Magnetic Diagnostic Application for COMPASS Tokamak

Total Page:16

File Type:pdf, Size:1020Kb

Magnetic Diagnostic Application for COMPASS Tokamak WDS'07 Proceedings of Contributed Papers, Part II, 229–233, 2007. ISBN 978-80-7378-024-1 © MATFYZPRESS Magnetic Diagnostic Application for COMPASS Tokamak D. Naydenkova,1,2 O. Bilyk,2 J. Stockel2 1 Charles University, Faculty of Mathematics and Physics, V Holešovičkách 2, 180 00, Prague, Czech Republic. 2 Institute of Plasma Physics, Association EURATOM/IPP.CR, Prague, Czech Republic. e-mail: [email protected] Abstract The paper outlines the main parameters and characteristics of typical plasma shapes. The reasons, basic physical principles and mechanisms for controlling of a plasma position in vertical and horizontal directions by means of magnetic sensors in the COMPASS tokamak are described below. All main parameters for the position control equate here. The sketchy description of diagnostic sensors and poloidal coils are used for control in COMPASS is done by the authors too. The progress report of current work is present as a summary. Introduction The COMPASS-D tokamak had been constructed and has been used until 2001 in the Culham laboratory in the United Kingdom and is now on move to Prague to be re-installed in the Institute of Plasma Physics. Its main parameters, working regimes and its application for its period of work in the Culham laboratory are presented for example in [Colton et al., 1999 and Fielding et al., 2000]. Magnetic sensors in tokamaks provide information about main plasma parameters such as plasma current, magnetic field, loop voltage, total energy, etc. Furthermore, they are used for monitoring the MHD activity in the plasma column because of their high frequency and spatial resolution. They are used to measure plasma position and shape and to control them by means of the feedback system. Controls in the COMPASS tokamak are realised by means of set of poloidal coils, which are shown in Fig.1. There are four types of poloidal coils used for different purposes: to drive an inductive current, equilibrium position, shaping of the plasma column and fast feedback control. Figure 1. Assembly representation of poloidal coils of COMPASS tokamak [The COMPASS project, 1983]. Plasma shape Plasma shape is characterised by two main parameters: elongation κ and triangularity δ . Elongation is defined as the ratio of the plasma half-height f to the plasma half-width a : 229 NAYDENKOVA ET AL.: MAGNETIC DIAGNOSTIC APPLICATION FOR COMPASS κ = f a Triangularity is the level of plasma resemblance with the D plasma shape (see Figure 2.): (c + d )/ 2 δ = a The main axis is drawn through the half-width a . Here, d is the displacement of the highest point of the separatrix, c - is the distance of the X-point to the main axis. Different combinations of poloidal coils are used for generating different types of plasma shape. The simplest is the circular one, which is always formed in the beginning of the discharges before applying any shaping field. The most common configuration is with a divertor (see Figure 2), where the separatrix separates well the confined plasma from the walls. This regime permits reaching better plasma purity and even confinement due to presence of strong magnetic shear in the vicinity of the X- point. It helps to protect the inner part of plasma from impurities, prevents plasma particles outflowing to the outside part. Although this process does not prevail over a plasma drift to the wall, it improves plasma confinement and its purity. Figure 2. The poloidal cross-section of COMPASS with divertor showing the magnetic configuration. [Bilykova et al, 2006]. Plasma position control The Plasma Position Control System is used to establish the equilibrium position of the plasma column inside the vessel in horizontal and vertical directions. In the COMPASS-D tokamak the control is realised by means of two control systems with different system response: “Slow” pre- programmed control, and “Fast” control (~5 kHz) which applies strong external forces driven by currents in the poloidal coils, controlled in real-time using magnetic measurements of the plasma position. Horizontal position control The toroidal plasma column with a current has tendency to increase its major radius R0 (to expand) because of kinetic and magnetic pressure. This increase has to be balanced by applying a r horizontal force FR : r r r FR ∝ j × Bz , r where Bz is vertical magnetic field, j toroidal plasma current density. The required equilibrium Bz is given by the expression [Wesson J, 2004]: 230 NAYDENKOVA ET AL.: MAGNETIC DIAGNOSTIC APPLICATION FOR COMPASS µ0I 8R0 1 Bz = − (ln + Λ − ) , 4πR0 a 2 l where Λ = β + i −1 pol 2 β pol – ratio of plasma and poloidal magnetic field pressures, li - ratio of square average poloidal magnetic field and square poloidal magnetic field at the edge, I - plasma current. Schema of sensors used for horizontal position control in COMPASS tokamak is shown in Fig. 3. Signals from two toroidal loops Loopin and Loopout located at the midplane are used for such control. To determine vertical magnetic field Bz the differential signal from the two loops is used. Pick-up coil is located inside the vacuum vessel at the midplane of the outer side of torus. The integral signal from the pick-up coil is proportional to the plasma current and horizontal displacement of the plasma column. Resulting signals are processed in the control system (either analogue or digital) and used as input for power supplies (PS). The output of PS is connected to poloidal coils E (slow control) and F (fast feedback control). The resulting control field is shown in Figure 3. F E / F MB Pick-up Coil Loopout Loopin F E / F Figure 3. Scheme of horizontal position control in the COMPASS tokamak [The COMPASS project [1983]. Vertical position control Elongated plasma is unstable to any displacement in the direction of the elongation. The criterion for stability against a vertical motion is [Wesson J, 2004]: 2 b + a ⎛ b + a ⎞ D = ⎜ ⎟ −1 < 0 b − a ⎝ b'+a' ⎠ a, b – minor and major semi-axes correspondingly; a’, b’ – semi-axes of perfectly conducting elliptical shell. If the surrounding shell has a finite conductivity, inertial instability appears with a growth rate −1 γ : γ = (Dτ R ) where τ R is resistive time penetration of the shell. 231 NAYDENKOVA ET AL.: MAGNETIC DIAGNOSTIC APPLICATION FOR COMPASS Figure 4. Schema of poloidal magnetic field lines. Plasma elongation is created by means of 4 poloidal coils shown schematically in Figure 4. If the plasma is displaced in a vertical direction, a perturbed vertical force due to the interaction between the poloidal field coil current and the plasma current appears. If this force increases the displacement of plasma, it leads to instability. To protect plasma from disruption, corresponding radial magnetic field have to be applied. Direction of this force depends on plasma displacement. If plasma moves upwards, the controlling magnetic field must point towards the low field side and vice versa. Pick-up Coils Toroidal Loops Poloidal Control Coils Figure 5. Scheme of vertical position control in the COMPASS tokamak [Vyas P, 1998]. 232 NAYDENKOVA ET AL.: MAGNETIC DIAGNOSTIC APPLICATION FOR COMPASS Schema of sensors used for vertical position control in the COMPASS tokamak is shown in Figure 5. For such control vertical force has to be applied: r r r Fz = j × Br Position of the toroidal loop sensors are shown in Figure 5. For determination of radial magnetic field Br, the integrated sum of signal differences from these toroidal loops is used (see figure 6). Pick- up coils are located inside the vacuum vessel symmetrically relative to the midplane as it is shown in Figure 5. The integrated sum of signal differences from the pick-up coils is proportional to the plasma current and horizontal displacement of the plasma column. Resulting signals are processed in the control system and used again as input for the power supplies (PS). The output of PS is connected to poloidal coils S (slow control) and F (fast feedback control). The resulting control field Br is shown in Figure 6. Toroidal loops B Ф = Si×Br = 2πRh×Br Figure 6. Measurement of radial magnetic field by means of toroidal loops. Here they are shown only two toroidal loops. Si – is the surface of the integration, R – is the distance from the main axis to the poloidal loop, h – is the distance between the toroidal loops. Progress report Nowadays, the work connected with the COMPASS transport to Prague is carried out. The building for hosting of the COMPASS tokamak is underway. It will be finished at the end of the year 2007. A majority of equipment has already been transported to Prague. The transportation of tokamak from Great Britain is planned in August 2007 and first shot is planed at the end of 2008. One of the main tasks for this moment is re-installation of the existing feedback system. It means tests of integrators, waveform generators etc. Gradual replacement of existing analogue feedback system to a digital one is envisaged. References. Colton A.L. et al, Error field penetration and plasma rotation in H mode and control of ELM-free regimes in COMPASS-D. Nuclear Fusion, vol.39, No 4, 1999. Fielding S.J. et al, Divertor Target Heat Load Reduction by Electrical Biasing, and Application to COMPASS-D. European Physical Society, Budapest, Hungry, June 12-15, 2000. The COMPASS project documents. Part II. UKAEA, Culham laboratory. December 1983. Bilykova O., et al, "COMPASS-D magnetic equilibria with LH and NBI current drive", Czechoslovak Journal of Physics 56: B24-B30 Suppl. B 2006. Wesson J., “Tokamaks”, International series of monographs on physics, Oxford, 2004, ISBN 0-19-850922-7. Vyas P., Vertical position control on COMPASS-D, Fusion Technology, 33(1998), 97-105.
Recommended publications
  • Validation of Equilibrium Tools on the COMPASS Tokamak Jakub Urban, L
    Validation of equilibrium tools on the COMPASS tokamak Jakub Urban, L. C. Appel, J. F. Artaud, Blaise Faugeras, Josef Havlicek, Michael Komm, Ivan Lupelli, Matěj Peterka To cite this version: Jakub Urban, L. C. Appel, J. F. Artaud, Blaise Faugeras, Josef Havlicek, et al.. Validation of equi- librium tools on the COMPASS tokamak. SOFT 2014, 2014, San Sebastian, Spain. hal-01105044 HAL Id: hal-01105044 https://hal.archives-ouvertes.fr/hal-01105044 Submitted on 9 Oct 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Validation of equilibrium tools on the COMPASS tokamak J. Urbana, L.C. Appelb, J.F. Artaudc, B. Faugerasd, J. Havliceka,e, M. Komma, I. Lupellib, M. Peterkaa,e aInstitute of Plasma Physics ASCR, Za Slovankou 3, 182 00 Praha 8, Czech Republic bCCFE, Culham Science Centre, Abingdon, Oxfordshire, UK cCEA, IRFM, F-13108 Saint Paul Lez Durance, France dLaboratoire J.A. Dieudonn´e,UMR 7351, Universit´ede Nice Sophia-Antipolis, Parc Valrose, 06108 Nice Cedex 02, France eDepartment of Surface and Plasma Science, Faculty of Mathematics and Physics, Charles University in Prague, V Holeˇsoviˇck´ach 2, 180 00 Praha 8, Czech Republic Abstract Various MHD (magnetohydrodynamic) equilibrium tools, some of which being recently developed or considerably updated, are used on the COMPASS tokamak at IPP Prague.
    [Show full text]
  • Visible Light Measurements on the COMPASS Tokamak
    Visible light measurements on the COMPASS tokamak by Olivier Van Hoey Faculty of Engineering Department of Applied Physics Head of the department: Prof. Dr. Ir. C. Leys Visible light measurements on the COMPASS tokamak by Olivier Van Hoey Promoter: Prof. Dr. Ir. G. Van Oost Copromoter: D. Naydenkova The research reported in this thesis was performed at the Institute of Plasma Physics AS CR, Za Slovankou 1782/3, 182 00 Prague 8, Czech Republic Thesis submitted in order to obtain the degree of Master of Physics and Astronomy, option: Research Academic year 2009-2010 The most exciting phrase to hear in science, the one that heralds new discoveries, is not 'Eureka!', but 'That's funny...' - Isaac Asimov. Give me a lever long enough and a fulcrum on which to place it, and I shall move the world - Archimedes Nothing in life is to be feared. It is only to be understood - Marie Curie No amount of experimentation can ever prove me right; a single experiment can prove me wrong - Albert Einstein The science of today is the technology of tomorrow - Edward Teller Allowance to loan The author gives permission to make this thesis available for consultation and to copy parts of the thesis for personal use. Any other use is limited by the restrictions of copy- right, in particular with regard to the obligation to mention the source explicitly when citing results from this thesis. Olivier Van Hoey May 20, 2010 i Acknowledgment The achievement of this thesis was not possible without the help and support of a lot of people.
    [Show full text]
  • Provisional Programme
    Provisional Programme MONDAY TUESDAY WEDNESDAY THURSDAY Chair Persons Chair Persons Chair Persons Chair Persons 09:00 OPENING B. Gonçalves, D. Batani TUTORIAL T2 F. Wang, J. Santos TUTORIAL T3 M. Simek, R. Luis TUTORIAL T4 C. Silva, G. Zeraouli 09:15 09:30 TUTORIAL T1 A. Tuccillo, A. Romano 09:45 INVITED I2.1 INVITED I3.1 INVITED I4.1 10:00 10:15 ORAL O1.1 ORAL O2.1 ORAL O3.1 ORAL O4.1 10:30 COFFEE POSTER 1 COFFEE POSTER 2 COFFEE POSTER 3 COFFEE 10:45 11:00 ORAL O4.2 C. Silva, G. Zeraouli 11:15 ORAL O4.3 11:30 ORAL O4.4 11:45 ORAL O4.5 12:00 INVITED I1.1 A. Tuccillo, A. Romano INVITED I2.2 F. Wang, J. Santos INVITED I3.2 M. Simek, R. Luis INVITED I4.2 12:15 12:30 ORAL O1.2 INVITED I2.3 ORAL O3.2 INVITED I4.3 12:45 ORAL O1.3 ORAL O3.3 13:00 LUNCH LUNCH LUNCH LUNCH 13:15 13:30 13:45 14:00 14:15 14:30 14:45 INVITED I1.2 M. Fajardo, D. Mancelli FAENOV SESSION D. Batani, S. Malko INVITED I3.3 M. Feroci, P. Varela INVITED I4.4 L.L. Alves, L. Guimarãis 15:00 INTRO+ 2 TALKS 15:15 ORAL O1.4 F1-F2 ORAL O3.4 ORAL O4.6 15:30 COFFEE POSTER 1 COFFEE POSTER 2 COFFEE POSTER 3 COFFEE 15:45 16:00 ORAL O4.7 L.L. Alves, L. Guimarãis 16:15 INVITED I4.5 16:30 16:45 ORAL O1.5 M.
    [Show full text]
  • 2Nd IAEA Technical Meeting on Fusion Data Processing, Validation and Analysis
    nd 2 IAEA Technical Meeting on Fusion Data Processing, Validation and Analysis Programme Book of Abstracts Boston, USA 30 May – 2 June, 2017 DISCLAIMER: This is not an official IAEA publication. The views expressed do not necessarily reflect those of the International Atomic Energy Agency or its Member States. The material has not undergone an official review by the IAEA. This document should not be quoted or listed as a reference. The use of particular designations of countries or territories does not imply any judgement by the IAEA, as to the legal status of such countries or territories, of their authorities and institutions or of the delimitation of their boundaries. The mention of names of specific companies or products (whether or not indicated as registered) does not imply any intention to infringe proprietary rights, nor should it be construed as an endorsement or recommendation on the part of the IAEA. Second Joint ITER-IAEA Technical Meeting Analysis of ITER Materials and Technologies 11-13 December 2012 The Gateway Hotel Ummed Ahmedabad Ahmedabad, India 2nd IAEA Technical Meeting on Fusion Data Processing, Validation and Analysis 30 May – 2 June, 2017 Boston, USA IAEA Scientific Secretary International Atomic Energy Agency Vienna International Centre Wagramer Straße 5, PO Box 100 Ms. Sehila Maria Gonzalez de Vicente A-1400 Vienna, Austria NAPC Physics Section Tel: +43-1-2600-21753 Fax: +43-1-26007 E-mail: [email protected] International Programme Advisory Committee Chair: N. Howard (USA) A. Dinklage (Germany), R. Fischer (Germany), S. Kajita (Japan), S. Kaye (USA), D. Mazon (France), D. McDonald (Eurofusion/EU), A.
    [Show full text]
  • Losses of Runaway Electrons in MHD-Active Plasmas of the COMPASS Tokamak
    Losses of runaway electrons in MHD-active plasmas of the COMPASS tokamak O Ficker1;2, J Mlynar1, M Vlainic1;2;3, J Cerovsky1;2, J Urban1, P Vondracek1;4, V Weinzettl1, E Macusova1, J Decker5,M Gospodarczyk5, P Martin7, E Nardon8, G Papp9,VV Plyusnin10, C Reux8, F Saint-Laurent8, C Sommariva8,J Cavalier1;11, J Havlicek1, A Havranek1;12, O Hronova1,M Imrisek1, T Markovic1;4, J Varju1, R Paprok1;4, R Panek1,M Hron1 and the COMPASS team 1 Institute of Plasma Physics of the CAS, CZ-18200 Praha 8, Czech Republic 2 FNSPE, Czech Technical University in Prague, CZ-11519 Praha 1, Czech Republic 3 Department of Applied Physics, Ghent University, 9000 Ghent, Belgium 4 FMP, Charles University, Ke Karlovu 3, CZ-12116 Praha 2, Czech Republic 5 Swiss Plasma Centre, EPFL, CH-1015 Lausanne, Switzerland 6 Universita’ di Roma Tor Vergata, 00133 Roma, Italy 7 Consorzio RFX, Corso Stati Uniti 4, 35127 Padova, Italy 8 CEA, IRFM, F-13108 Saint-Paul-lez-Durance, France 9 Max Planck Institute for Plasma Physics, Garching D-85748, Germany 10 Centro de Fusao Nuclear, IST, Lisbon, Portugal 11 Institut Jean Lamour IJL, Universite de Lorraine, 54000 Nancy, France 12 FEE, Czech Technical University in Prague, CZ-12000 Praha 2, Czech Republic E-mail: [email protected] Abstract. Significant role of magnetic perturbations in mitigation and losses of Runaway Electrons (REs) was documented in dedicated experimental studies of RE at the COMPASS tokamak. RE in COMPASS are produced both in low density quiescent discharges and in disruptions triggered by massive gas injection (MGI).
    [Show full text]
  • Model for Screening of Resonant Magnetic Perturbations by Plasma
    Model for screening of resonant magnetic perturbations by plasma in a realistic tokamak geometry and its impact on divertor strike points P. Cahynaa,1,∗, E. Nardonb, JET EFDA Contributors2 aInstitute of Plasma Physics, AS CR, v.v.i., Association EURATOM/IPP.CR, Za Slovankou 3, 182 00 Prague, Czech Republic bAssociation EURATOM-CEA, CEA/DSM/IRFM, CEA Cadarache, 13108 St-Paul-lez-Durance, France Abstract This work addresses the question of the relation between strike-point splitting and magnetic stochasticity at the edge of a poloidally diverted tokamak in the presence of externally imposed magnetic perturbations. More specifically, ad-hoc helical current sheets are introduced in order to mimic a hypothetical screening of the external resonant magnetic perturbations by the plasma. These current sheets, which suppress magnetic islands, are found to reduce the amount of splitting expected at the target, which suggests that screening effects should be observable experimentally. Multiple screening current sheets reinforce each other, i.e. less current relative to the case of only one current sheet is required to screen the perturbation. Keywords: Theory and Modelling, Plasma properties, Plasma-Materials Interaction arXiv:1012.4015v2 [physics.plasm-ph] 27 Jan 2011 ∗Corresponding author Email address: [email protected] (P. Cahyna) 1Presenting author 2See the Appendix of F. Romanelli et al., Proceedings of the 22nd IAEA Fusion Energy Conference 2008, Geneva, Switzerland Preprint submitted to Journal of Nuclear Materials November 10, 2018 1. Introduction An axisymmetric, single null, poloidally diverted tokamak has two strike-lines where the plasma hits the divertor targets: one on the high field side (HFS) and one on the low field side (LFS).
    [Show full text]
  • Parallel SOL Transport Regime in Tokamak COMPASS
    45th EPS Conference on Plasma Physics P5.1081 Parallel SOL transport regime in tokamak COMPASS K. Jirakova1;2, J. Seidl1, J. Adamek1, P. Bilkova1, J. Cavalier 1, M. Dimitrova1, J. Horacek1, M. Komm1 1 Institute of Plasma Physics, Czech Academy of Sciences, Prague 2 Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University, Prague Power exhaust in a tokamak fusion reactor is partly realised through energetic plasma particles heating the divertor and the first wall. The power crossing the separatrix must be distributed along the plasma-facing components without heating them to a high temperature or causing strong sputtering. This applies espe- cially to the divertor, where particle power deposition is focused onto a narrow stripe along the strike points, figure 1. It is there- fore desirable to establish a significant parallel plasma temper- ature gradient between upstream, where most of the cross-field transport is concentrated, and the divertor targets. Using the two-point model [1] as a base, the parallel tempera- Figure 1: Schema of toka- ture gradient can be quantified using the collisionality parameter, mak SOL transport. ∗ −16 nuL n = 10 2 : the mean number of collisions a particle under- Tu goes on the way from upstream to target. Here L stands for flux tube length, nu is upstream electron density, and Tu is upstream temperature. ∗ small temperature gradient Tu < 1:5Tt n < 10 sheath-limited regime ∗ significant temperature gradient Tu > 3Tt n > 15 conduction-limited regime The conduction-limited regime allows for a relatively cold target plasma while keeping up- stream at the same temperature.
    [Show full text]
  • ELM Electron Temperature Measurements on Divertor Compared to the Pedestal Temperature in the COMPASS Tokamak J
    46th EPS Conference on Plasma Physics P2.1042 ELM electron temperature measurements on divertor compared to the pedestal temperature in the COMPASS tokamak J. Adamek1, A. Devitre2, M. Komm1, J. Cavalier1, J. Horacek1, M. Sos1, P. Bilkova1, D. Tskhakaya1,3, J. Seidl1, V. Weinzettl1, M. Hron1, R. Panek1, COMPASS Team1 and the EUROfusion MST1 team4 1Institute of Plasma Physics of the CAS, Prague, Czech Republic 2 Faculté des Sciences et Technologies, Université de Lorraine, Vandoeuvre-lès-Nancy, France 3 Department of Mathematics, University of Innsbruck, A-6020 Innsbruck, Austria 4 See the author list of Meyer H. et al 2017 Nucl. Fusion 57 102014 Investigation of the ELM using divertor probes can provide heat loads and electron temperature with high temporal resolution [1, 2]. Recent evaluation of ELM electron temperature with JET divertor probes showed that the maxima of ELM electron temperature are almost one order of magnidute lower than the pedestal temperature [3]. However, JET probe results use conditionally averaged ELM I-V characteristics, which could underestimate the electron temperature maxima due to the filamentary structure of the ELMs [4]. We report on systematic measurements of the ELM electron temperature in the COMPASS divertor during a set of ELMy H-mode discharges aiming at a comparison between the ELM peak values and the corresponding pedestal temperature. The pedestal temperature in the last 30% of ELM cycle is routinely provided by a high-resolution Thomson scattering (HRTS) system using a conventional modified tangential (mtanh) fit. Newly, we have also obtained the electron temperature on top of the pedestal by means of the two-line fitting method (bilinear).
    [Show full text]
  • An Unreal Reality Pushes Fusion Science Jet – the Most Successful Performance in Years How to Tame Plasma Turbulence
    FUSION IN EUROPE NEWS & VIEWS ON THE PROGRESS OF FUSION RESEARCH AN UNREAL REALITY PUSHES FUSION SCIENCE JET – THE MOST SUCCESSFUL PERFORMANCE IN YEARS HOW TO TAME PLASMA TURBULENCE 4 2016 FUSION IN EUROPE 4 2016 Contents Delphine Keller from EURO­ fusion’s French Research Unit Moving Forward CEA is dressed for a jump into the virtual fusion world. Glas­ 3 A European fusion programme to be proud of ses, immersive headsets and motion trackers allow her to 4 The most successful performance in years study the interior of a tokamak. Picture: CEA 6 An unreal reality pushes fusion science 10 IAEA awards EUROfusion’s work 12 Impressions Research Units 14 COMPASS has changed its point of view 18 How to tame plasma turbulence 18 21 Mix it up! The simulation of electrostatic potential along 22 News the torus lines inside a fusion experiment. These experiments help to find origins of plasma turbulence.. Community Picture: GYRO/General Atomics 24 Supernovae in the lab – powered by EUROfusion 28 Pushing the science beyond fusion 30 Young faces of fusion – Robert Abernethy 12 Fuel for Thought Who says operators at the Czech tokamak 33 Combining Physics and Management Forces COMPASS don’t have a sense Perspectives of humour? – More amusing details from fusion on page 12 and 13. 34 Summing Up Picture: EUROfusion EUROfusion © Tony Donné (EUROfusion Programme Manager) Imprint Programme Management Unit – Garching 2016. FUSION IN EUROPE Boltzmannstr. 2 This newsletter or parts of it may not be reproduced ISSN 1818­5355 85748 Garching / Munich, Germany without permission. Text, pictures and layout, except phone: +49-89-3299-4128 where noted, courtesy of the EUROfusion members.
    [Show full text]
  • A New Generation of Real-Time Systems in the JET Tokamak
    A New Generation of Real-Time Systems in the JET Tokamak D. Alves, , A.C. Neto,. , D.F. Valcarcel, R. Felton, J.M. Lopez, A. Barbalace, L. Boncagni, P. Card, G. De Tommasi, , A. Goodyear, S. Jachmich, P.J. Lomas, F. Maviglia, P. McCullen, A. Murari, M. Rainford, C. Reux, F. Rimini, F. Sartori, A.V. Stephen, J. Vega, R. Vitelli, L. Zabeo, K.-D. Zastrow and JET EFDA contributors Abstract—Recently a new recipe for developing and deploying analysis of a user-space MARTe based application synchronising real-time systems has become increasingly adopted in the JET over a network is also presented. The goal is to compare its tokamak. Powered by the advent of x86 multi-core technology deterministic performance while running on a vanilla and on a and the reliability of the JET's well established Real-Time Data Messaging Real time Grid (MRG) Linux kernel. Network (RTDN) to handle all real-time I/O, an official Linux vanilla kernel has been demonstrated to be able to provide real­ time performance to user-space applications that are required to meet stringent timing constraints. In particular, a careful rearrangement of the Interrupt ReQuests' (IRQs) affinities to­ I. INTRODUCTION gether with the kernel's CPU isolation mechanism allows to N the past, real-time requirements meant that a real-time obtain either soft or hard real-time behavior depending on the Operating System (OS) had to be used. The ratio between synchronization mechanism adopted. Finally, the Multithreaded I Application Real-Time executor (MARTe) framework is used for resource availability and demand was very low, i.e.
    [Show full text]
  • European Consortium for the Development of Fusion Energy European Consortium for the Development of Fusion Energy CONTENTS CONTENTS
    EuropEan Consortium for thE DEvElopmEnt of fusion EnErgy EuropEan Consortium for thE DEvElopmEnt of fusion EnErgy Contents Contents introDuCtion ReseaRCH units CooRDinating national ReseaRCH FoR euRofusion 16 agenzia nazionale per le nuove tecnologie, l’energia e lo sviluppo economico sostenibile (enea), italy euRofusion: eMboDying tHe sPiRit oF euRoPean CollaboRation 17 FinnFusion, finland 4 the essence of fusion 18 fusion@Öaw, austria the tantalising challenge of realising fusion power 19 hellenic fusion research unit (Hellenic Ru), greece the history of European fusion collaboration 20 institute for plasmas and nuclear fusion (iPFn), portugal 5 Eurofusion is born 21 institute of solid state physics (issP), latvia the road from itEr to DEmo 22 Karlsruhe institute of technology (Kit), germany 6 Eurofusion facts at a glance 23 lithuanian Energy institute (lei), lithuania 7 itEr facts at a glance 24 plasma physics and fusion Energy, Department of physics, technical university of Denmark (Dtu), Denmark JEt facts at a glance 25 plasma physics Department, wigner Fusion, hungary 8 infographic: Eurofusion devices and research units 26 plasma physics laboratory, Ecole royale militaire (lPP-eRM/KMs), Belgium 27 ruder Boškovi´c institute, Croatian fusion research unit (CRu), Croatia 28 slovenian fusion association (sFa), slovenia 29 spanish national fusion laboratory (lnF), CiEmat, spain 30 swedish research Council (vR), sweden rEsEarCh unit profilEs 31 sylwester Kaliski institute of plasma physics and laser microfusion (iPPlM), poland 32 the institute
    [Show full text]
  • Introducing Minimum Fisher Regularisation Tomography To
    EFDA–JET–CP(12)01/03 J. Mlynar, M. Imrisek, V. Weinzettl, M. Odstrcil, J. Havlicek, F. Janky, B. Alper, A. Murari and JET EFDA contributors Introducing Minimum Fisher Regularisation Tomography to Bolometric and Soft X-ray Diagnostic Systems of the COMPASS Tokamak “This document is intended for publication in the open literature. It is made available on the understanding that it may not be further circulated and extracts or references may not be published prior to publication of the original when applicable, or without the consent of the Publications Officer, EFDA, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK.” “Enquiries about Copyright and reproduction should be addressed to the Publications Officer, EFDA, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK.” The contents of this preprint and all other JET EFDA Preprints and Conference Papers are available to view online free at www.iop.org/Jet. This site has full search facilities and e-mail alert options. The diagrams contained within the PDFs on this site are hyperlinked from the year 1996 onwards. Introducing Minimum Fisher Regularisation Tomography to Bolometric and Soft X-ray Diagnostic Systems of the COMPASS Tokamak J. Mlynar1, M. Imrisek2, V. Weinzettl1, M. Odstrcil,1,2, J. Havlicek1,3, F. Janky1,3, B. Alper4, A. Murari5 and JET EFDA contributors* JET-EFDA, Culham Science Centre, OX14 3DB, Abingdon, UK 1Institute of Plasma Physics AS CR, Association EURATOM-IPP.CR, Za Slovankou 3, CZ-182 00 Prague 8, Czech Republic 2Faculty of Nuclear Sciences and Physical Engineering, CTU Prague, Association EURATOM-IPP.CR, Brehova 8, CZ-115 19 Prague 1, Czech Republic 3Faculty of Mathematics and Physics, Charles University, Prague, Association EURATOM-IPP.CR, V Holesovickach 2, CZ-180 00 Prague 8, Czech Republic 4EURATOM-CCFE Fusion Association, Culham Science Centre, OX14 3DB, Abingdon, Oxon, UK 5Consorzio RFX, Association EURATOM-ENEA sulla Fusione, I-35127, Padova, Italy * See annex of F.
    [Show full text]