test for conditional symmetry in dynamic volatility models. These applications Received for publication November 20, 2009. Revision accepted for publication August 6, 2010. purposely focus on nonparametric statistics as these are usu- * Andreou: University of Cyprus; Werker: Tilburg University. ally defined in terms of inherently nonsmooth statistics like Part of this research was completed when E.A. held a Marie Curie fel- ranks, signs, and runs. For these applications, an appropriate lowship at Tilburg University (MCFI-2000-01645) and while both authors were visiting the Statistical and Applied Mathematical Sciences Insti- form of asymptotic smoothness can probably be established, tute. E.A. acknowledges support of the European Research Council under but our technique offers a useful alternative for which this the European Community FP7/2008-2012 ERC grant 209116. B.W. also is not necessary. We introduce our applications in section II. acknowledges support from Mik. Comments by two anonymous referees, Anil Bera, Christel Bouquiaux, Rob Engle, Eric Ghysels, Lajos Horváth, A number of additional applications of our method can be Nour Meddahi, Bertrand Melenberg, Werner Ploberger, Eric Renault, found in Andreou and Werker (2009). Enrique Sentana, conference participants at the ESEM 2004, MEG 2004, and NBER time series 2004 conferences, and seminar participants at 1 Throughout the paper, we use the term innovation-based statistic for the the London School of Economics, Université de Montréal, and Tilburg statistic applied to the true innovations in the model—the statistic obtained University are kindly acknowledged. if the true value of the model parameters were used. The Review of Economics and Statistics, February 2012, 94(1): 88–99 © 2011 by the President and Fellows of Harvard College and the Massachusetts Institute of Technology Downloaded from http://www.mitpressjournals.org/doi/pdf/10.1162/REST_a_00151 by guest on 25 September 2021 AN ALTERNATIVE ASYMPTOTIC ANALYSIS OF RESIDUAL-BASED STATISTICS 89 Although this paper deals mainly with residual-based test- In applications, the unknown parameter θ is replaced by ing, the results can be applied directly in the area of two-step an estimator θˆn—for instance, the maximum likelihood esti- θˆ(ML) θˆ estimation when assessing the estimation error in a second- mator n . This leads to the residual-based statistic Tn( n). step estimator calculated from the residuals of a model The traditional way of deriving the limiting distribution of estimated in a first step. This problem has received large Tn(θˆn) relies on linearizing the statistic Tn(θ) (see Pagan & attention in the econometrics literature (see Murphy & Topel, Vella, 1989). This approach leads to 1985, 2002; Pagan, 1986). In the notation below, this would L T T T −1 T merely mean that the statistic Tn should be taken as the Tn(θˆn) −→ N(0, EWZZ − EWXZ (EWXX ) EWXZ ), second-step estimation error. (5) The rest of this paper is organized as follows. The next section introduces the applications we use to illustrate the as n →∞, with scope of our technique. Section IIIA then presents the con- f (XT θ)2 ditions we need to derive the limiting distribution of a W = . residual-based statistic. Our main result is stated and dis- F(XT θ)(1 − F(XT θ)) cussed in section IIIB. Section IIIC uses our main theorem to derive the (local) power of residual-based tests and compares The test statistic, equation (4), checks for linear correlation this with the local power of the underlying innovation-based between the generalized residuals and the possibly omitted tests. We indicate that a technical issue arises when making variable Z. One could also be interested in a test with power our ideas rigorous. Section IV addresses this by discretiza- against nonlinear forms of dependence based on Kendall’s tau εG θ tion, and we provide a formal proof of our main result. Section applied to the pairs ( i ( ), Zi). For simplicity, we consider the case where the possibly omitted variables are univariate: V concludes, and the appendix contains the proofs and some ∈ R auxiliary results. Zi . Recall that the population version of Kendall’s tau is defined as II. Two Motivational Applications τ = P εG θ εG θ − = 4 i ( )< j ( ), Zi < Zj 1, i j. (6) A. Omitted Variable Test for the Binary Choice Model An appropriately scaled innovation-based version of Consider the binary choice model, Kendall’s tau is the U-statistic, T − P{Y = 1|X}=F(X θ), (1) 1 n i−1 √ n T τ(θ) = n 4I εG(θ)<εG(θ), Z < Z − 1 where Y denotes a binary response variable, X some exoge- n i j i j 2 = = nous explanatory variables, and F a given probability distri- i 1 j 1 L 4 bution function. We assume that the distribution function F −→ N 0, . admits a continuous density f and that the Fisher information 9 matrix, This limiting distribution, under the null hypothesis of inde- f (XT θ)2 pendent εG and Z , can be obtained using the projection I (θ) = E XXT ,(2)i i F F(XT θ)(1 − F(XT θ)) theorem for U-statistics, for example, theorem 12.3 in van der Vaart (1998). exists and is continuous in θ. For inference, an i.i.d. sample Deriving the limiting distribution of the residual-based of observations (Y , X ), i = 1, ..., n, is available.
Recommended publications
  • The Saddle Point Method in Combinatorics Asymptotic Analysis: Successes and Failures (A Personal View)
    Pn The number of inversions in permutations Median versus A (A large) for a Luria-Delbruck-like distribution, with parameter A Sum of positions of records in random permutations Merten's theorem for toral automorphisms Representations of numbers as k=−n "k k The q-Catalan numbers A simple case of the Mahonian statistic Asymptotics of the Stirling numbers of the first kind revisited The Saddle point method in combinatorics asymptotic analysis: successes and failures (A personal view) Guy Louchard May 31, 2011 Guy Louchard The Saddle point method in combinatorics asymptotic analysis: successes and failures (A personal view) Pn The number of inversions in permutations Median versus A (A large) for a Luria-Delbruck-like distribution, with parameter A Sum of positions of records in random permutations Merten's theorem for toral automorphisms Representations of numbers as k=−n "k k The q-Catalan numbers A simple case of the Mahonian statistic Asymptotics of the Stirling numbers of the first kind revisited Outline 1 The number of inversions in permutations 2 Median versus A (A large) for a Luria-Delbruck-like distribution, with parameter A 3 Sum of positions of records in random permutations 4 Merten's theorem for toral automorphisms Pn 5 Representations of numbers as k=−n "k k 6 The q-Catalan numbers 7 A simple case of the Mahonian statistic 8 Asymptotics of the Stirling numbers of the first kind revisited Guy Louchard The Saddle point method in combinatorics asymptotic analysis: successes and failures (A personal view) Pn The number of inversions in permutations Median versus A (A large) for a Luria-Delbruck-like distribution, with parameter A Sum of positions of records in random permutations Merten's theorem for toral automorphisms Representations of numbers as k=−n "k k The q-Catalan numbers A simple case of the Mahonian statistic Asymptotics of the Stirling numbers of the first kind revisited The number of inversions in permutations Let a1 ::: an be a permutation of the set f1;:::; ng.
    [Show full text]
  • Asymptotic Analysis for Periodic Structures
    ASYMPTOTIC ANALYSIS FOR PERIODIC STRUCTURES A. BENSOUSSAN J.-L. LIONS G. PAPANICOLAOU AMS CHELSEA PUBLISHING American Mathematical Society • Providence, Rhode Island ASYMPTOTIC ANALYSIS FOR PERIODIC STRUCTURES ASYMPTOTIC ANALYSIS FOR PERIODIC STRUCTURES A. BENSOUSSAN J.-L. LIONS G. PAPANICOLAOU AMS CHELSEA PUBLISHING American Mathematical Society • Providence, Rhode Island M THE ATI A CA M L ΤΡΗΤΟΣ ΜΗ N ΕΙΣΙΤΩ S A O C C I I R E E T ΑΓΕΩΜΕ Y M A F O 8 U 88 NDED 1 2010 Mathematics Subject Classification. Primary 80M40, 35B27, 74Q05, 74Q10, 60H10, 60F05. For additional information and updates on this book, visit www.ams.org/bookpages/chel-374 Library of Congress Cataloging-in-Publication Data Bensoussan, Alain. Asymptotic analysis for periodic structures / A. Bensoussan, J.-L. Lions, G. Papanicolaou. p. cm. Originally published: Amsterdam ; New York : North-Holland Pub. Co., 1978. Includes bibliographical references. ISBN 978-0-8218-5324-5 (alk. paper) 1. Boundary value problems—Numerical solutions. 2. Differential equations, Partial— Asymptotic theory. 3. Probabilities. I. Lions, J.-L. (Jacques-Louis), 1928–2001. II. Papani- colaou, George. III. Title. QA379.B45 2011 515.353—dc23 2011029403 Copying and reprinting. Individual readers of this publication, and nonprofit libraries acting for them, are permitted to make fair use of the material, such as to copy a chapter for use in teaching or research. Permission is granted to quote brief passages from this publication in reviews, provided the customary acknowledgment of the source is given. Republication, systematic copying, or multiple reproduction of any material in this publication is permitted only under license from the American Mathematical Society.
    [Show full text]
  • Definite Integrals in an Asymptotic Setting
    A Lost Theorem: Definite Integrals in An Asymptotic Setting Ray Cavalcante and Todor D. Todorov 1 INTRODUCTION We present a simple yet rigorous theory of integration that is based on two axioms rather than on a construction involving Riemann sums. With several examples we demonstrate how to set up integrals in applications of calculus without using Riemann sums. In our axiomatic approach even the proof of the existence of the definite integral (which does use Riemann sums) becomes slightly more elegant than the conventional one. We also discuss an interesting connection between our approach and the history of calculus. The article is written for readers who teach calculus and its applications. It might be accessible to students under a teacher’s supervision and suitable for senior projects on calculus, real analysis, or history of mathematics. Here is a summary of our approach. Let ρ :[a, b] → R be a continuous function and let I :[a, b] × [a, b] → R be the corresponding integral function, defined by y I(x, y)= ρ(t)dt. x Recall that I(x, y) has the following two properties: (A) Additivity: I(x, y)+I (y, z)=I (x, z) for all x, y, z ∈ [a, b]. (B) Asymptotic Property: I(x, x + h)=ρ (x)h + o(h)ash → 0 for all x ∈ [a, b], in the sense that I(x, x + h) − ρ(x)h lim =0. h→0 h In this article we show that properties (A) and (B) are characteristic of the definite integral. More precisely, we show that for a given continuous ρ :[a, b] → R, there is no more than one function I :[a, b]×[a, b] → R with properties (A) and (B).
    [Show full text]
  • Introducing Taylor Series and Local Approximations Using a Historical and Semiotic Approach Kouki Rahim, Barry Griffiths
    Introducing Taylor Series and Local Approximations using a Historical and Semiotic Approach Kouki Rahim, Barry Griffiths To cite this version: Kouki Rahim, Barry Griffiths. Introducing Taylor Series and Local Approximations using a Historical and Semiotic Approach. IEJME, Modestom LTD, UK, 2019, 15 (2), 10.29333/iejme/6293. hal- 02470240 HAL Id: hal-02470240 https://hal.archives-ouvertes.fr/hal-02470240 Submitted on 7 Feb 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. INTERNATIONAL ELECTRONIC JOURNAL OF MATHEMATICS EDUCATION e-ISSN: 1306-3030. 2020, Vol. 15, No. 2, em0573 OPEN ACCESS https://doi.org/10.29333/iejme/6293 Introducing Taylor Series and Local Approximations using a Historical and Semiotic Approach Rahim Kouki 1, Barry J. Griffiths 2* 1 Département de Mathématique et Informatique, Université de Tunis El Manar, Tunis 2092, TUNISIA 2 Department of Mathematics, University of Central Florida, Orlando, FL 32816-1364, USA * CORRESPONDENCE: [email protected] ABSTRACT In this article we present the results of a qualitative investigation into the teaching and learning of Taylor series and local approximations. In order to perform a comparative analysis, two investigations are conducted: the first is historical and epistemological, concerned with the pedagogical evolution of semantics, syntax and semiotics; the second is a contemporary institutional investigation, devoted to the results of a review of curricula, textbooks and course handouts in Tunisia and the United States.
    [Show full text]
  • An Introduction to Asymptotic Analysis Simon JA Malham
    An introduction to asymptotic analysis Simon J.A. Malham Department of Mathematics, Heriot-Watt University Contents Chapter 1. Order notation 5 Chapter 2. Perturbation methods 9 2.1. Regular perturbation problems 9 2.2. Singular perturbation problems 15 Chapter 3. Asymptotic series 21 3.1. Asymptotic vs convergent series 21 3.2. Asymptotic expansions 25 3.3. Properties of asymptotic expansions 26 3.4. Asymptotic expansions of integrals 29 Chapter 4. Laplace integrals 31 4.1. Laplace's method 32 4.2. Watson's lemma 36 Chapter 5. Method of stationary phase 39 Chapter 6. Method of steepest descents 43 Bibliography 49 Appendix A. Notes 51 A.1. Remainder theorem 51 A.2. Taylor series for functions of more than one variable 51 A.3. How to determine the expansion sequence 52 A.4. How to find a suitable rescaling 52 Appendix B. Exam formula sheet 55 3 CHAPTER 1 Order notation The symbols , o and , were first used by E. Landau and P. Du Bois- Reymond and areOdefined as∼ follows. Suppose f(z) and g(z) are functions of the continuous complex variable z defined on some domain C and possess D ⊂ limits as z z0 in . Then we define the following shorthand notation for the relative!propertiesD of these functions in the limit z z . ! 0 Asymptotically bounded: f(z) = (g(z)) as z z ; O ! 0 means that: there exists constants K 0 and δ > 0 such that, for 0 < z z < δ, ≥ j − 0j f(z) K g(z) : j j ≤ j j We say that f(z) is asymptotically bounded by g(z) in magnitude as z z0, or more colloquially, and we say that f(z) is of `order big O' of g(z).
    [Show full text]
  • M. V. Pedoryuk Asymptotic Analysis Mikhail V
    M. V. Pedoryuk Asymptotic Analysis Mikhail V. Fedoryuk Asymptotic Analysis Linear Ordinary Differential Equations Translated from the Russian by Andrew Rodick With 26 Figures Springer-Verlag Berlin Heidelberg GmbH Mikhail V. Fedoryuk t Title of the Russian edition: Asimptoticheskie metody dlya linejnykh obyknovennykh differentsial 'nykh uravnenij Publisher Nauka, Moscow 1983 Mathematics Subject Classification (1991): 34Exx ISBN 978-3-642-63435-2 Library of Congress Cataloging-in-Publication Data. Fedoriuk, Mikhail Vasil'evich. [Asimptoticheskie metody dlia lineinykh obyknovennykh differentsial' nykh uravnenil. English] Asymptotic analysis : linear ordinary differential equations / Mikhail V. Fedoryuk; translated from the Russian by Andrew Rodick. p. cm. Translation of: Asimptoticheskie metody dlia lineinykh obyknovennykh differentsial' nykh uravnenii. Includes bibliographical references and index. ISBN 978-3-642-63435-2 ISBN 978-3-642-58016-1 (eBook) DOI 10.1007/978-3-642-58016-1 1. Differential equations-Asymptotic theory. 1. Title. QA371.F3413 1993 515'.352-dc20 92-5200 This work is subject to copyright. AII rights are reserved, whether the whole or part of the material is concemed, specifically the rights of translation. reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplica­ tion of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current vers ion, and permission for use must always be obtained from Springer-Verlag. Violations are liable for prosecution under the German Copyright Law. © Springer-Verlag Berlin Heidelberg 1993 Originally published by Springer-Verlag Berlin Heidelberg New York in 1993 Softcover reprint of the hardcover 1st edition 1993 Typesetting: Springer TEX in-house system 41/3140 - 5 4 3 210 - Printed on acid-free paper Contents Chapter 1.
    [Show full text]
  • Math 6730 : Asymptotic and Perturbation Methods Hyunjoong
    Math 6730 : Asymptotic and Perturbation Methods Hyunjoong Kim and Chee-Han Tan Last modified : January 13, 2018 2 Contents Preface 5 1 Introduction to Asymptotic Approximation7 1.1 Asymptotic Expansion................................8 1.1.1 Order symbols.................................9 1.1.2 Accuracy vs convergence........................... 10 1.1.3 Manipulating asymptotic expansions.................... 10 1.2 Algebraic and Transcendental Equations...................... 11 1.2.1 Singular quadratic equation......................... 11 1.2.2 Exponential equation............................. 14 1.2.3 Trigonometric equation............................ 15 1.3 Differential Equations: Regular Perturbation Theory............... 16 1.3.1 Projectile motion............................... 16 1.3.2 Nonlinear potential problem......................... 17 1.3.3 Fredholm alternative............................. 19 1.4 Problems........................................ 20 2 Matched Asymptotic Expansions 31 2.1 Introductory example................................. 31 2.1.1 Outer solution by regular perturbation................... 31 2.1.2 Boundary layer................................ 32 2.1.3 Matching................................... 33 2.1.4 Composite expression............................. 33 2.2 Extensions: multiple boundary layers, etc...................... 34 2.2.1 Multiple boundary layers........................... 34 2.2.2 Interior layers................................. 35 2.3 Partial differential equations............................. 36 2.4 Strongly
    [Show full text]
  • An Introduction to Matched Asymptotic Expansions (A Draft)
    An Introduction to Matched Asymptotic Expansions (A Draft) Peicheng Zhu Basque Center for Applied Mathematics and Ikerbasque Foundation for Science Nov., 2009 Preface The Basque Center for Applied Mathematics (BCAM) is a newly founded institute which is one of the Basque Excellence Research Centers (BERC). BCAM hosts a series of training courses on advanced aspects of applied and computational mathematics that are delivered, in English, mainly to graduate students and postdoctoral researchers, who are in or from out of BCAM. The series starts in October 2009 and finishes in June 2010. Each of the 13 courses is taught in one week, and has duration of 10 hours. This is the lecture notes of the course on Asymptotic Analysis that I gave at BCAM from Nov. 9 to Nov. 13, 2009, as the second of this series of BCAM courses. Here I have added some preliminary materials. In this course, we introduce some basic ideas in the theory of asymptotic analysis. Asymptotic analysis is an important branch of applied mathematics and has a broad range of contents. Thus due to the time limitation, I concentrate mainly on the method of matched asymptotic expansions. Firstly some simple examples, ranging from algebraic equations to partial differential equations, are discussed to give the reader a picture of the method of asymptotic expansions. Then we end with an application of this method to an optimal control problem, which is concerned with vanishing viscosity method and alternating descent method for optimal control of scalar conservation laws in presence of non-interacting shocks. Thanks go to the active listeners for their questions and discussions, from which I have learnt many things.
    [Show full text]
  • Analytic Combinatorics ECCO 2012, Bogot´A
    Lecture: H´el`ene Barcelo Analytic Combinatorics ECCO 2012, Bogot´a Notes by Zvi Rosen. Thanks to Alyssa Palfreyman for supplements. 1. Tuesday, June 12, 2012 Combinatorics is the study of finite structures that combine via a finite set of rules. Alge- braic combinatorics uses algebraic methods to help you solve counting problems. Often algebraic problems are aided by combinatorial tools; combinatorics thus becomes quite interdisciplinary. Analytic combinatorics uses methods from mathematical analysis, like complex and asymptotic analysis, to analyze a class of objects. Instead of counting, we can get a sense for their rate of growth. Source: Analytic Combinatorics, free online at http://algo.inria.fr/flajolet/Publications/ book.pdf. Goal 1.1. Use methods from complex and asymptotic analysis to study qualitative properties of finite structures. Example 1.2. Let S be a set of objects labeled by integers f1; : : : ; ng; how many ways can they form a line? Answer: n!. How fast does this quantity grow? How can we formalize this notion of quickness of growth? We take a set of functions that we will use as yardsticks, e.g. line, exponential, etc.; we will see what function approximates our sequence. Stirling's formula tells us: nn p n! ∼ 2πn: e a where an ∼ bn implies that limn!1 b ! 1. This formula could only arrive via analysis; indeed Stirling's formula appeared in the decades after Newton & Leibniz. Almost instantly, we know that (100)! has 158 digits. Similarly, (1000)! has 102568 digits. Example 1.3. Let an alternating permutation σ 2 Sn be a permutation such that σ(1) < σ(2) > σ(3) < σ(4) > ··· > σ(n); by definition, n must be odd.
    [Show full text]
  • Introduction to Algorithms
    CS 5002: Discrete Structures Fall 2018 Lecture 9: November 8, 2018 1 Instructors: Adrienne Slaughter, Tamara Bonaci Disclaimer: These notes have not been subjected to the usual scrutiny reserved for formal publications. They may be distributed outside this class only with the permission of the Instructor. Introduction to Algorithms Readings for this week: Rosen, Chapter 2.1, 2.2, 2.5, 2.6 Sets, Set Operations, Cardinality of Sets, Matrices 9.1 Overview Objective: Introduce algorithms. 1. Review logarithms 2. Asymptotic analysis 3. Define Algorithm 4. How to express or describe an algorithm 5. Run time, space (Resource usage) 6. Determining Correctness 7. Introduce representative problems 1. foo 9.2 Asymptotic Analysis The goal with asymptotic analysis is to try to find a bound, or an asymptote, of a function. This allows us to come up with an \ordering" of functions, such that one function is definitely bigger than another, in order to compare two functions. We do this by considering the value of the functions as n goes to infinity, so for very large values of n, as opposed to small values of n that may be easy to calculate. Once we have this ordering, we can introduce some terminology to describe the relationship of two functions. 9-1 9-2 Lecture 9: November 8, 2018 Growth of Functions nn 4096 n! 2048 1024 512 2n 256 128 n2 64 32 n log(n) 16 n 8 p 4 n log(n) 2 1 1 2 3 4 5 6 7 8 From this chart, we see: p 1 log n n n n log(n) n2 2n n! nn (9.1) Complexity Terminology Θ(1) Constant Θ(log n) Logarithmic Θ(n) Linear Θ(n log n) Linearithmic Θ nb Polynomial Θ(bn) (where b > 1) Exponential Θ(n!) Factorial 9.2.1 Big-O: Upper Bound Definition 9.1 (Big-O: Upper Bound) f(n) = O(g(n)) means there exists some constant c such that f(n) ≤ c · g(n), for large enough n (that is, as n ! 1).
    [Show full text]
  • Asymptotic Analysis and Singular Perturbation Theory
    Asymptotic Analysis and Singular Perturbation Theory John K. Hunter Department of Mathematics University of California at Davis February, 2004 Copyright c 2004 John K. Hunter ii Contents Chapter 1 Introduction 1 1.1 Perturbation theory . 1 1.1.1 Asymptotic solutions . 1 1.1.2 Regular and singular perturbation problems . 2 1.2 Algebraic equations . 3 1.3 Eigenvalue problems . 7 1.3.1 Quantum mechanics . 9 1.4 Nondimensionalization . 12 Chapter 2 Asymptotic Expansions 19 2.1 Order notation . 19 2.2 Asymptotic expansions . 20 2.2.1 Asymptotic power series . 21 2.2.2 Asymptotic versus convergent series . 23 2.2.3 Generalized asymptotic expansions . 25 2.2.4 Nonuniform asymptotic expansions . 27 2.3 Stokes phenomenon . 27 Chapter 3 Asymptotic Expansion of Integrals 29 3.1 Euler's integral . 29 3.2 Perturbed Gaussian integrals . 32 3.3 The method of stationary phase . 35 3.4 Airy functions and degenerate stationary phase points . 37 3.4.1 Dispersive wave propagation . 40 3.5 Laplace's Method . 43 3.5.1 Multiple integrals . 45 3.6 The method of steepest descents . 46 Chapter 4 The Method of Matched Asymptotic Expansions: ODEs 49 4.1 Enzyme kinetics . 49 iii 4.1.1 Outer solution . 51 4.1.2 Inner solution . 52 4.1.3 Matching . 53 4.2 General initial layer problems . 54 4.3 Boundary layer problems . 55 4.3.1 Exact solution . 55 4.3.2 Outer expansion . 56 4.3.3 Inner expansion . 57 4.3.4 Matching . 58 4.3.5 Uniform solution . 58 4.3.6 Why is the boundary layer at x = 0? .
    [Show full text]
  • Asymptotes and Asymptotic Analysis for Development of Compact Models for Microelectronics Cooling M
    Asymptotes and Asymptotic Analysis for Development of Compact Models for Microelectronics Cooling M. Michael Yovanovich Distiniguished Professor Emeritus Principal ScientificAdvisor Microelectronics Heat Transfer Laboratory University of Waterloo, ON, Canada email: [email protected]. Abstract– In the thermal analysis of microelectronic sys- F (Pr) = Prandtl number function tems various levels of compact models are required to bridge g = gravitational constant, m/s2 thegapbetweentheuseofsimplecorrelationequations G = body gravity function which give quick, partial solutions and the use of costly, time consuming, numerical methods which give complete G = dimensionless reciprocal flux, 1/q∗ solutions with much detail. There are various levels of com- h = heat transfer coefficient, W/m2K pact models: some are based on simple combinations of two 2 HB = Brinell hardness, N/m or more correlation equations; some are based on resistor networks; and some are based on various combinations of k = thermal conductivity, W/mK asymptotic solutions. This paper shows that many different Kn = Knudsen number, Λ/D complex physical problems, when they are nondimensional- L = length of tube, pipe, duct, m ized, exhibit similar trends, i.e., that the complex solution L = optical path length, m varies smoothly between two asymptotic solutions. Rules λ are presented for the method of combining the asymptotes = arbitrary length scale, m and how to calculate the “fitting” parameter. One exam- m,L n = exponents of dimensionless solutions ple shows how to develop a compact model for steady con- M = gas parameter, αβΛ duction across a gas layer for very small and very large Knudsen numbers. A compact model for predicting the Nu = Nusselt number, hL/k complex elastic-plastic contact between a hard sphere and p = fitting parameter a softer substrate is presented.
    [Show full text]