Doctoral Thesis

Total Page:16

File Type:pdf, Size:1020Kb

Doctoral Thesis DOCTORAL THESIS Diana Naydenkova Study of plasma in tokamak-type devices with spectroscopic methods Department of Surface and Plasma Science Supervisor of the doctoral thesis: RNDr. Jan Stöckel, CSc. Study programme: Physics Study branch: F2, Physics of Plasmas and Ionized Media Prague 2017 I declare that I carried out this doctoral thesis independently, and only with the cited sources, literature and other professional sources. I understand that my work relates to the rights and obligations under the Act No. 121/2000 Coll., the Copyright Act, as amended, in particular the fact that the Charles University has the right to conclude a license agreement on the use of this work as a school work pursuant to Section 60 paragraph 1 of the Copyright Act. In…...... date............ signature I would like to thank to my supervisor, RNDr. Jan Stöckel, CSc. for proposing this subject and for many helpful suggestions. My thanks also to my advisor, Mgr. Vladimír Weinzettl, PhD for guiding and supporting me over the years. I would also like to thank to all COMPASS tokamak team for patient cooperation in experiments. I would like to thank and dedicate this thesis to my grandparents and to my aunt for giving possibility to get high education. I would like to thank to my faculty for perfect basic received knowledge. Title: Study of plasma in tokamak-type devices with spectroscopic methods Author: Diana Naydenkova Department / Institute: Department of surface and plasma science Supervisor of the doctoral thesis: RNDr. Jan Stöckel, CSc., Tokamak Department, Institute of Plasma Physics of the Czech Academy of Science Abstract: In Tokamak department of Institute of Plasma Physics, radiation of high- temperature plasma is investigated using spectroscopic methods in visible, ultraviolet and infrared regions. The radiation gives information regarding tokamak plasma parameters and their changes, which is necessary for future realization of fusion reactor. In the frame of this doctoral thesis the development of spectroscopic diagnostics for observing of plasma radiation and its temporal evolution in COMPASS tokamak was performed. The absolute calibration of developed systems in order to recalculate measured signal to units of radiation was done. The sources of imprecisions of absolute measurements in tokamak conditions are properly discussed in the first part of the dissertation. Plasma radiation in the range 257-1083 nm was measured and interpreted using NIST database and FLYCHK code. Ion density for the most significant impurities was estimated. IDL code for effective ion charge estimation as a ratio of real and hydrogen plasma Bremsstrahlung radiation near 523 nm was developed. Profiles of electron density and temperature measured by Thomson scattering system were used for hydrogen plasma Bremsstrahlung radiation calculations. The example of applying of spectroscopic data for studying of COMPASS plasma heating using neutral beam injections is given in the last part of this work. Keywords: COMPASS, spectroscopy, calibration, Zeff, NBI Contents Introduction 1 1. Development and absolute calibration of the spectroscopic system for COMPASS tokamak 4 1.1. The initial state 4 1.2. Diagnostic design 6 1.3. Absolute calibration 9 1.3.1. Method 10 1.3.2. Calibration results and their imprecisions 13 1.3.2.1. Alignment 13 1.3.2.2. Quantum noise 15 1.3.2.3. Wavelength dependence of quantum sensitivity 16 1.3.2.4. Wavelength dependence of calibration source irradiance 17 1.3.2.5. Wavelength dependence of transmittance of the system components 18 1.3.2.6. Finite width of interference filter transmittance range used for PMT based system 19 1.3.2.7. Temporal dependence of vacuum window transmittance 24 1.3.2.8. Errors caused by data collection and data processing 28 1.3.2.9. Influence of measurement geometry and plasma wall interaction to the measured signal 30 2. Data processing and results 34 2.1. Spectrally resolved plasma radiation measurements 34 2.1.1. Spectra interpretation methods 35 2.1.1.1. NIST data base 36 2.1.1.2. FLYCHK code 38 2.1.2. Radiation shells 42 2.1.3. Ion density estimation method 44 2.2. Effective ion charge estimation 45 2.2.1. Measurements of Bremsstrahlung radiation of real plasma 46 2.2.2. Calculation of Bremsstrahlung radiation of pure Hydrogen plasma 48 2.2.3. Typical results of Zeff estimation for real Hydrogen plasma 53 2.2.4. Precision of Zeff estimation 55 2.3. Visible spectroscopy at the Neutral Beam Injection on the COMPASS tokamak 65 2.3.1. Neutral Beam Injector on the COMPASS tokamak 65 2.3.2. Main channels of power losses at Neutral Beam Injection 67 2.3.2.1. Power losses in the beam duct, PBD 68 2.3.2.2. Power losses by shine through, PST 68 2.3.2.3. Orbit losses, POL 68 2.3.2.4. Charge exchange losses 68 2.3.3. Behaviour of impurities at a medium density discharge with NBI heating 69 2.3.4. Behaviour of impurities at a low density discharge with NBI heating 71 2.3.5. Impact of the plasma position on impurity content 72 Conclusion 76 Bibliography 79 List of Tables 85 List of Abbreviations 86 Attachment 1. Table of spectral lines in wavelength range 247-1083 nm for D-shape discharge at COMPASS tokamak 88 Attachment2. Research projects 97 Attachment 3. Publications 98 Attachment 4. Summer schools and conferences contributions 101 Introduction Demand for energy is expected to increase three times till the end of 21st century under the combined pressure of population growth, increased urbanization and expanding access to electricity in developing countries. A new source of energy is urgently needed. Fusion is a reaction between two or more atomic nuclei which come close enough to form one or more different atomic nuclei. Fusion is potentially attractive way of energy generation because of several advantages. Typical fusion reaction releases nearly four million times more energy than a typical chemical reaction during burning of coal, oil or gas and four times more than fission reaction (at equal mass). Fusion fuels are widely available and nearly inexhaustible. Nuclear fusion reactors produce no high activity, long-lived nuclear waste. A nuclear accident is not possible in a fusion device. If any disturbance occurs, the plasma cools within seconds and the reaction stops. The quantity of fuel present in the vessel at any one time is enough for a few seconds only and there is no risk of a chain reaction. The power output of fusion reactor will be similar to that of a fission reactor. The average cost per kilowatt of electricity is also expected to be similar. Fusion could make a positive contribution to the reducing of CO2 level. One of the devices where fusion reaction can be reached is tokamak. Experimental research of tokamak systems started in 1956 in Kurchatov Institute, Moscow by a group of Soviet scientists led by Lev Artsimovich. The group constructed the first doughnut-shaped magnetic confinement device called a tokamak, the most successful being T-3 and its larger version T-4. T-4 was tested in 1968 in Novosibirsk, conducting the first ever quasistationary thermonuclear fusion reaction. From this time the tokamaks became the dominant concept in fusion research, and tokamak devices multiplied across the wold. The amount of fusion energy which a tokamak is capable to produce correlates directly to the number of fusion reactions taking place in its core. It means in order to get more energy we need bigger plasma. The world record for fusion power is held by the tokamak Joint European Torus (JET). In 1997, JET produced 16 MW of fusion power from a total input power of 24 MW. It means return of energy defined by so called fusion energy gain factor Q was 0.67. Ten times larger device – ITER (International Thermonuclear Experimental Reactor) tokamak is 1 under construction now. ITER is designed to produce a ten-fold return of energy (Q=10), or 500 MW of fusion power from 50 MW of input power, for long pulses (400-600 s). ITER will not capture the energy it produces as electricity and will be used to study plasmas under conditions similar to those expected in a future power plant and test technologies such as heating, control, diagnostics, cryogenics and remote maintenance in an integrated way. The main goal of existing tokamaks research programs is steered towards basic challenges of physics and technology linked to the construction and operation of the international experimental reactor ITER and future fusion reactors. The COMPASS (COMPact ASSembly) tokamak is the smallest tokamak which has ITER-like plasma shape. The principal parameters of COMPASS tokamak are shown in table 1. Volume of its plasmas correspond to one tenth (in the linear scale) of the ITER plasmas. The flexible neutral beam heating system and ability to achieve H-mode allow COMPASS to contribute to ITER-relevant plasma physics studies. High flexibility in tokamak operation and low-cost of experiments make it especially attractive in fusion program. Nowadays, besides COMPASS there are only two tokamaks in Europe with ITER-like configuration which are able to get the High plasma confinement. They are JET and ASDEX-U (Axially Symmetric Divertor Experiment - Upgrade). Parameters Values Major radius R 0.56 m Minor radius a 0.23 m Plasma current Ip (max) 400 kA Magnetic field BT 0.9 - 2.1 T Vacuum pressure 1x10-6 Pa Elongation 1.8 Plasma shape D, SND, elliptical, circular Pulse length ~ 1 s Beam heating PNBI 40 keV 2 x 0.4 MW Table 1. The main parameters of COMPASS tokamak. The COMPASS tokamak has been designed and operated in 90th in UKAEA (United Kingdom Atomic Energy Authority) in Culham.
Recommended publications
  • Validation of Equilibrium Tools on the COMPASS Tokamak Jakub Urban, L
    Validation of equilibrium tools on the COMPASS tokamak Jakub Urban, L. C. Appel, J. F. Artaud, Blaise Faugeras, Josef Havlicek, Michael Komm, Ivan Lupelli, Matěj Peterka To cite this version: Jakub Urban, L. C. Appel, J. F. Artaud, Blaise Faugeras, Josef Havlicek, et al.. Validation of equi- librium tools on the COMPASS tokamak. SOFT 2014, 2014, San Sebastian, Spain. hal-01105044 HAL Id: hal-01105044 https://hal.archives-ouvertes.fr/hal-01105044 Submitted on 9 Oct 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Validation of equilibrium tools on the COMPASS tokamak J. Urbana, L.C. Appelb, J.F. Artaudc, B. Faugerasd, J. Havliceka,e, M. Komma, I. Lupellib, M. Peterkaa,e aInstitute of Plasma Physics ASCR, Za Slovankou 3, 182 00 Praha 8, Czech Republic bCCFE, Culham Science Centre, Abingdon, Oxfordshire, UK cCEA, IRFM, F-13108 Saint Paul Lez Durance, France dLaboratoire J.A. Dieudonn´e,UMR 7351, Universit´ede Nice Sophia-Antipolis, Parc Valrose, 06108 Nice Cedex 02, France eDepartment of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University in Prague, V Holeˇsoviˇck´ach 2, 180 00 Praha 8, Czech Republic Abstract Various MHD (magnetohydrodynamic) equilibrium tools, some of which being recently developed or considerably updated, are used on the COMPASS tokamak at IPP Prague.
    [Show full text]
  • Visible Light Measurements on the COMPASS Tokamak
    Visible light measurements on the COMPASS tokamak by Olivier Van Hoey Faculty of Engineering Department of Applied Physics Head of the department: Prof. Dr. Ir. C. Leys Visible light measurements on the COMPASS tokamak by Olivier Van Hoey Promoter: Prof. Dr. Ir. G. Van Oost Copromoter: D. Naydenkova The research reported in this thesis was performed at the Institute of Plasma Physics AS CR, Za Slovankou 1782/3, 182 00 Prague 8, Czech Republic Thesis submitted in order to obtain the degree of Master of Physics and Astronomy, option: Research Academic year 2009-2010 The most exciting phrase to hear in science, the one that heralds new discoveries, is not 'Eureka!', but 'That's funny...' - Isaac Asimov. Give me a lever long enough and a fulcrum on which to place it, and I shall move the world - Archimedes Nothing in life is to be feared. It is only to be understood - Marie Curie No amount of experimentation can ever prove me right; a single experiment can prove me wrong - Albert Einstein The science of today is the technology of tomorrow - Edward Teller Allowance to loan The author gives permission to make this thesis available for consultation and to copy parts of the thesis for personal use. Any other use is limited by the restrictions of copy- right, in particular with regard to the obligation to mention the source explicitly when citing results from this thesis. Olivier Van Hoey May 20, 2010 i Acknowledgment The achievement of this thesis was not possible without the help and support of a lot of people.
    [Show full text]
  • Provisional Programme
    Provisional Programme MONDAY TUESDAY WEDNESDAY THURSDAY Chair Persons Chair Persons Chair Persons Chair Persons 09:00 OPENING B. Gonçalves, D. Batani TUTORIAL T2 F. Wang, J. Santos TUTORIAL T3 M. Simek, R. Luis TUTORIAL T4 C. Silva, G. Zeraouli 09:15 09:30 TUTORIAL T1 A. Tuccillo, A. Romano 09:45 INVITED I2.1 INVITED I3.1 INVITED I4.1 10:00 10:15 ORAL O1.1 ORAL O2.1 ORAL O3.1 ORAL O4.1 10:30 COFFEE POSTER 1 COFFEE POSTER 2 COFFEE POSTER 3 COFFEE 10:45 11:00 ORAL O4.2 C. Silva, G. Zeraouli 11:15 ORAL O4.3 11:30 ORAL O4.4 11:45 ORAL O4.5 12:00 INVITED I1.1 A. Tuccillo, A. Romano INVITED I2.2 F. Wang, J. Santos INVITED I3.2 M. Simek, R. Luis INVITED I4.2 12:15 12:30 ORAL O1.2 INVITED I2.3 ORAL O3.2 INVITED I4.3 12:45 ORAL O1.3 ORAL O3.3 13:00 LUNCH LUNCH LUNCH LUNCH 13:15 13:30 13:45 14:00 14:15 14:30 14:45 INVITED I1.2 M. Fajardo, D. Mancelli FAENOV SESSION D. Batani, S. Malko INVITED I3.3 M. Feroci, P. Varela INVITED I4.4 L.L. Alves, L. Guimarãis 15:00 INTRO+ 2 TALKS 15:15 ORAL O1.4 F1-F2 ORAL O3.4 ORAL O4.6 15:30 COFFEE POSTER 1 COFFEE POSTER 2 COFFEE POSTER 3 COFFEE 15:45 16:00 ORAL O4.7 L.L. Alves, L. Guimarãis 16:15 INVITED I4.5 16:30 16:45 ORAL O1.5 M.
    [Show full text]
  • 2Nd IAEA Technical Meeting on Fusion Data Processing, Validation and Analysis
    nd 2 IAEA Technical Meeting on Fusion Data Processing, Validation and Analysis Programme Book of Abstracts Boston, USA 30 May – 2 June, 2017 DISCLAIMER: This is not an official IAEA publication. The views expressed do not necessarily reflect those of the International Atomic Energy Agency or its Member States. The material has not undergone an official review by the IAEA. This document should not be quoted or listed as a reference. The use of particular designations of countries or territories does not imply any judgement by the IAEA, as to the legal status of such countries or territories, of their authorities and institutions or of the delimitation of their boundaries. The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the IAEA. Second Joint ITER-IAEA Technical Meeting Analysis of ITER Materials and Technologies 11-13 December 2012 The Gateway Hotel Ummed Ahmedabad Ahmedabad, India 2nd IAEA Technical Meeting on Fusion Data Processing, Validation and Analysis 30 May – 2 June, 2017 Boston, USA IAEA Scientific Secretary International Atomic Energy Agency Vienna International Centre Wagramer Straße 5, PO Box 100 Ms. Sehila Maria Gonzalez de Vicente A-1400 Vienna, Austria NAPC Physics Section Tel: +43-1-2600-21753 Fax: +43-1-26007 E-mail: [email protected] International Programme Advisory Committee Chair: N. Howard (USA) A. Dinklage (Germany), R. Fischer (Germany), S. Kajita (Japan), S. Kaye (USA), D. Mazon (France), D. McDonald (Eurofusion/EU), A.
    [Show full text]
  • Losses of Runaway Electrons in MHD-Active Plasmas of the COMPASS Tokamak
    Losses of runaway electrons in MHD-active plasmas of the COMPASS tokamak O Ficker1;2, J Mlynar1, M Vlainic1;2;3, J Cerovsky1;2, J Urban1, P Vondracek1;4, V Weinzettl1, E Macusova1, J Decker5,M Gospodarczyk5, P Martin7, E Nardon8, G Papp9,VV Plyusnin10, C Reux8, F Saint-Laurent8, C Sommariva8,J Cavalier1;11, J Havlicek1, A Havranek1;12, O Hronova1,M Imrisek1, T Markovic1;4, J Varju1, R Paprok1;4, R Panek1,M Hron1 and the COMPASS team 1 Institute of Plasma Physics of the CAS, CZ-18200 Praha 8, Czech Republic 2 FNSPE, Czech Technical University in Prague, CZ-11519 Praha 1, Czech Republic 3 Department of Applied Physics, Ghent University, 9000 Ghent, Belgium 4 FMP, Charles University, Ke Karlovu 3, CZ-12116 Praha 2, Czech Republic 5 Swiss Plasma Centre, EPFL, CH-1015 Lausanne, Switzerland 6 Universita’ di Roma Tor Vergata, 00133 Roma, Italy 7 Consorzio RFX, Corso Stati Uniti 4, 35127 Padova, Italy 8 CEA, IRFM, F-13108 Saint-Paul-lez-Durance, France 9 Max Planck Institute for Plasma Physics, Garching D-85748, Germany 10 Centro de Fusao Nuclear, IST, Lisbon, Portugal 11 Institut Jean Lamour IJL, Universite de Lorraine, 54000 Nancy, France 12 FEE, Czech Technical University in Prague, CZ-12000 Praha 2, Czech Republic E-mail: [email protected] Abstract. Significant role of magnetic perturbations in mitigation and losses of Runaway Electrons (REs) was documented in dedicated experimental studies of RE at the COMPASS tokamak. RE in COMPASS are produced both in low density quiescent discharges and in disruptions triggered by massive gas injection (MGI).
    [Show full text]
  • Model for Screening of Resonant Magnetic Perturbations by Plasma
    Model for screening of resonant magnetic perturbations by plasma in a realistic tokamak geometry and its impact on divertor strike points P. Cahynaa,1,∗, E. Nardonb, JET EFDA Contributors2 aInstitute of Plasma Physics, AS CR, v.v.i., Association EURATOM/IPP.CR, Za Slovankou 3, 182 00 Prague, Czech Republic bAssociation EURATOM-CEA, CEA/DSM/IRFM, CEA Cadarache, 13108 St-Paul-lez-Durance, France Abstract This work addresses the question of the relation between strike-point splitting and magnetic stochasticity at the edge of a poloidally diverted tokamak in the presence of externally imposed magnetic perturbations. More specifically, ad-hoc helical current sheets are introduced in order to mimic a hypothetical screening of the external resonant magnetic perturbations by the plasma. These current sheets, which suppress magnetic islands, are found to reduce the amount of splitting expected at the target, which suggests that screening effects should be observable experimentally. Multiple screening current sheets reinforce each other, i.e. less current relative to the case of only one current sheet is required to screen the perturbation. Keywords: Theory and Modelling, Plasma properties, Plasma-Materials Interaction arXiv:1012.4015v2 [physics.plasm-ph] 27 Jan 2011 ∗Corresponding author Email address: [email protected] (P. Cahyna) 1Presenting author 2See the Appendix of F. Romanelli et al., Proceedings of the 22nd IAEA Fusion Energy Conference 2008, Geneva, Switzerland Preprint submitted to Journal of Nuclear Materials November 10, 2018 1. Introduction An axisymmetric, single null, poloidally diverted tokamak has two strike-lines where the plasma hits the divertor targets: one on the high field side (HFS) and one on the low field side (LFS).
    [Show full text]
  • Parallel SOL Transport Regime in Tokamak COMPASS
    45th EPS Conference on Plasma Physics P5.1081 Parallel SOL transport regime in tokamak COMPASS K. Jirakova1;2, J. Seidl1, J. Adamek1, P. Bilkova1, J. Cavalier 1, M. Dimitrova1, J. Horacek1, M. Komm1 1 Institute of Plasma Physics, Czech Academy of Sciences, Prague 2 Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, Prague Power exhaust in a tokamak fusion reactor is partly realised through energetic plasma particles heating the divertor and the first wall. The power crossing the separatrix must be distributed along the plasma-facing components without heating them to a high temperature or causing strong sputtering. This applies espe- cially to the divertor, where particle power deposition is focused onto a narrow stripe along the strike points, figure 1. It is there- fore desirable to establish a significant parallel plasma temper- ature gradient between upstream, where most of the cross-field transport is concentrated, and the divertor targets. Using the two-point model [1] as a base, the parallel tempera- Figure 1: Schema of toka- ture gradient can be quantified using the collisionality parameter, mak SOL transport. ∗ −16 nuL n = 10 2 : the mean number of collisions a particle under- Tu goes on the way from upstream to target. Here L stands for flux tube length, nu is upstream electron density, and Tu is upstream temperature. ∗ small temperature gradient Tu < 1:5Tt n < 10 sheath-limited regime ∗ significant temperature gradient Tu > 3Tt n > 15 conduction-limited regime The conduction-limited regime allows for a relatively cold target plasma while keeping up- stream at the same temperature.
    [Show full text]
  • ELM Electron Temperature Measurements on Divertor Compared to the Pedestal Temperature in the COMPASS Tokamak J
    46th EPS Conference on Plasma Physics P2.1042 ELM electron temperature measurements on divertor compared to the pedestal temperature in the COMPASS tokamak J. Adamek1, A. Devitre2, M. Komm1, J. Cavalier1, J. Horacek1, M. Sos1, P. Bilkova1, D. Tskhakaya1,3, J. Seidl1, V. Weinzettl1, M. Hron1, R. Panek1, COMPASS Team1 and the EUROfusion MST1 team4 1Institute of Plasma Physics of the CAS, Prague, Czech Republic 2 Faculté des Sciences et Technologies, Université de Lorraine, Vandoeuvre-lès-Nancy, France 3 Department of Mathematics, University of Innsbruck, A-6020 Innsbruck, Austria 4 See the author list of Meyer H. et al 2017 Nucl. Fusion 57 102014 Investigation of the ELM using divertor probes can provide heat loads and electron temperature with high temporal resolution [1, 2]. Recent evaluation of ELM electron temperature with JET divertor probes showed that the maxima of ELM electron temperature are almost one order of magnidute lower than the pedestal temperature [3]. However, JET probe results use conditionally averaged ELM I-V characteristics, which could underestimate the electron temperature maxima due to the filamentary structure of the ELMs [4]. We report on systematic measurements of the ELM electron temperature in the COMPASS divertor during a set of ELMy H-mode discharges aiming at a comparison between the ELM peak values and the corresponding pedestal temperature. The pedestal temperature in the last 30% of ELM cycle is routinely provided by a high-resolution Thomson scattering (HRTS) system using a conventional modified tangential (mtanh) fit. Newly, we have also obtained the electron temperature on top of the pedestal by means of the two-line fitting method (bilinear).
    [Show full text]
  • An Unreal Reality Pushes Fusion Science Jet – the Most Successful Performance in Years How to Tame Plasma Turbulence
    FUSION IN EUROPE NEWS & VIEWS ON THE PROGRESS OF FUSION RESEARCH AN UNREAL REALITY PUSHES FUSION SCIENCE JET – THE MOST SUCCESSFUL PERFORMANCE IN YEARS HOW TO TAME PLASMA TURBULENCE 4 2016 FUSION IN EUROPE 4 2016 Contents Delphine Keller from EURO­ fusion’s French Research Unit Moving Forward CEA is dressed for a jump into the virtual fusion world. Glas­ 3 A European fusion programme to be proud of ses, immersive headsets and motion trackers allow her to 4 The most successful performance in years study the interior of a tokamak. Picture: CEA 6 An unreal reality pushes fusion science 10 IAEA awards EUROfusion’s work 12 Impressions Research Units 14 COMPASS has changed its point of view 18 How to tame plasma turbulence 18 21 Mix it up! The simulation of electrostatic potential along 22 News the torus lines inside a fusion experiment. These experiments help to find origins of plasma turbulence.. Community Picture: GYRO/General Atomics 24 Supernovae in the lab – powered by EUROfusion 28 Pushing the science beyond fusion 30 Young faces of fusion – Robert Abernethy 12 Fuel for Thought Who says operators at the Czech tokamak 33 Combining Physics and Management Forces COMPASS don’t have a sense Perspectives of humour? – More amusing details from fusion on page 12 and 13. 34 Summing Up Picture: EUROfusion EUROfusion © Tony Donné (EUROfusion Programme Manager) Imprint Programme Management Unit – Garching 2016. FUSION IN EUROPE Boltzmannstr. 2 This newsletter or parts of it may not be reproduced ISSN 1818­5355 85748 Garching / Munich, Germany without permission. Text, pictures and layout, except phone: +49-89-3299-4128 where noted, courtesy of the EUROfusion members.
    [Show full text]
  • A New Generation of Real-Time Systems in the JET Tokamak
    A New Generation of Real-Time Systems in the JET Tokamak D. Alves, , A.C. Neto,. , D.F. Valcarcel, R. Felton, J.M. Lopez, A. Barbalace, L. Boncagni, P. Card, G. De Tommasi, , A. Goodyear, S. Jachmich, P.J. Lomas, F. Maviglia, P. McCullen, A. Murari, M. Rainford, C. Reux, F. Rimini, F. Sartori, A.V. Stephen, J. Vega, R. Vitelli, L. Zabeo, K.-D. Zastrow and JET EFDA contributors Abstract—Recently a new recipe for developing and deploying analysis of a user-space MARTe based application synchronising real-time systems has become increasingly adopted in the JET over a network is also presented. The goal is to compare its tokamak. Powered by the advent of x86 multi-core technology deterministic performance while running on a vanilla and on a and the reliability of the JET's well established Real-Time Data Messaging Real time Grid (MRG) Linux kernel. Network (RTDN) to handle all real-time I/O, an official Linux vanilla kernel has been demonstrated to be able to provide real­ time performance to user-space applications that are required to meet stringent timing constraints. In particular, a careful rearrangement of the Interrupt ReQuests' (IRQs) affinities to­ I. INTRODUCTION gether with the kernel's CPU isolation mechanism allows to N the past, real-time requirements meant that a real-time obtain either soft or hard real-time behavior depending on the Operating System (OS) had to be used. The ratio between synchronization mechanism adopted. Finally, the Multithreaded I Application Real-Time executor (MARTe) framework is used for resource availability and demand was very low, i.e.
    [Show full text]
  • European Consortium for the Development of Fusion Energy European Consortium for the Development of Fusion Energy CONTENTS CONTENTS
    EuropEan Consortium for thE DEvElopmEnt of fusion EnErgy EuropEan Consortium for thE DEvElopmEnt of fusion EnErgy Contents Contents introDuCtion ReseaRCH units CooRDinating national ReseaRCH FoR euRofusion 16 agenzia nazionale per le nuove tecnologie, l’energia e lo sviluppo economico sostenibile (enea), italy euRofusion: eMboDying tHe sPiRit oF euRoPean CollaboRation 17 FinnFusion, finland 4 the essence of fusion 18 fusion@Öaw, austria the tantalising challenge of realising fusion power 19 hellenic fusion research unit (Hellenic Ru), greece the history of European fusion collaboration 20 institute for plasmas and nuclear fusion (iPFn), portugal 5 Eurofusion is born 21 institute of solid state physics (issP), latvia the road from itEr to DEmo 22 Karlsruhe institute of technology (Kit), germany 6 Eurofusion facts at a glance 23 lithuanian Energy institute (lei), lithuania 7 itEr facts at a glance 24 plasma physics and fusion Energy, Department of physics, technical university of Denmark (Dtu), Denmark JEt facts at a glance 25 plasma physics Department, wigner Fusion, hungary 8 infographic: Eurofusion devices and research units 26 plasma physics laboratory, Ecole royale militaire (lPP-eRM/KMs), Belgium 27 ruder Boškovi´c institute, Croatian fusion research unit (CRu), Croatia 28 slovenian fusion association (sFa), slovenia 29 spanish national fusion laboratory (lnF), CiEmat, spain 30 swedish research Council (vR), sweden rEsEarCh unit profilEs 31 sylwester Kaliski institute of plasma physics and laser microfusion (iPPlM), poland 32 the institute
    [Show full text]
  • Introducing Minimum Fisher Regularisation Tomography To
    EFDA–JET–CP(12)01/03 J. Mlynar, M. Imrisek, V. Weinzettl, M. Odstrcil, J. Havlicek, F. Janky, B. Alper, A. Murari and JET EFDA contributors Introducing Minimum Fisher Regularisation Tomography to Bolometric and Soft X-ray Diagnostic Systems of the COMPASS Tokamak “This document is intended for publication in the open literature. It is made available on the understanding that it may not be further circulated and extracts or references may not be published prior to publication of the original when applicable, or without the consent of the Publications Officer, EFDA, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK.” “Enquiries about Copyright and reproduction should be addressed to the Publications Officer, EFDA, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK.” The contents of this preprint and all other JET EFDA Preprints and Conference Papers are available to view online free at www.iop.org/Jet. This site has full search facilities and e-mail alert options. The diagrams contained within the PDFs on this site are hyperlinked from the year 1996 onwards. Introducing Minimum Fisher Regularisation Tomography to Bolometric and Soft X-ray Diagnostic Systems of the COMPASS Tokamak J. Mlynar1, M. Imrisek2, V. Weinzettl1, M. Odstrcil,1,2, J. Havlicek1,3, F. Janky1,3, B. Alper4, A. Murari5 and JET EFDA contributors* JET-EFDA, Culham Science Centre, OX14 3DB, Abingdon, UK 1Institute of Plasma Physics AS CR, Association EURATOM-IPP.CR, Za Slovankou 3, CZ-182 00 Prague 8, Czech Republic 2Faculty of Nuclear Sciences and Physical Engineering, CTU Prague, Association EURATOM-IPP.CR, Brehova 8, CZ-115 19 Prague 1, Czech Republic 3Faculty of Mathematics and Physics, Charles University, Prague, Association EURATOM-IPP.CR, V Holesovickach 2, CZ-180 00 Prague 8, Czech Republic 4EURATOM-CCFE Fusion Association, Culham Science Centre, OX14 3DB, Abingdon, Oxon, UK 5Consorzio RFX, Association EURATOM-ENEA sulla Fusione, I-35127, Padova, Italy * See annex of F.
    [Show full text]