Supporting Everyday Activities Through Always-Available Mobile Computing
Total Page:16
File Type:pdf, Size:1020Kb
©Copyright 2010 Timothy Scott Saponas Supporting Everyday Activities through Always-Available Mobile Computing Timothy Scott Saponas A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy University of Washington 2010 Program Authorized to Offer Degree: Department of Computer Science and Engineering University of Washington Graduate School This is to certify that I have examined this copy of a doctoral dissertation by Timothy Scott Saponas and have found that it is complete and satisfactory in all respects, and that any and all revisions required by the final examining committee have been made. Co-Chairs of the Supervisory Committee: James A. Landay Desney S. Tan Reading Committee: James A. Landay Desney S. Tan James A. Fogarty Date:______________________________________ In presenting this dissertation in partial fulfillment of the requirements for the doctoral degree at the University of Washington, I agree that the Library shall make its copies freely available for inspection. I further agree that extensive copying of the dissertation is allowable only for scholarly purposes, consistent with ―fair use‖ as prescribed in the U.S. Copyright Law. Requests for copying or reproduction of this dissertation may be referred to ProQuest Information and Learning, 300 North Zeeb Road, Ann Arbor, MI 48106-1346, 1-800-521-0600, to whom the author has granted ―the right to reproduce and sell (a) copies of the manuscript in microform and/or (b) printed copies of the manuscript made from microform.‖ Signature __________________________ Date ______________________________ University of Washington Abstract Supporting Everyday Activities through Always-Available Mobile Computing T. Scott Saponas Co-Chairs of the Supervisory Committee: Professor James A. Landay Computer Science and Engineering Affiliate Professor Desney S. Tan Computer Science and Engineering Ubiquitous Computing provides us a vision of computing fading into the background and gracefully supporting our everyday activities. However, our interactions with mobile devices still demand so much of our physical, visual, and cognitive attention that mobile applications are tasks unto themselves, often interrupting the activities they seek to support. For example, the physical interfaces of portable music players are well designed for situations where people can see the controls while holding the device in their hand. However, when people use these devices to listen to music or manage their workout while exercising, they often are forced to interrupt their activity just to advance to the next song. As our primary use of computing continues to move off the desktop, we need new interfaces to mobile computing that expand the types of situations in which people can make use of computing. In this dissertation, I explore always-available interfaces to improve our current interactions and to enable new mobile computing opportunities. The experiments I have conducted and the systems I have built demonstrate my thesis that: Finger level gestures detected and classified through forearm electromyography can enable an always-available interaction paradigm for mobile computing. TABLE OF CONTENTS List of Figures ................................................................................................................................. iii List of Tables ................................................................................................................................. vii Chapter 1 Introduction ................................................................................................................ 1 1.1 Hypotheses ..................................................................................................................... 8 1.2 Contributions .................................................................................................................. 8 1.3 Research Approach ....................................................................................................... 12 1.4 Dissertation Outline ...................................................................................................... 13 Chapter 2 Related Work ........................................................................................................... 15 2.1 Natural User Interfaces ................................................................................................. 15 2.2 On-Body and Wearable Interfaces ............................................................................... 19 2.3 Muscle Sensing with Electromyography (EMG) ......................................................... 24 2.4 Summary....................................................................................................................... 28 Chapter 3 Offline Classification of Finger-Level Movements from the Upper Forearm ......... 29 3.1 Introduction .................................................................................................................. 29 3.2 Gesture Sets .................................................................................................................. 30 3.3 Experiment ................................................................................................................... 32 3.4 Discussion..................................................................................................................... 44 3.5 Summary....................................................................................................................... 46 Chapter 4 Real-Time Classification of Free-Space and Hands Busy Gestures ........................ 49 4.1 Natural Human Grips ................................................................................................... 50 4.2 Gesture Sets .................................................................................................................. 51 4.3 Gesture Classification ................................................................................................... 52 4.4 Experiment ................................................................................................................... 56 4.5 Summary....................................................................................................................... 66 Chapter 5 Making Muscle-Computer Interfaces More Practical .............................................. 71 5.1 Wireless Platform ......................................................................................................... 71 5.2 Cross-Session Classification Experiment ..................................................................... 75 5.3 Summary....................................................................................................................... 79 Chapter 6 Applications of Muscle-Computer Interfaces .......................................................... 81 6.1 Air Guitar Hero ............................................................................................................. 81 6.2 Augmenting Interactive Surfaces with Muscle-Computer Input .................................. 88 i 6.3 Summary ..................................................................................................................... 104 Chapter 7 Future Work ........................................................................................................... 105 7.1 On-Body Input ............................................................................................................ 106 7.2 Output for Always-Available Computing .................................................................. 110 7.3 Applications ................................................................................................................ 115 7.4 Summary ..................................................................................................................... 118 Chapter 8 Conclusion.............................................................................................................. 119 8.1 Thesis .......................................................................................................................... 120 8.2 Contributions .............................................................................................................. 120 8.3 Limitations .................................................................................................................. 122 8.4 Reflections and Insights.............................................................................................. 124 8.5 Final Remarks ............................................................................................................. 126 References .................................................................................................................................... 127 Appendix A. Questionnaire from Muscle-Computer Interfaces Feasibility Experiment ........ 151 Appendix B. Questionnaire from Real-Time, In-Air Gesture Classification Experiment ...... 153 Appendix C. Questionnaire from Cross-Session Classification Experiment .......................... 155 Appendix D. Questionnaire from Surfaces with Muscle-Computer Input Experiment .......... 157 ii LIST OF FIGURES Figure 1-1: Marketing image of people playing the Kinect Sports game using the forthcoming Kinect Sensor for the XBOX 360. The Kinect Sensor is a no-controller approach to controlling video games employing computer vision using the combination of a depth camera and a traditional