Computationally Efficient Modelling of Tidal Rivers Using Conceptual

Total Page:16

File Type:pdf, Size:1020Kb

Computationally Efficient Modelling of Tidal Rivers Using Conceptual Environmental Modelling & Software 77 (2016) 19e31 Contents lists available at ScienceDirect Environmental Modelling & Software journal homepage: www.elsevier.com/locate/envsoft Computationally efficient modelling of tidal rivers using conceptual reservoir-type models * Pieter Meert a, b, , Fernando Pereira b, Patrick Willems a, c a Hydraulics Section, Department of Civil Engineering, KU Leuven, Kasteelpark Arenberg 40, Leuven, BE-3001, Belgium b Flanders Hydraulics Research, Antwerpen, BE-2140, Belgium c Department of Hydrology and Hydraulic Engineering, Vrije Universiteit Brussel, Brussel, BE-1050, Belgium article info abstract Article history: Conceptual reservoir-type models of river systems, that mimic the results of detailed hydrodynamic Received 13 July 2015 models, provide a powerful tool for numerous river management applications. Thanks to their compu- Received in revised form tationally efficient model structure they are very well suited for applications that require long term 7 October 2015 simulations or a large number of model iterations. However, one well-known problem is that conceptual Accepted 20 November 2015 models have difficulties to account for backwater effects. For this reason, their application to tidally Available online 12 December 2015 influenced river reaches so far was almost non-existent. This paper introduces an extension of an existing grey-box reservoir modelling technique to incorporate tidally influenced river reaches. The methodology Keywords: Tidal rivers is demonstrated for the downstream part of the rivers Zenne and Rupel in Belgium. Results show a minor Conceptual models loss of accuracy when the detailed model is replaced by the surrogate conceptual model. Also, the tidal Reservoir routing effects are well represented. Computationally efficient modelling © 2015 Elsevier Ltd. All rights reserved. 1. Introduction the Brussels Capital Region, etc. This has resulted in a large number of hydrodynamic models which are mostly limited to individual Over the last decades, water authorities all over the world have components of a catchment, that can hardly interact with each developed a large variety of detailed hydrodynamic models in other and are all computationally demanding. Furthermore, there support of their water management tasks. Despite this vast exists an overlap in the areas covered by these models, resulting in modelling capacity, the current tendency towards integrated areas that are modelled twice or more, by different model types and catchment modelling is impeded by a number of practical obsta- by different authorities, and which might provide different results cles. One of the main restrictions is that the natural catchments for the overlapping areas. may be managed by up to three or more different authorities, each In recent years, several generic modelling packages have been with their own responsibilities and modelling tools. The basin of developed to analyze the behavior of river basins under varying the river Zenne in Belgium, for example, is managed by the W&Z hydrological conditions and to assist decision makers in short-term authority for the navigable rivers in Flanders, the Flemish Envi- operations and long-term planning at basin scale, such as the Riv- ronment Agency (VMM) for the non-navigable rivers of first cate- erWare tool (Zagona et al., 2001), the spatially distributed LIS- gory in Flanders, the provinces and cities for the non-navigable FLOOD model (Van Der Knijff et al., 2010), the RIBASIM package rivers of higher category, the Direction generale operationelle de la (Deltares, 2010) and the Source Integrated Modelling System (IMS; Mobilite et des Voies hydrauliques (DGO2) for the rivers in Wal- Welsh et al., 2013). RiverWare, for example, is a river and reservoir lonia, the Brussels Environment Agency (BIM/IBGE) for the rivers in modelling tool that contains a library of pre-programmed physical the Brussels Capital Region, Aquafin for the urban drainage systems process algorithms to permit site-specific detailed modelling. IMS in the Flanders Region, Vivaqua for the urban drainage systems in is an Australian multidisciplinary modelling environment for catchments and river systems in transboundary basins. These generic packages use simplified river routing techniques, like the * Corresponding author. Hydraulics section, Department of Civil Engineering, KU Muskingum routing (Cunge, 1969) or Laurenson's non-linear Leuven, Kasteelpark Arenberg 40, Leuven, BE-3001, Belgium. routing with lag method (Laurenson, 1986), and can provide E-mail address: [email protected] (P. Meert). http://dx.doi.org/10.1016/j.envsoft.2015.11.010 1364-8152/© 2015 Elsevier Ltd. All rights reserved. 20 P. Meert et al. / Environmental Modelling & Software 77 (2016) 19e31 powerful solutions to overcome the above mentioned obstacles. suited for the aims of the research in this paper, since they start Simulations with these model packages are usually performed at from premises that constrain the conditions on which they are daily (or even larger) time step, making them suitable for long-term applicable. Problems arise for example in predicting water levels in catchment water balance calculations, but less suitable for river parts that show an important interaction between the tidal modelling individual flood events, which requires smaller time influence downstream and the fresh water discharges upstream. steps and a higher spatial resolution of calculation nodes. In order Furthermore, the accuracy of the simulation results of the above to meet these drawbacks, this paper makes use of conceptual mentioned models and methods can be rather poor, limiting their models, that emulate the results of the detailed models, based on a use in practice. Another important limitation is the fact that none of concatenation of reservoir-type model elements. The conceptual them ensures an explicit conservation of the water mass in the models considered here can be regarded as physically-inspired or system, which impedes an accurate incorporation of (variable) grey-box models, since they have a structure that is based on a human interactions on the water system, like for example hydraulic simplified representation of reality (Knight and Shamseldin, 2006). structures that regulate flood control areas or pumping stations The explicit calculation scheme of these models allows for very that control the water level in polders and land reclamation areas. short calculation times, making them useful not only for integrated The modelling approach presented in this paper is based on the catchment modelling, but also for other applications that require mass balance equation and can therefore address the problems long-term simulations or a large number of model runs, as in discussed here. In addition, the approach is ‘open’ enough, so that it forecasting, real-time control, sensitivity analyses, etc. is compatible with other (existing) reservoir routing techniques So far, conceptual models have mostly been applied to the free and independent of the type of hydrodynamic model that is used flowing, upstream parts of river systems, where no influences are for the detailed simulations. present of the backwaters induced by downstream water level This paper first describes the study area and the available data of boundary conditions (e.g. Wolfs et al., 2015; Van den Zegel et al., the rivers Zenne and Rupel in Belgium. Next, the existing concep- 2014; Vaze et al., 2011; Kozar et al., 2010). The application of con- tual modelling approach and the extension of this technique to ceptual models to tidally influenced river reaches was therefore incorporate the tidally influenced parts of the river system are almost non-existent. This paper presents an extension of the discussed. This is followed by an overview of how the detailed methodology presented in the paper by Wolfs et al. (2015), that is hydrodynamic model is transformed into a lumped conceptual applicable to the tidally influenced parts of a river system and that model. Finally, the simulation results of the presented approach are is also compatible with the existing conceptual modelling compared with the results of a hydrodynamic model to show the approach. This will allow to construct conceptual reservoir-type accuracy of the conceptual model. models for a complete river system, and make these models use- ful for integrated catchment modelling applications. 2. Study area and available data A large variety of computationally efficient modelling tech- niques to simulate the tidal propagation in estuaries and tidal rivers The river Zenne catchment is part of the international Scheldt exists. The techniques vary in quite a number of aspects: applica- basin that flows to the North Sea and is located in the central part of bility of boundary conditions, the number of processes accounted Belgium (see Fig. 1). The basin has a total area of 1162 km2, which is for, accuracy of the model results, etc. Empirical or black box divided over three administrative regions: the Walloon Region models are the most elementary type of models: they attempt to (574 km2), the Brussels-Capital Region (162 km2) and the Flemish find a relation between a model input x and the model outputs or Region (426 km2). The upstream part of the river (before entering physical quantities y, without accounting for the underlying phys- the city of Brussels) has a natural meandering course. In Brussels ical processes. Surface analysis methods (e.g. Barcena et al., 2012) and further downstream the river has been canalized: straight- can be mentioned as examples of these straightforward empirical ening of the meanders, re-profiling of the river bed and a vaulting models. An important premise of these models is that a unique over approximately 8.3 km. The river basin is crossed by a canal that relation must exist between model inputs and outputs. Data driven connects the cities of Brussels and Charleroi with the Scheldt river models like artificial neural networks have become widely used in and the North Sea. The canal and the river form a very complex all fields of hydrology and have recently also been applied in system that is highly influenced by human interactions and activ- simulating tidal propagation (e.g.
Recommended publications
  • International Scheldt River Basin District Select a Topic • General
    International Scheldt river basin district Select a topic • General characteristics • Relief • Land Cover • Hydrographical Units and Clusters I General characteristics of the international Scheldt river basin district 1 Presentation of the concerning the BCR are often closer to those of a international Scheldt river city than those of a region. Therefore, they must be basin district interpreted with some caution. E.g. this is the case of data concerning agriculture, population density or Gross Domestic Product. The international river basin district (IRBD) of the Scheldt consists of the river basins of the Scheldt, For simplification in this report, the terms France and the Somme, the Authie, the Canche, the Boulonnais the Netherlands will be used to designate the French (with the rivers Slack, Wimereux and Liane), the Aa, and Dutch part of the Scheldt IRBD respectively. For the IJzer and the Bruges Polders, and the correspon- the Flemish, Walloon and Brussels part, we will use ding coastal waters (see map 2). The concept ‘river the terms Flemish Region, Walloon Region and Brus- basin district’ is defined in article 2 of the WFD and sels Capital Region. To refer to the different parts of forms the main unit for river basin management in the district, we will use the term ‘regions’. the sense of the WFD. The total area of the river basins of the Scheldt IRBD The Scheldt IRBD is delimited by a decree of the go- is 36,416 km²: therefore, the district is one of the vernments of the riparian states and regions of the smaller international river basin districts in Euro- Scheldt river basin (France, Kingdom of Belgium, pe.
    [Show full text]
  • Studie T.B.V. De Aanleg Van Overstromingsgebieden En Natuurgebieden I.H.K.V
    Studie t.b.v. de aanleg van overstromingsgebieden en natuurgebieden i.h.k.v. het SIGMAPLAN Bestek nr. 16EI/06/16 Cluster Dijlemonding : Definitief MER Bijlage 12: Niet-technische samenvatting Voorliggende bijlage betreft de niet-technische samenvatting bij het project-MER voor de inrichting van de gecontroleerde overstromingsgebieden binnen de cluster Dijlemonding i.k.v. het geactualiseerde Sigmaplan. Hierin wordt een samenvatting gegeven van de belangrijkste ingrepen in kader van het project en de effecten hiervan op het milieu. Dit gebeurt in niet-technische bewoordingen zodat ook een lekenpubliek op beschouwelijke wijze inzicht krijgt in de voorgenomen activiteit, de milieugevolgen door aanleg/exploitatie van de overstromingsgebieden, de milderende maatregelen en de gevolgen van de leemten in de kennis. Ondanks het opzet om in de niet-technische samenvatting eenvoudige bewoordingen te gebruiken, kunnen hier en daar onduidelijke termen ingeslopen zijn. Deze kunnen steeds worden opgezocht in de verklarende woordenlijst (zie hoofdstuk in MER). Het doel van de opmaak van een MER is om, in functie van latere besluitvorming, een synthese (samenvatting) te geven van de effecten van het geplande project en de noodzakelijke milderende maatregelen voor te stellen. Milieueffectrapportage is bijgevolg een juridisch-administratieve procedure waarbij vóórdat een activiteit of ingreep plaatsvindt, de milieugevolgen ervan op een wetenschappelijk verantwoorde wijze worden bestudeerd, besproken en geëvalueerd. De achterliggende grondgedachte suggereert
    [Show full text]
  • Final Report
    SCIENTIFIC SUPPORT PLAN FOR A SUSTAINABLE DEVELOPMENT POLICY SPSD II SPSD II SPSD II (2000-2005) SILICA RETENTION IN THE SCHELDT CONTINUUM AND ITS IMPACT ON COASTAL EUTROPHICATION (SISCO) L. CHOU, W. VYVERMAN, P. REGNIER BELGIAN SCIENCE POLICY HEAD OF THE DEPARTMENT ‘RESEARCH PROGRAMMES’: NICOLE HENRY (UNTIL SEPTEMBER 2007) DIRECTOR GENERAL ‘RESEARCH AND APPLICATIONS’ : DOMINIQUE FONTEYN (FROM APRIL 2006) CONTACT PERSONS: DAVID COX ATMOSPHERE AND CLIMATE MARINE ECOSYSTEMS AND BIODIVERSITY PART 2 TERRESTRIAL ECOSYSTEMS GLOBAL CHANGE, ECOSYSTEMS AND BIODIVERSITY AND BIODIVERSITY NORTH SEA ANTARCTICA BIODIVERSITY FOR MORE GENERAL INFORMATION: SECRETARIAT: VÉRONIQUE MICHIELS WETENSCHAPSSTRAAT 8, RUE DE LA SCIENCE B-1000 BRUSSELS ON COASTAL SILICA RETENTION IN THE SCHELDT CONTINUUM AND ITS IMPACT (SISCO) EUTROPHICATION TEL : +32 (0)2 238 36 13 FAX : +32 (0)2 230 59 12 EMAIL : [email protected] EV-17 SCIENTIFIC SUPPORT PLAN FOR A SUSTAINABLE DEVELOPMENT POLICY (SPSD II) Part 2: Global change, Ecosystems and Biodiversity FINAL REPORT SILICA RETENTION IN THE SCHELDT CONTINUUM AND ITS IMPACT ON COASTAL EUTROPHICATION (SISCO) EV/17 Lei Chou1, Vincent Carbonnel1, Laura Rebreanu1, Jean-Pierre Vanderborght1, Nathalie Roevros1, Michael Tsagaris1, Claar van der Zee1 Marie Lionard2, Koenraad Muylaert2, Renaat Dasseville2, Wim Vyverman2 Sandra Arndt3, David Aguilera3, Pierre Regnier3 1Université Libre de Bruxelles, Laboratoire d’Océanographie Chimique et Géochimie des Eaux Campus Plaine – CP 208, Bd du Triomphe, B-1050 Brussels, Belgium 2Universiteit Gent,
    [Show full text]
  • Of the Rupel Region
    The Cuesta () of the Rupel Region New Challenges for its Cultural Heritage vol. I @All rights reserved under International Copyright Conventions. No part of this publication may be reproduced in any form or by any means, electronic or mechanical, including photo-copying, recording or by any information storage retrieval system, without permission in writing from the publisher or speci!c copyright owners. Work and publication made during the course of a personal master dis- sertation project, within the project of "e Cuesta of the Rupel Region. New challenges for its Cultural Heritage proposed by Gisèle Gantois Acknowledgments Special thanks to Sabine Denissen, senior advisor Leisure Department Province of Antwerp for her unconditional support to these projects. ISBN Book edited by Gisèle Gantois Co-editors Kris Scheerlinck, Yves Schoonjans Authors: Floor Clinckemalie, Stefanie Gruyaert, Matthijs Sioen, May Lynn Doll, Felix Schiettecatte, Lisa Lu, Sam Verschoren, Riccardo Buratti Contributions from: Gisèle Gantois, Kris Scheerlinck, Yves Schoonjans, Harry van Royen Cover picture: © Lisa Lu, Felix Schiettecatte Responsible Publisher Faculty of Architecture, KU Leuven International Master of Architecture Resilient and Sustainable Strategies Campus Sint-Lucas, Ghent Class of 2014-2015 www.arch.kuleuven.be www.internationalmasterofarchitecture.be Dag Boutsen, dean !e Cuesta of the Rupel Region. New Challenges for its Cultural Heritage cuesta n 1. (Physical Geography) a long low ridge with a steep scarp slope and a gentle back slope, formed by the di#erential erosion of strata of di#ering hardness [Spanish: shoulder, from Latin costa side, rib] www.thefreedictionary.com/cuesta This is volume one of a two part series VOL .
    [Show full text]
  • Info | L'eau À Bruxelles, Toute Une Histoire 6
    Le pentagone de Bruxelles, son vieux port et la Senne Plan de Bruxelles en 1837 dessiné par W.B. Clarke © Cartography Associates, David Rumsey Collection 6 Info | L’eau à Bruxelles, toute une histoire L’eau à Bruxelles, toute une histoire A l’origine du développement de la ville: la Senne et le canal Bruxelles est née, il y a plus de 1000 ans, dans la vallée humide de la Senne. Cette dernière était alors une rivière bucolique. Des poissons nageaient dans ses eaux et la végétation de ses rives était abondante, avec entre autres l’iris jaune, aujourd’hui l'emblème de la Région bruxelloise. Pour se faire une idée de ce paysage, il suffit de se rendre à Beersel, à quelques kilomètres à peine de Bruxelles, où les méandres de la Senne serpentent encore au milieu des prés. C’est sur et autour d’une île for- mée par les bras de la rivière, à l’emplacement de l’actuelle place Saint-Géry, que se développa un premier noyau d’habitations, dans un environnement marécageux qui serait à l’origine du nom donné au village, Bruocsella, ‘bruoc’ signi- fiant ‘marais’ et ‘sella’ ‘habitation’. Ce nom évoluera ensuite pour de- venir Brosella, Broekzele et enfin Bruxelles. A partir de 977, suite à la construction d’un fort sur cette île, le petit village rural va connaître un rapide développement et deve- nir une cité d’importance. Dès le 11ème siècle, la Senne joua un rôle central pour le transport à destination et au départ de la ville, et favorisa le développement de l’artisanat (grâce entre autres aux moulins à eau) et du commerce.
    [Show full text]
  • Physical Geography of North-Eastern Belgium - the Boom Clay Outcrop and Subcrop Zone
    EXTERNAL REPORT SCK•CEN-ER-202 12/Kbe/P-2 Physical geography of north-eastern Belgium - the Boom Clay outcrop and subcrop zone Koen Beerten and Bertrand Leterme SCK•CEN Contract: CO-90-08-2214-00 NIRAS/ONDRAF contract: CCHO 2009- 0940000 Research Plan Geosynthesis November, 2012 SCK•CEN PAS Boeretang 200 BE-2400 Mol Belgium EXTERNAL REPORT OF THE BELGIAN NUCLEAR RESEARCH CENTRE SCK•CEN-ER-202 12/Kbe/P-2 Physical geography of north-eastern Belgium - the Boom Clay outcrop and subcrop zone Koen Beerten and Bertrand Leterme SCK•CEN Contract: CO-90-08-2214-00 NIRAS/ONDRAF contract: CCHO 2009- 0940000 Research Plan Geosynthesis January, 2012 Status: Unclassified ISSN 1782-2335 SCK•CEN Boeretang 200 BE-2400 Mol Belgium © SCK•CEN Studiecentrum voor Kernenergie Centre d’étude de l’énergie Nucléaire Boeretang 200 BE-2400 Mol Belgium Phone +32 14 33 21 11 Fax +32 14 31 50 21 http://www.sckcen.be Contact: Knowledge Centre [email protected] COPYRIGHT RULES All property rights and copyright are reserved to SCK•CEN. In case of a contractual arrangement with SCK•CEN, the use of this information by a Third Party, or for any purpose other than for which it is intended on the basis of the contract, is not authorized. With respect to any unauthorized use, SCK•CEN makes no representation or warranty, expressed or implied, and assumes no liability as to the completeness, accuracy or usefulness of the information contained in this document, or that its use may not infringe privately owned rights. SCK•CEN, Studiecentrum voor Kernenergie/Centre d'Etude de l'Energie Nucléaire Stichting van Openbaar Nut – Fondation d'Utilité Publique ‐ Foundation of Public Utility Registered Office: Avenue Herrmann Debroux 40 – BE‐1160 BRUSSEL Operational Office: Boeretang 200 – BE‐2400 MOL 5 Abstract The Boom Clay and Ypresian clays are considered in Belgium as potential host rocks for geological disposal of high-level and/or long-lived radioactive waste.
    [Show full text]
  • Regional Development Programmes Belgium 1978-1980
    COMMISSION OF THE EUROPEAN COMMUNITIES programmes Regional development programmes Belgium 1978-1980 REGIONAL POLICY SERIES - 1979 14 COMMISSION OF THE EUROPEAN COMMUNITIES Regional development programmes Belgium 1978-1980 COLLECTION PROGRAMMES Regional Policy Series No 14 Brussels, November 1978 NOTE It is appropriate first of all to draw the reader's attention to the essentially indicative character of these regional development programmes. This publication is also available in DE ISBN 92-825-0960-5 FR ISBN 92-825-0962-1 NL ISBN 92-825-0963-X Cataloguing data can be found at the end of this volume © Copyright ECSC - EEC - EAEC, Brussels - Luxembourg, 1979 Reproduction authorized, in whole or in part, provided the source is acknowledged. Printed in Luxembourg ISBN 92-825-0961-3 Catalogue number: CB-NS-79-014-EN-C Contents GENERAL INTRODUCTION 5 Detailed index 7 A. Socio-economic development trends in Belgium, 1960-1977 9 B. National political options 11 C. The regional development programmes 12 D. The constitutional institutions 15 Annexes 21 Maps 33 REGIONAL DEVELOPMENT PROGRAMME FLANDERS 1978-1980 37 Detailed index 39 Chapter I - Economic and social analysis 43 Chapter II - Development objectives 91 Chapter III - Development measures 105 Chapter IV - Financial resources 129 Chapter V - Implementation of the programme 139 Annex 145 REGIONAL DEVELOPMENT PROGRAMME WALLONIA 1978-1980 147 Detailed index 149 Chapter I - Economic and social analysis 151 Chapter II - Development objectives 189 Chapter III - Development measures 193 Chapter IV - Financial resources 201 Chapter V - Implementation of the programme 207 Annexes 213 General introduction Detailed index A. Socio-economic development trends in Belgium, 1960-1977 9 B.
    [Show full text]
  • Reinvestigation of the Invertebrate Fauna of the Boom Clay Formation and the Ruisbroek Sand Member
    Cainozoic Research, 9(1), pp. 101-120, June 2012 Reinvestigation of the invertebrate fauna of the Boom Clay Formation and the Ruisbroek Sand Member (Oligocene, Rupelian) of Belgium, with the description of a new lithostratigraphic unit: the Sint Niklaas Phosphorite Bed Robert Marquet1 & Jacques Herman2 1Koninklijk Belgisch Instituut voor Natuurwetenschappen (Royal Belgian Institute of Natural Sciences), 29 Vautierstraat, 1000 Brussels, Belgium; e-mail [email protected] 2319 Beigemsesteenweg, 1852 Beigem (Grimbergen), Belgium; e-mail [email protected] Received 29 January 2012, revised version accepted 13 April 2012 The Rupelian stage, defined in Belgium, is recognized now as a global chronostratigraphic unit. Rupelian deposits in Belgium have been studied extensively in the past. More recently in-depth studies have been carried out on its stratigraphy, sedimentology, micropalaeontol- ogy and vertebrate fossils. Gastropods, however, have not been revised since the work of Glibert (1957). Most invertebrate data predate the stratigraphic synthesis of Vandenberghe (1978), that enabled identification of different members and sedimentary cycles in the Boom Clay Formation. Other parts of the Rupelian sequence (such as the Ruisbroek Sand Member, Kerniel Sand Member and the Sint Niklaas Phosphorite Bed) have only been recognized or adequately dated since Glibert (1957) in the mid-1980s and their malacofauna is not yet described. Here some preliminary results of numerous recent samplings of Rupelian deposits in Belgium are presented and analyzed. Special focus is given to the Boom Clay Formation and the Sint Niklaas Phosphorite Bed. It is concluded that the molluscan fauna of the Boom Clay Formation can be used to delimit its various members and levels.
    [Show full text]
  • Vthe SCHELDT
    104/06 4' 13' 14' 15' 16' 4' 17' 51 ' 51 ' 23' 23' Vij dtpolder 22' 22 ' ---- vTHE SCHELDT, I J 2 1' 21 ' : F rederik : : THE MARITIME ACCESS Doe I polder + Pro s p ~r TOTHEPORT ( ""'"'""""". OF ANTWERP K emenergiecentrafe 4' 13' EL Grccnwi~h 14' 15' 16' 4' 17' 104 / 06 THE SCHELDT, THE MARITIME ACCESS TO THE PORT OF ANTWERP by ir. L. MEYVIS 1. PREAMBLE The river Scheldt rises at a height of about lOOm in the d~partment of 1' Aisne near St. Quentin and drains a catchment basin of :t. 20.000 SQ km . It flows into the sea at Flushing in a large estuary after a course of 430 km. The drainage basin consists of low plains, mainly covered by quaternary sands and clays. The part of the river upstream of Ghent is the Upper Scheldt. Downstream of the city of Ghent the river is subject to the tides and is known as the Sea Scheldt and further downstream on Dutch territory as the Western Scheldt. 1.1. The Upper Scheldt The Upper Scheldt has only one important tributary : The Lys. The Lys and the Upper Scheldt form the water transport axis from the hinterlands : Northern France, the Borinage and the Centre to the seaports Ghent, Zeebrugge, Antwerp and Rotterdam. Both rivers have been regulated and canalized between the French border and Ghent. Modernisation works are in progress to make both navigable for standard European-type lighters of 1350 tonnes. On the Scheldt the programme is already completed. Prior to the excavation of the Belt canal or Ringvaart, the two rivers flowed together in Ghent.
    [Show full text]
  • Vissen in De Rupel
    Rupel.blad 1 Rupel.blad April 2010 Rupelstreek & Aartselaar Rupel.blad 2 CONTACT Rupelstreek Aartselaar Contactpersonen Contactpersonen Erik De Keersmaecker (voorzitter): 03/887.13.72 Johan Herreman (voorzitter en geleide wandelingen): Carine Wils (secretaris): 03/888.30.74 03/887 27 98 – [email protected] Guy Buyst (penningmeester): 03/888.62.62 Hilde Janssens (secretaris): Ludwig Laureyssens: 015/31.99.07 03/887 36 45 - [email protected] Francis Mertens: 03/887.15.24 Luk Smets (penningmeester, ledenadministratie en Mil Spruyt: 03/844.47.61 communicatie): 03/289 73 66 - [email protected] Dirk Vercauteren: 03/887.31.28 Ivan Bogaerts: 03/88716 46 (beheer) Ilse Wachters: 03/887.51.69 Johan Peymen: 03/877 61 50 (beleid) Luc Verhaegen: 03/877.43.14 Ria Thys: 03/289 73 66 (educatie: cursussen en uitstappen) Kern Boom-Rumst Ronny Verelst: 0475/58 55 70 (studie) Sven Lambrecht (voorzitter) : 0499/23.98.00 Gert Verschueren: 03/88710 28 Ludwig Laureyssens (penningmeester): 015/31.99.07 (educatie: geleide wandelingen) Marleen Senecaut (secretaris): 03/889.70.67 Patrick Smits, Fried Happaerts, Lieve De Clerck, Fons Milieuraad Van den Heuvel, Annie De Wachter, Marijke Van De Ven, Johan Peymen Julien Moens, Diane Mason, Wouter De Loose, Rita Claes, Luk Smets Wim Van Rymenant, Dirk Struyf, Jan Belmans, Wim Van Ronny Verelst Nunen,Vera Grieten, Marc Zegels Gert Verschueren Milieuraden Gecoro Boom: Sven Lambrechts, Marleen Senecaut, Nico Wys- Afvaardiging sector Natuur: Johan Peymen mantel, Dirk Struyf Plaatsvervanger: Luk Smets Hemiksem: Peter Hofman Niel: Carine Wils , Ward Hoefman Website Aartselaar Rumst: Rita Claes, Diane Masson, Louis Bertels, Christel www.natuuraartselaar.be Sweeck, Winfried Vangramberen Schelle: Ilse Wachters, Stefan Van Roeyen Voorpagina Segrijnslakken - foto: Philippe Clément Qua grootte houden ze het midden tussen een huisjesslak Website : www.natuurpunt.be/rupelstreek en een wijngaardslak.
    [Show full text]
  • Aanbevolen Hengelzones in Rivierenland Legende Vissoorten
    AARTSELAAR TEMSE LIER N419N419 N171 Rupelmonde SCHELLE LINT N Steendorp KONTICH Boerenhoek Kontich 6 17 25 WO Zeeschelde N14 N177 Beneden Nete Z P 6 P N148 Walenhoek NIEL Wintam P 2 5 7 Waarloos Hingene 7 13 14 17 19 24 30 E19 P P Reet A1 Rupel 2 5 6 BORNEM N16 7 814 17 25 2 5 7 DUFFEL 1 13 14 17 Mijlstraat 19 24 30 N1 Eikevliet P P P Breeven 8 9 Klak Ruisbroek N149 BOOM Rumst N149 P 10 Terhagen Sauvegarde RUMST N149 De Bocht N14 PUURS 3 Legende 2 2 5 7 Rupel-Kanaalzone P 13 14 17 Kalfort N183 8 P 24 30 P Autosnelweg Spoorweg 2 5 SINT-KATELIJNE-WAVER N16 Spildoornvijver 13 17 Hoofdweg 8 Kontich Afrit 2 5 7 Heindonk Oppuurs Walem 24 13 14 17 Hazewinkel Verbindingsweg E19 N16 Wegnummer 24 30 P 2 57 16 Lokale weg 5 Aanbevolen hengelzone P 13 19 24 WILLEBROEK P 30 Water Breendonk Liezele 7 5 Fort van Walem P Elzestraat Bebouwing P Parking 6 Het Broek N183 2 5 7 Groengebied Aangelegde hengelplaats 2 5 7 4 13 17 19 9 13 14 Openbare hengel- 24 30 1 Vaak voorkomende 17 25 28 wateren met een hengelsoort Zeekanaal Brussel-Schelde goed visbestand N17 P Keten Provinciegrens Blaasveld 0 1 2 km Kleine Heide Heisbroek Schaal 1:50 000 N16 Heffen Lippelo P 12 9 Breendonk P Mechelen-Noord Vissoorten N16 P R6 Battel 1 Alver 11 Haring 21 Roofblei E19 Diedonken N16 2 Baars 12 Kabeljauw 22 Serpeling A1 P N15 3 Barbeel 13 Karper 23 Sneep 11 Tisselt Dijle 4 Beekforel 14 Kolblei of blei 24 Snoek P Leest Kanaal Leuven-Dijle 2 5 7 5 Blankvoorn 15 Kopvoorn 25 Snoekbaars Sint-Jozef 13 14 17 6 Bot 16 Kroeskarper 26 Tong 28 30 N259 2 5 79 7 Brasem 17 Paling 27 Wijting
    [Show full text]
  • The Sigma Plan
    The Sigma Plan How do you want to live along the river Scheldt? CONTENTS INTRODUCTION For centuries, the river Scheldt and its tributaries have contributed to making the Belgian region of Flanders a good place to live. Our region has plenty of industry, which we owe to the Scheldt. But there is also a downside. At times, (bad) flooding can cause a lot of misery in Flanders. The Sigma Plan aims to change this. By creating more space for the tidal rivers, the Sigma Plan helps everyone keep their feet dry. At the same time, the plan also creates stunning nature areas that are always a pleasure to behold. In this brochure, you will find out what the Sigma Plan has in store! ZENNEGAT 04 11 18 1. The origin of the 4. Nature that is 8. The projects Sigma Plan both beneficial and breathtaking 20 The Scheldt quays in Antwerp 06 22 Bornem Cluster 14 23 Upper Dyle 2. The Sigma Plan 24 Kalkense Meersen today 5. Enjoying the water Cluster 25 Demer Valley 26 Building and 09 16 maintaining levees 3. Good protection 6. The Scheldt, life vein 28 Dyle Estuary against flooding for the economy 30 Dorent 31 Durme Valley BERGENMEERSEN THE LITTLE BITTERN 32 Hedwige Prosper 17 Project and Doel Polder 7. An eye for 33 Lippenbroek agriculture 34 Nete and Kleine Nete MASTHEAD Copyright images: De Vlaamse Waterweg 36 Polders of Kruibeke nv, Agentschap voor Natuur en Bos (Agency Publisher: De Vlaamse Waterweg nv, Sea for Nature and Forest), Bart Lasuy, Daniel 38 Lillo Polder Scheldt Department, Civil Engineer Wim Geeraerts (ID/photo agency), Henderyckx 39 Scheldt Meander Dauwe, Lange Kievitstraat 111-113, box 44, Fotografie, Vilda WATER SAFETY 2018 Antwerp Ghent Wetteren Legal deposit number: D/2016/13.826/2 40 Schouselbroek Copywriting and production: Pantarein in a consortium with Tractebel Published: August 2017 NATURE 41 Grote Nete Valley Printing: Artoos 42 Vlassenbroek 43 Wal-Zwijn DISCOVER 02 Sigma Brochure • 2017 03 1 The origin of the Sigma Plan Take an exceptionally strong northwesterly storm and add a spectacular spring tide to the mix.
    [Show full text]