Reanalysis of Putative Ovarian Follicles Suggests That Early Cretaceous Birds Were Feeding Not Breeding Gerald Mayr1*, Thomas G

Total Page:16

File Type:pdf, Size:1020Kb

Reanalysis of Putative Ovarian Follicles Suggests That Early Cretaceous Birds Were Feeding Not Breeding Gerald Mayr1*, Thomas G www.nature.com/scientificreports OPEN Reanalysis of putative ovarian follicles suggests that Early Cretaceous birds were feeding not breeding Gerald Mayr1*, Thomas G. Kaye2, Michael Pittman3, Evan T. Saitta4 & Christian Pott5 We address the identity of putative ovarian follicles in Early Cretaceous bird fossils from the Jehol Biota (China), whose identifcation has previously been challenged. For the frst time, we present a link to the botanical fossil record, showing that the “follicles” of some enantiornithine fossils resemble plant propagules from the Jehol Biota, which belong to Carpolithes multiseminalis. The botanical afnities of this “form-taxon” are currently unresolved, but we note that C. multiseminalis propagules resemble propagules associated with cone-like organs described as Strobilites taxusoides, which in turn are possibly associated with sterile foliage allocated to Liaoningcladus. Laser-Stimulated Fluorescence imaging furthermore reveals diferent intensities of fuorescence of “follicles” associated with a skeleton of the confuciusornithid Eoconfuciusornis zhengi, with a non-fuorescent circular micro-pattern indicating carbonaceous (or originally carbonaceous) matter. This is inconsistent with the interpretation of these structures as ovarian follicles. We therefore reafrm that the “follicles” represent ingested food items, and even though the exact nature of the Eoconfuciusornis stomach contents remains elusive, at least some enantiornithines ingested plant propagules. Over the past decades, the Jehol Biota in northeast China yielded an extraordinary diversity of fossils, which produced unprecedented insights into Early Cretaceous ecosystems. Even though the specimens from these localities are known for their exquisite sof-tissue preservation, the discovery of putative ovarian follicles in some of the bird fossils stands out and is otherwise unmatched in the avian fossil record. Aggregations of such ovoid structures were first reported in specimens of the Enantiornithes and Jeholornithidae1. Teir identifcation as mature ovarian follicles was, however, challenged 2, because (1) such perishable structures are unlikely to be preserved in multiple fossils that otherwise show little or no preservation of comparable sof tissue types and would have to have survived through decay and diagenesis; (2) the putative “follicles” have similar dimensions in very diferently-sized birds (Table 1); and (3) based on evidence from paired eggs in situ, non-avian maniraptorans already had the ovulation mode of extant birds, that is, a consecu- tive maturing of follicles, so that a simultaneous maturing of multiple follicles in early diverging birds would be unexpected2. Te frst two of these observations were countered by a reference to eggs in Jehol fsh fossils that remain unpublished and by the proposal that a similar follicle size may have been due to similar dimensions of the pelvic canal in diferently-sized Mesozoic birds 3. Here it is noted, however, that it is not the mere preserva- tion of ovarian follicles as such that was deemed unlikely, but their occurrence in fossils that do not show other traces of preservation of comparable sof tissue types 2. Te third argument, that is, the presence of an avian-like ovulation mode in non-avian theropods (which conficts with the presence of multiple mature ovarian follicles), was not addressed. Tis point was subsequently reafrmed by the notion that a simultaneous maturing of ovarian follicles is unlikely to occur in volant animals 4. To meet the increased calcium demands of eggshell formation, female birds develop a special tissue in the medullary cavity of their bones prior to and during oviposition. Such medullary bone has not been identifed in 1Ornithological Section, Senckenberg Research Institute and Natural History Museum Frankfurt, Senckenberganlage 25, 60325 Frankfurt am Main, Germany. 2Foundation for Scientifc Advancement, 7023 Alhambra Drive, Sierra Vista, Arizona 85650, USA. 3Vertebrate Palaeontology Laboratory, Division of Earth and Planetary Science, The University of Hong Kong, Pokfulam, Hong Kong SAR, China. 4Integrative Research Center, Life Sciences Section, Field Museum of Natural History, 1400 South Lake Shore Drive, Chicago, IL 60605, USA. 5LWL-Museum of Natural History, Westphalian State Museum with Planetarium, Sentruper Straße 285, 48161 Münster, Germany. *email: [email protected] Scientifc Reports | (2020) 10:19035 | https://doi.org/10.1038/s41598-020-76078-2 1 Vol.:(0123456789) www.nature.com/scientificreports/ Taxonomic identifcation Specimen number Propagule size Femur length Jeholornis prima (Jeholornithidae) STM 2-51 7.1‒8.8 mm1 108.8 mm6 Eoconfuciusornis zhengi (Confuciusornithidae) STM 7-144 3.5‒5.8 mm8 25.4 mm8 Enantiornithes indet. STM 29-8 5.8‒8.8 mm1 40.2 mm6 Enantiornithes indet. STM 10-45 6.7‒8.8 mm1 34.9 mm6 Enantiornithes indet. STM 10-4 7.2 mm6 (mean value) 38.7 mm6 Enantiornithes indet. STM 10-12 7.7 mm6 (mean value) ‒ Enantiornithes indet. STM 11-121 6.8 mm6 (mean value) 37.5 mm6 Enantiornithes indet. STM 11-212 5.4 mm6 (mean value) ~ 32‒356 Linyiornis amoena (Enantiornithes) STM 11-80 5.6‒7.17 mm 37.7 mm6 Table 1. Overview of birds from the Jehol Formation with “follicle”-like plant propagules preserved as stomach contents. specimens with presumed “follicles”5, and the histological data therefore do not lend support to the identifcation of these structures as mature ovarian follicles. Irrespective of these objections, however, further examples of putative fossilized “follicles” were described in fossils of the Enantiornithes 6,7 and the confuciusornithid Eoconfuciusornis zhengi8 (Fig. 1A). Identifcation of ovarian follicles formed the basis for hypotheses on the paleobiology of early birds 9,10, and these structures have now been reported for Jeholornis (Jeholornithidae), Eoconfuciusornis (Confuciusornithidae), and at least seven enantiornithine specimens1,6–8. Te presence of similar structures was furthermore noted in a fossil of the non-avian coelurosaurian theropod Compsognathus2, in which they were also interpreted as ovarian follicles3,6 rather than being of taphonomic or diagenetic origin as previously assumed 11. Te presumed ovarian follicles of Early Cretaceous birds have varying morphologies in diferent indi- viduals. Whereas those initially reported 1 are fat structures with a featureless or reticulate surface, those of Eoconfuciusornis exhibit a surface with concentric or spiraling circles 8. Fossilization of ovarian follicles as such would be quite unexpected in fossils that otherwise show little evidence for preservation of similar sof tissue types, but their diferent surface textures in multiple specimens cast further doubts on their identifcation. Most recently, the histology of these structures was studied and considered to be in concordance with their presumed identity as ovarian follicles12. However, as detailed below, we fnd several shortcomings in the evidence used to support these interpretations, which likely undermine an identity as ovarian follicles. It therefore seems appropriate to comment again on the identity of the Jehol “follicles”. In the present study, we identify plant propagules (ovules, seeds, fruits, or parts thereof) in the botanical record of the Jehol Biota that are similar to some of the presumed “follicles” and comment on the possible phylogenetic afnities of these propagules. Moreover, we analyze the presumed “follicles” of Eoconfuciusornis zhengi with Laser-Stimulated Fluo- rescence imaging (LSF), which yields new insights into the texture and possible composition of these structures. Results Reexamination of the histological evidence for putative ovarian follicles. Bailleul et al.12 propose that microscopy, histochemical staining, and energy-dispersive spectroscopy reveal smooth muscle, collagen fber, and blood vessel preservation within a putative perifollicular membrane of enantiornithine specimen STM 10-12. Te authors acknowledge that the purported follicles vary in texture and morphology across nine refer- enced specimens and ‒ unlike the heterogeneity seen in modern bird follicle development ‒ are homogenous in size within each specimen. Tey attribute such peculiarities to evolutionary trends rather than lines of evidence against an ovarian identity. We do not see clearly portrayed and unambiguously identifed collagen and muscle fbers, vessels, sub- endothelial connective tissue, or intravascular material in the microscopy images presented 12. Microscopic struc- tural data is at risk of subjective interpretation13, and such considerations have ofen been invoked with respect to controversial Archaean ‘microfossils’14 and dubious dinosaur erythrocytes 15. Concerning the Jehol fossils, features that were identifed as purported blood vessels12 show little signs of the branching typical of well-preserved ves- sels, which the authors 12 acknowledge. An expectation that the structures are preserved smooth muscle from follicles might also explain why they were described as pale pink 12 rather than, more appropriately, brown. Sample manipulation by Bailleul et al.12 may also have added further noise to structural data that is already difcult to interpret—namely their coined process of ‘artifcial decompaction’ during parafn histological analysis. When applied to geologic samples, certain biological methods are at risk of yielding false and misleading results. For example, recent authors16 failed to detect a proteinaceous signature in fossil feathers that had pre- viously tested positive
Recommended publications
  • The Phylogenetic Position of Ambiortus: Comparison with Other Mesozoic Birds from Asia1 J
    ISSN 00310301, Paleontological Journal, 2013, Vol. 47, No. 11, pp. 1270–1281. © Pleiades Publishing, Ltd., 2013. The Phylogenetic Position of Ambiortus: Comparison with Other Mesozoic Birds from Asia1 J. K. O’Connora and N. V. Zelenkovb aKey Laboratory of Evolution and Systematics, Institute of Vertebrate Paleontology and Paleoanthropology, 142 Xizhimenwai Dajie, Beijing China 10044 bBorissiak Paleontological Institute, Russian Academy of Sciences, Profsoyuznaya ul. 123, Moscow, 117997 Russia email: [email protected], [email protected] Received August 6, 2012 Abstract—Since the last description of the ornithurine bird Ambiortus dementjevi from Mongolia, a wealth of Early Cretaceous birds have been discovered in China. Here we provide a detailed comparison of the anatomy of Ambiortus relative to other known Early Cretaceous ornithuromorphs from the Chinese Jehol Group and Xiagou Formation. We include new information on Ambiortus from a previously undescribed slab preserving part of the sternum. Ambiortus is superficially similar to Gansus yumenensis from the Aptian Xiagou Forma tion but shares more morphological features with Yixianornis grabaui (Ornithuromorpha: Songlingorni thidae) from the Jiufotang Formation of the Jehol Group. In general, the mosaic pattern of character distri bution among early ornithuromorph taxa does not reveal obvious relationships between taxa. Ambiortus was placed in a large phylogenetic analysis of Mesozoic birds, which confirms morphological observations and places Ambiortus in a polytomy with Yixianornis and Gansus. Keywords: Ornithuromorpha, Ambiortus, osteology, phylogeny, Early Cretaceous, Mongolia DOI: 10.1134/S0031030113110063 1 INTRODUCTION and articulated partial skeleton, preserving several cervi cal and thoracic vertebrae, and parts of the left thoracic Ambiortus dementjevi Kurochkin, 1982 was one of girdle and wing (specimen PIN, nos.
    [Show full text]
  • Anchiornis and Scansoriopterygidae
    SpringerBriefs in Earth System Sciences SpringerBriefs South America and the Southern Hemisphere Series Editors Gerrit Lohmann Lawrence A. Mysak Justus Notholt Jorge Rabassa Vikram Unnithan For further volumes: http://www.springer.com/series/10032 Federico L. Agnolín · Fernando E. Novas Avian Ancestors A Review of the Phylogenetic Relationships of the Theropods Unenlagiidae, Microraptoria, Anchiornis and Scansoriopterygidae 1 3 Federico L. Agnolín “Félix de Azara”, Departamento de Ciencias Naturales Fundación de Historia Natural, CEBBAD, Universidad Maimónides Buenos Aires Argentina Fernando E. Novas CONICET, Museo Argentino de Ciencias Naturales “Bernardino Rivadavia” Buenos Aires Argentina ISSN 2191-589X ISSN 2191-5903 (electronic) ISBN 978-94-007-5636-6 ISBN 978-94-007-5637-3 (eBook) DOI 10.1007/978-94-007-5637-3 Springer Dordrecht Heidelberg New York London Library of Congress Control Number: 2012953463 © The Author(s) 2013 This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location, in its current version, and permission for use must always be obtained from Springer.
    [Show full text]
  • The Jurassic Fossil Wood Diversity from Western Liaoning, NE China
    Jiang et al. Journal of Palaeogeography (2019) 8:1 https://doi.org/10.1186/s42501-018-0018-y Journal of Palaeogeography RESEARCH Open Access The Jurassic fossil wood diversity from western Liaoning, NE China Zi-Kun Jiang1,2, Yong-Dong Wang2,3*, Ning Tian4,5, Ao-Wei Xie2,6, Wu Zhang7, Li-Qin Li2 and Min Huang1 Abstract Western Liaoning is a unique region in China that bears diverse types of Jurassic plants, including leaves, fern rhizomes, and wood, providing significant proxy for vegetation and palaeoenvironment reconstruction of the well-known Yanliao Flora in East Asia. In particular, the silicified wood is very abundant in the fossil Lagerstätte of the Jurassic Tiaojishan Formation in Beipiao, western Liaoning. Previous and recent systematic investigations documented a high diversity of the Jurassic wood assemblages. These assemblages are dominated by conifers, followed by cycads and ginkgoaleans. In total, about 30 species belonging to 21 genera of fossil wood have been recorded so far, which are represented by Cycadopsida, Ginkgopsida, Coniferopsida, and Gymnospermae incertae sedis. The evolutionary implications of several distinctive fossil wood taxa as well as palaeoclimate implications are summarized based on their anatomical structures and growth ring patterns. This work approaches the vegetation development and evolutionary significances of the wood taxa and their relatives, and provides clues for the further understanding of the diversity of the Jurassic Yanliao Flora in East Asia. Keywords: Fossil wood, Diversity, Evolution, Tiaojishan Formation, Jurassic 1 Introduction 2004;Wangetal.,2009). Among these localities, western Fossil floras are a significant record for the vegetation Liaoning is a well-known fossil Lagerstätte with diverse and for the palaeoenvironment reconstructions of the and well-preserved fossil plant foliages and wood (Zhang Mesozoic.
    [Show full text]
  • The Earliest Record of Fossil Solid-Wood-Borer Larvae—Immature Beetles in 99 Million-Year-Old Myanmar Amber
    Palaeoentomology 004 (4): 390–404 ISSN 2624-2826 (print edition) https://www.mapress.com/j/pe/ PALAEOENTOMOLOGY Copyright © 2021 Magnolia Press Article ISSN 2624-2834 (online edition) PE https://doi.org/10.11646/palaeoentomology.4.4.14 http://zoobank.org/urn:lsid:zoobank.org:pub:9F96DA9A-E2F3-466A-A623-0D1D6689D345 The earliest record of fossil solid-wood-borer larvae—immature beetles in 99 million-year-old Myanmar amber CAROLIN HAUG1, 2, *, GIDEON T. HAUG1, ANA ZIPPEL1, SERITA VAN DER WAL1 & JOACHIM T. HAUG1, 2 1Ludwig-Maximilians-Universität München, Biocenter, Großhaderner Str. 2, 82152 Planegg-Martinsried, Germany 2GeoBio-Center at LMU, Richard-Wagner-Str. 10, 80333 München, Germany �[email protected]; https://orcid.org/0000-0001-9208-4229 �[email protected]; https://orcid.org/0000-0002-6963-5982 �[email protected]; https://orcid.org/0000-0002-6509-4445 �[email protected] https://orcid.org/0000-0002-7426-8777 �[email protected]; https://orcid.org/0000-0001-8254-8472 *Corresponding author Abstract different plants, including agriculturally important ones (e.g., Potts et al., 2010; Powney et al., 2019). On the Interactions between animals and plants represent an other hand, many representatives exploit different parts of important driver of evolution. Especially the group Insecta plants, often causing severe damage up to the loss of entire has an enormous impact on plants, e.g., by consuming them. crops (e.g., Metcalf, 1996; Evans et al., 2007; Oliveira et Among beetles, the larvae of different groups (Buprestidae, Cerambycidae, partly Eucnemidae) bore into wood and are al., 2014).
    [Show full text]
  • How Old Is the Earth?
    How old is the earth? From Refuting Evolution, a handbook for students, parents, and teachers countering the latest arguments for evolution by Jonathan Sarfati, Ph.D., F.M. First published in Refuting Evolution, Chapter 8 Evolutionists fallaciously think that billions of years of time makes particles-to-people evolution possible. So Teaching about Evolution and the Nature of Science presents what it claims is evidence for vast time spans. This is graphically illustrated in a chart on pages 36–37: man’s existence is in such a tiny segment at the end of a 5-billion-year time-line that it has to be diagrammatically magnified twice to show up. On the other hand, basing one’s ideas on the Bible gives a very different picture. The Bible states that man was made six days after creation, about 6,000 years ago. So a time-line of the world constructed on biblical data would have man almost at the beginning, not the end. If we took the same 15-inch (39 cm) time-line as does Teaching about Evolution to represent the biblical history of the earth, 1 man would be about /1000 of a mm away from the beginning! Also, Christians, by definition, take the statements of Jesus Christ seriously. He said: ‘But from the beginning of the creation God made them male and female’ (Mark 10:6), which would make sense with the proposed biblical time-line, but is diametrically opposed to the Teaching about Evolution time-line. This chapter analyzes rock formation and dating methods in terms of what these two competing models would predict.
    [Show full text]
  • Oxygen Isotopes of East Asian Dinosaurs Reveal Exceptionally Cold Early Cretaceous Climates
    Oxygen isotopes of East Asian dinosaurs reveal exceptionally cold Early Cretaceous climates Romain Amiota,1,2, Xu Wangb, Zhonghe Zhoua, Xiaolin Wanga, Eric Buffetautc, Christophe Lécuyerd,2, Zhongli Dingb, Frédéric Fluteaue, Tsuyoshi Hibinof, Nao Kusuhashig, Jinyou Moh, Varavudh Suteethorni, Yuanqing Wanga, Xing Xua, and Fusong Zhangb aKey Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences (CAS), 142 Xi Zhi Men Wai DaJie, Beijing 100044, China; bKey Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, 19 Beitucheng Xilu, Beijing 100029, China; cCNRS (Centre National de la Recherche Scientifique) UMR (Unité Mixte de Recherche) 8538, Laboratoire de Géologie de l’Ecole Normale Supérieure, 24, Rue Lhomond, 75231 Paris Cedex 05, France; dCNRS (Centre National de la Recherche Scientifique) UMR (Unité Mixte de Recherche) 5125, Université Claude Bernard Lyon 1, 2, Rue Raphaël Dubois, 69622 Villeurbanne Cedex, France; eInstitut de Physique du Globe de Paris, 1 Rue Jussieu, 75238 Paris Cedex 05, France; fShiramine Institute of Paleontology, Kuwajima, Hakusan, Ishikawa 920-2502, Japan; gDepartment of Earth's Evolution and Environment, Graduate School of Science and Engineering, Ehime University, 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan; hFaculty of Earth Sciences, China University of Geosciences, 388 Lumo Road, Wuhan 430074, China; andiDepartment of Mineral Resources, Rama VI Road, Bangkok 10400, Thailand Edited by Paul E. Olsen, Columbia University, Palisades, NY, and approved November 4, 2010 (received for review August 3, 2010) Early Cretaceous vertebrate assemblages from East Asia and parti- sanidine crystals from tuff beds within the Yixian Formation cularly the Jehol Biota of northeastern China flourished during a and the base of the overlying Jiufotang Formation gave an age period of highly debated climatic history.
    [Show full text]
  • Molecular Evidence of Keratin and Melanosomes in Feathers of the Early Cretaceous Bird Eoconfuciusornis
    Molecular evidence of keratin and melanosomes in feathers of the Early Cretaceous bird Eoconfuciusornis Yanhong Pana,1, Wenxia Zhengb, Alison E. Moyerb,2, Jingmai K. O’Connorc, Min Wangc, Xiaoting Zhengd,e, Xiaoli Wangd, Elena R. Schroeterb, Zhonghe Zhouc,1, and Mary H. Schweitzerb,f,1 aKey Laboratory of Economic Stratigraphy and Palaeogeography of the Chinese Academy of Sciences, Nanjing Institute of Geology and Palaeontology, Chinese Academy of Sciences Nanjing 210008, China; bDepartment of Biological Science, North Carolina State University, Raleigh, NC 27695; cKey Laboratory of Vertebrate Evolution and Human Origins of the Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Chinese Academy of Sciences, Beijing 100044, China; dInstitute of Geology and Paleontology, Linyi University, Linyi City, Shandong 276005, China; eShandong Tianyu Museum of Nature, Pingyi, Shandong 273300, China; and fNorth Carolina Museum of Natural Sciences, Raleigh, NC 27601 Contributed by Zhonghe Zhou, October 20, 2016 (sent for review August 10, 2016; reviewed by Dominique G. Homberger and Roger H. Sawyer) Microbodies associated with feathers of both nonavian dinosaurs reported microbodies were embedded. Whether keratinous and early birds were first identified as bacteria but have been proteins were preserved in these feathers, and the potential ex- reinterpreted as melanosomes. Whereas melanosomes in modern tent of this preservation, has not been explored. feathers are always surrounded by and embedded in keratin, Indeed,
    [Show full text]
  • 1 Supplementary Materials and Methods 1 S1 Expanded
    1 Supplementary Materials and Methods 2 S1 Expanded Geologic and Paleogeographic Information 3 The carbonate nodules from Montañez et al., (2007) utilized in this study were collected from well-developed and 4 drained paleosols from: 1) the Eastern Shelf of the Midland Basin (N.C. Texas), 2) Paradox Basin (S.E. Utah), 3) Pedregosa 5 Basin (S.C. New Mexico), 4) Anadarko Basin (S.C. Oklahoma), and 5) the Grand Canyon Embayment (N.C. Arizona) (Fig. 6 1a; Richey et al., (2020)). The plant cuticle fossils come from localities in: 1) N.C. Texas (Lower Pease River [LPR], Lake 7 Kemp Dam [LKD], Parkey’s Oil Patch [POP], and Mitchell Creek [MC]; all representing localities that also provided 8 carbonate nodules or plant organic matter [POM] for Montañez et al., (2007), 2) N.C. New Mexico (Kinney Brick Quarry 9 [KB]), 3) S.E. Kansas (Hamilton Quarry [HQ]), 4) S.E. Illinois (Lake Sara Limestone [LSL]), and 5) S.W. Indiana (sub- 10 Minshall [SM]) (Fig. 1a, S2–4; Richey et al., (2020)). These localities span a wide portion of the western equatorial portion 11 of Euramerica during the latest Pennsylvanian through middle Permian (Fig. 1b). 12 13 S2 Biostratigraphic Correlations and Age Model 14 N.C. Texas stratigraphy and the position of pedogenic carbonate samples from Montañez et al., (2007) and cuticle were 15 inferred from N.C. Texas conodont biostratigraphy and its relation to Permian global conodont biostratigraphy (Tabor and 16 Montañez, 2004; Wardlaw, 2005; Henderson, 2018). The specific correlations used are (C. Henderson, personal 17 communication, August 2019): (1) The Stockwether Limestone Member of the Pueblo Formation contains Idiognathodus 18 isolatus, indicating that the Carboniferous-Permian boundary (298.9 Ma) and base of the Asselian resides in the Stockwether 19 Limestone (Wardlaw, 2005).
    [Show full text]
  • Sind Vögel Dinosaurier? Eine Kritische Analyse Fossiler Befunde
    W+W Special Paper B-19-4 SIND VÖGEL DINOSAURIER? EINE KRITISCHE ANALYSE FOSSILER BEFUNDE Reinhard Junker August 2019 https://www.wort-und-wissen.de/artikel/sp/b-19-4_dinos-voegel.pdf Bild: Ein rekonstruiertes und künstlerisch dargestelltes Paar von Microraptor gui (Dromaeosauridae , Micro raptorinae). (durbed.deviantart.com, CC BY-SA 3.0) Sind Vögel Dinosaurier? Inhalt 1. Einleitung ...................................................................................... 3. kompakt ..................................................................................................... 4 Methodische Vorbemerkungen ............................................................................... 5 Zitate zu schrittweisem Erwerb von Vogelmerkmalen ...................................................... 6 2. Vogelmerkmale bei Theropoden: Vorläufer oder Konvergenzen ............................................................................... 9 2.1 Federtypen und Flugfähigkeit ..................................................................... 9 2.2 Zähne und Schnabel ................................................................................ 14 Zitate zu Konvergenzen bei Zahnverlust und Ausbildung eines Schnabels ................15 2.3 Gehirn und EQ ........................................................................................ 17 2.4 Furkula ..................................................................................................... 18 2.5 Gastralia, Rippenkorb, Brustbein ..............................................................
    [Show full text]
  • Smaller Than You Think Bird-Brained? Need for Speed
    An Introduction The clade Alvarezsauria is a group of small-bodied Ancient Aardvarks: [10] maniraptoran dinosaurs. The first known alvarezsaurid, Alvarezsaurus calvoi, was discovered in partial remains in the late 20th century, and named by Jose F. Bonaparte. A. calvoi was uncovered in Argentina, but today alvarezsaurs are known to have ranged across the Americas, Asia, and Meet the Alvarezsaurs Europe.[10] It is currently estimated that members of this Eggs and Bones clade existed between the Late Jurassic and the Cretaceous. This feather covered bird-like dinosaur is known for its insect based diet and especially its unique hooked The recently discovered Bonapartenykus forelimbs. These highly derived and powerful arms evolved ultimus represents a new genus of of throughout the clade Alvarezsauridae, giving these Alvarezsaurs. A 70 million year old pocket [12] Stunted But Strong dinosaurs a predatory advantage. of fossilized bones and two eggs of this Bird-Brained? species have been discovered in Argentina. This is the first time Alvarezsaurs have strangely powerful Using a cast of a skull from the species Alvarezsaurus bones and egg remains forearms, with one large thumb claw and the Ceratonykus oculatus, researchers have been found in close proximity. other two digits highly reduced. They are reconstructed an alvarezsaurian brain. Prehistoric Delicacies Though evidence of brooding behavior radically transformed from the typical Their analysis revealed that this has been found for other theropod theropod forelimb, which is longer, with three dinosaur had acute hearing and dinosaurs, no conclusion can yet be [10] functional digits and grasping ability. Given excellent eyesight, with intelligence drawn for Alvareszsaurs as no indication their highly specialized nature, it has been comparable to living birds.
    [Show full text]
  • Poultry Through Time
    is in a metastable state. The simulations also 3. Brandon, D. G. & Wald, M. Phil. Mag. 6, 1035–1044 Phys. Rev. Lett. 110, 255502 (2013). showed that the metastable domino phase (1961). 9. Kaur, I., Mishin, Y. & Gust, W. Fundamentals of Grain and 4. Sutton, A. P. & Balluffi, R. W. Interfaces in Crystalline Interphase Boundary Diffusion 3rd edn (Wiley, 1995). is stabilized when stress is applied perpen- Materials (Oxford Univ. Press, 1995). 10. Rittner, J. D. & Seidman, D. N. Phys. Rev. B 54, 6999–7015 dicularly to the plane of the simulated grain 5. Rabkin, E. I., Semenov, V. N., Shvindlerman, L. S. & (1996). boundary, so that its energy matches that of Straumal, B. B. Acta Metall. Mater. 39, 627–639 (1991). 11. Han, J., Vitek, V. & Srolovitz, D. J. Acta Mater. 104, 259–273 the stable pearl phase — thereby establishing 6. Cantwell, P. R. et al. Acta Mater. 62, 1–48 (2014). (2016). 7. Maksimova, E. L., Shvindlerman, L. S. & Straumal, B. B. 12. Watanabe, T. & Tsurekawa, S. Acta Mater. 47, 4171–4185 a true thermodynamic equilibrium between Acta Metall. 36, 1573–1583 (1988). (1999). the two phases. 8. Frolov, T., Divinski, S. V., Asta, M. & Mishin, Y. 13. Homer, E. R. Comp. Mater. Sci. 161, 244–254 (2019). Meiners and colleagues’ work clearly proves that phase transformations occur in the grain Palaeontology boundaries of pure metals, and thus opens up fresh opportunities for materials design. The number of possible polymorphs of bulk metals is generally limited, but the variety of Poultry through time grain-boundary structures and their poss- ible metastable polymorphs (sometimes Kevin Padian referred to as complexions6) is essentially boundless10,11.
    [Show full text]
  • Full Text (1005.6
    Osteology of the Late Cretaceous alvarezsauroid Linhenykus monodactylus from China and comments on alvarezsauroid biogeography XING XU, PAUL UPCHURCH, QINGYU MA, MICHAEL PITTMAN, JONAH CHOINIERE, CORWIN SULLIVAN, DAVID W.E. HONE, QINGWEI TAN, LIN TAN, DONG XIAO, and FENGLU HAN Xu, X., Upchurch, P., Ma, Q., Pittman, M., Choiniere, J., Sullivan, C., Hone, D.W.E., Tan, Q., Tan, L., Xiao, D., and Han, F. 2013. Osteology of the Late Cretaceous alvarezsauroid Linhenykus monodactylus from China and comments on alvarez− sauroid biogeography. Acta Palaeontologica Polonica 58 (1): 25–46. The alvarezsauroid theropod Linhenykus monodactylus from the Upper Cretaceous of Inner Mongolia, China is the first known monodactyl non−avian dinosaur, providing important information on the complex patterns of manual evolution seen in alvarezsauroids. Here we provide a detailed description of the osteology of this taxon. Linhenykus shows a number of fea− tures that are transitional between parvicursorine and non−parvicursorine alvarezsauroids, but detailed comparisons also re− veal that some characters had a more complex distribution. We also use event−based tree−fitting to perform a quantitative analysis of alvarezsauroid biogeography incorporating several recently discovered taxa. The results suggest that there is no statistical support for previous biogeographic hypotheses that favour pure vicariance or pure dispersal scenarios as explana− tions for the distributions of alvarezsauroids across South America, North America and Asia. Instead, statistically significant biogeographic reconstructions suggest a dominant role for sympatric (or “within area”) events, combined with a mix of vicariance, dispersal and regional extinction. At present the alvarezsauroid data set is too small to completely resolve the biogeographic history of this group: future studies will need to create larger data sets that encompass additional clades.
    [Show full text]