Poultry Through Time
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Chinese Archaeopterygian, Protarchaeopteryx Gen. Nov
A Chinese archaeopterygian, Protarchaeopteryx gen. nov. by Qiang Ji and Shu’an Ji Geological Science and Technology (Di Zhi Ke Ji) Volume 238 1997 pp. 38-41 Translated By Will Downs Bilby Research Center Northern Arizona University January, 2001 Introduction* The discoveries of Confuciusornis (Hou and Zhou, 1995; Hou et al, 1995) and Sinornis (Ji and Ji, 1996) have profoundly stimulated ornithologists’ interest globally in the Beipiao region of western Liaoning Province. They have also regenerated optimism toward solving questions of avian origins. In December 1996, the Chinese Geological Museum collected a primitive bird specimen at Beipiao that is comparable to Archaeopteryx (Wellnhofer, 1992). The specimen was excavated from a marl 5.5 m above the sediments that produce Sinornithosaurus and 8-9 m below the sediments that produce Confuciusornis. This is the first documentation of an archaeopterygian outside Germany. As a result, this discovery not only establishes western Liaoning Province as a center of avian origins and evolution, it provides conclusive evidence for the theory that avian evolution occurred in four phases. Specimen description Class Aves Linnaeus, 1758 Subclass Sauriurae Haeckel, 1866 Order Archaeopterygiformes Furbringer, 1888 Family Archaeopterygidae Huxley, 1872 Genus Protarchaeopteryx gen. nov. Genus etymology: Acknowledges that the specimen possesses characters more primitive than those of Archaeopteryx. Diagnosis: A primitive archaeopterygian with claviform and unserrated dentition. Sternum is thin and flat, tail is long, and forelimb resembles Archaeopteryx in morphology with three talons, the second of which is enlarged. Ilium is large and elongated, pubes are robust and distally fused, hind limb is long and robust with digit I reduced and dorsally migrated to lie in opposition to digit III and forming a grasping apparatus. -
Re-Evaluation of the Haarlem Archaeopteryx and the Radiation of Maniraptoran Theropod Dinosaurs Christian Foth1,3 and Oliver W
Foth and Rauhut BMC Evolutionary Biology (2017) 17:236 DOI 10.1186/s12862-017-1076-y RESEARCH ARTICLE Open Access Re-evaluation of the Haarlem Archaeopteryx and the radiation of maniraptoran theropod dinosaurs Christian Foth1,3 and Oliver W. M. Rauhut2* Abstract Background: Archaeopteryx is an iconic fossil that has long been pivotal for our understanding of the origin of birds. Remains of this important taxon have only been found in the Late Jurassic lithographic limestones of Bavaria, Germany. Twelve skeletal specimens are reported so far. Archaeopteryx was long the only pre-Cretaceous paravian theropod known, but recent discoveries from the Tiaojishan Formation, China, yielded a remarkable diversity of this clade, including the possibly oldest and most basal known clade of avialan, here named Anchiornithidae. However, Archaeopteryx remains the only Jurassic paravian theropod based on diagnostic material reported outside China. Results: Re-examination of the incomplete Haarlem Archaeopteryx specimen did not find any diagnostic features of this genus. In contrast, the specimen markedly differs in proportions from other Archaeopteryx specimens and shares two distinct characters with anchiornithids. Phylogenetic analysis confirms it as the first anchiornithid recorded outside the Tiaojushan Formation of China, for which the new generic name Ostromia is proposed here. Conclusions: In combination with a biogeographic analysis of coelurosaurian theropods and palaeogeographic and stratigraphic data, our results indicate an explosive radiation of maniraptoran coelurosaurs probably in isolation in eastern Asia in the late Middle Jurassic and a rapid, at least Laurasian dispersal of the different subclades in the Late Jurassic. Small body size and, possibly, a multiple origin of flight capabilities enhanced dispersal capabilities of paravian theropods and might thus have been crucial for their evolutionary success. -
A Fast-Growing Basal Troodontid (Dinosauria: Theropoda) from The
www.nature.com/scientificreports OPEN A fast‑growing basal troodontid (Dinosauria: Theropoda) from the latest Cretaceous of Europe Albert G. Sellés1,2*, Bernat Vila1,2, Stephen L. Brusatte3, Philip J. Currie4 & Àngel Galobart1,2 A characteristic fauna of dinosaurs and other vertebrates inhabited the end‑Cretaceous European archipelago, some of which were dwarves or had other unusual features likely related to their insular habitats. Little is known, however, about the contemporary theropod dinosaurs, as they are represented mostly by teeth or other fragmentary fossils. A new isolated theropod metatarsal II, from the latest Maastrichtian of Spain (within 200,000 years of the mass extinction) may represent a jinfengopterygine troodontid, the frst reported from Europe. Comparisons with other theropods and phylogenetic analyses reveal an autapomorphic foramen that distinguishes it from all other troodontids, supporting its identifcation as a new genus and species, Tamarro insperatus. Bone histology shows that it was an actively growing subadult when it died but may have had a growth pattern in which it grew rapidly in early ontogeny and attained a subadult size quickly. We hypothesize that it could have migrated from Asia to reach the Ibero‑Armorican island no later than Cenomanian or during the Maastrichtian dispersal events. During the latest Cretaceous (ca. 77–66 million years ago) in the run-up to the end-Cretaceous mass extinc- tion, Europe was a series of islands populated by diverse and distinctive communities of dinosaurs and other vertebrates. Many of these animals exhibited peculiar features that may have been generated by lack of space and resources in their insular habitats. -
Written in Stone
112 W RITTENIN S TONE had yet been undertaken (the fossil had only come to the attention of Canadian paleontologist Phil Currie and paleo-artist Michael Skrepnick two weeks earlier), the specimen confirmed the connection between dino- saurs and birds that had been proposed on bones alone. The new dino- saur was dubbed Sinosauropteryx, and it had come from Cretaceous deposits in China that exhibited a quality of preservation that exceeded that of the Solnhofen limestone. Sinosauropteryx was only the first feathered dinosaur to be an- nounced. A panoply of feathered fossils started to turn up in the Jurassic and Cretaceous strata of China, each just as magnificent as the one be- fore. There were early birds that still retained clawed hands (Confuciu- sornis) and teeth (Sapeornis, Jibeinia), while non-flying coelurosaurs such as Caudipteryx, Sinornithosaurus, Jinfengopteryx, Dilong, and Beipiaosaurus wore an array of body coverings from wispy fuzz to full flight feathers. The fossil feathers of the strange, stubby-armed dinosaur Shuvuuia even preserved the biochemical signature of beta-keratin, a protein present in the feathers of living birds, and quill knobs on the forearm of Velociraptor reported in 2007 confirmed that the famous predator was covered in feathers, too. As new discoveries continued to accumulate it became apparent that almost every group of coelurosaurs had feathered representatives, from the weird secondarily herbivorous forms such as Beipiaosaurus to Dilong, an early relative of Tyrannosaurus. It is even possible that, FIGURE 37 - A Velociraptor attempts to catch the early bird Confuciusornis. Both were feathered dinosaurs. 113 Footprints and Feathers during its early life, the most famous of the flesh-tearing dinosaurs may have been covered in a coat of dino-fuzz. -
Anatomy of the Early Cretaceous Enantiornithine Bird Rapaxavis Pani
Anatomy of the Early Cretaceous enantiornithine bird Rapaxavis pani JINGMAI K. O’CONNOR, LUIS M. CHIAPPE, CHUNLING GAO, and BO ZHAO O’Connor, J.K., Chiappe, L.M., Gao, C., and Zhao, B. 2011. Anatomy of the Early Cretaceous enantiornithine bird Rapaxavis pani. Acta Palaeontologica Polonica 56 (3): 463–475. The exquisitely preserved longipterygid enantiornithine Rapaxavis pani is redescribed here after more extensive prepara− tion. A complete review of its morphology is presented based on information gathered before and after preparation. Among other features, Rapaxavis pani is characterized by having an elongate rostrum (close to 60% of the skull length), rostrally restricted dentition, and schizorhinal external nares. Yet, the most puzzling feature of this bird is the presence of a pair of pectoral bones (here termed paracoracoidal ossifications) that, with the exception of the enantiornithine Concornis lacustris, are unknown within Aves. Particularly notable is the presence of a distal tarsal cap, formed by the fu− sion of distal tarsal elements, a feature that is controversial in non−ornithuromorph birds. The holotype and only known specimen of Rapaxavis pani thus reveals important information for better understanding the anatomy and phylogenetic relationships of longipterygids, in particular, as well as basal birds as a whole. Key words: Aves, Enantiornithes, Longipterygidae, Rapaxavis, Jiufotang Formation, Early Cretaceous, China. Jingmai K. O’Connor [[email protected]], Laboratory of Evolutionary Systematics of Vertebrates, Institute of Vertebrate Paleontology and Paleoanthropology, 142 Xizhimenwaidajie, Beijing, China, 100044; The Dinosaur Institute, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007 USA; Luis M. Chiappe [[email protected]], The Dinosaur Institute, Natural History Museum of Los Angeles County, 900 Ex− position Boulevard, Los Angeles, CA 90007 USA; Chunling Gao [[email protected]] and Bo Zhao [[email protected]], Dalian Natural History Museum, No. -
A Well-Preserved Archaeopteryx Specimen with Theropod Features
R EPORTS a reduced threshold voltage upon reimmer- 28. B. C. Regan, S. Aloni, R. O. Ritchie, U. Dhamen, A. 34. The simulation predicts that mercury will rapidly sion. Electrowetting is by definition an attract- Zettl, Nature 428, 924 (2004). drain from the (20,20) SWNT core at a speed of 15 29. The Hg bath consists of 37,013 mercury atoms. m/s when the applied potential is decreased to zero. ive interaction between mercury and SWNT Periodic boundary conditions are applied in the x and 35. The work function of Au (5.1 eV) is greater than that and, thus, the force required to pull a SWNT y directions, and the size of simulation domain is of Hg (4.6 eV) and the amalgam value should be in off a mercury surface should be larger in an 10.8 by 10.4 nm. The liquid is positioned on top of a between (39). layer of fixed Hg atoms, and the SWNT is initially 36. A nonwetting condition is always repulsive. The activated state than that of a nonactivated placed outside the bath. After equilibration at 300 K, weak pull-off force measured at voltages below state (36). the SWNT is lowered into the liquid at a constant threshold must be a result of extraneous effects Electrowetting in carbon nanotubes may speed of 10 m/s while the liquid is maintained at 300 K. such as adsorbed water. It is important to focus on Carbon-carbon interactions in the walls are omitted to the difference in pull-off force before and after offer opportunities for studies of nanofluidic decrease the time of computation. -
Testing the Neoflightless Hypothesis: Propatagium Reveals Flying Ancestry
J Ornithol DOI 10.1007/s10336-015-1190-9 ORIGINAL ARTICLE Testing the neoflightless hypothesis: propatagium reveals flying ancestry of oviraptorosaurs 1 2 Alan Feduccia • Stephen A. Czerkas Received: 4 September 2014 / Revised: 31 December 2014 / Accepted: 23 February 2015 Ó Dt. Ornithologen-Gesellschaft e.V. 2015 Abstract Considerable debate surrounds the numerous Zusammenfassung avian-like traits in core maniraptorans (ovirap- torosaurs, troodontids, and dromaeosaurs), especially in the Die ,,Neoflightless‘‘-Hypothese im Test: Halsflughaut Chinese Early Cretaceous oviraptorosaur Caudipteryx, (Propatagium) offenbart flugfa¨hige Vorfahren der which preserves modern avian pennaceous primary remi- Oviraptorosauria ges attached to the manus, as is the case in modern birds. Was Caudipteryx derived from earth-bound theropod di- Es gibt eine ausgiebige Debatte u¨ber die zahlreichen vo- nosaurs, which is the predominant view among palaeon- gela¨hnlichen Eigenheiten der Maniraptora (Oviraptosaurus, tologists, or was it secondarily flightless, with volant avians Troodontidae, Dromaeosaurus), vor allem des (gefiederten) or theropods as ancestors (the neoflightless hypothesis), Oviraptorosauria Caudipteryx aus der fru¨hen chinesischen which is another popular, but minority view. The discovery Kreidezeit, der genau wie rezente Vo¨gel Handschwingen here of an aerodynamic propatagium in several specimens hatte, die an den Handknochen ansetzen. Stammt Cau- provides new evidence that Caudipteryx (and hence ovi- dipteryx von den nur am Erdboden lebenden Theropoda ab - raptorosaurs) represent secondarily derived flightless die unter den Pala¨ontologen vorherrschende Meinung -, oder ground dwellers, whether of theropod or avian affinity, and war er sekunda¨r flugunfa¨hig und stammte von flugfa¨higen that their presence and radiation during the Cretaceous may Theropoden ab - die ,,Neoflightless‘‘-Hypothese, eine alter- have been a factor in the apparent scarcity of many other native, wenn auch nur von Wenigen unterstu¨tzte These. -
Anatomical Network Analyses Reveal Oppositional Heterochronies in Avian Skull Evolution ✉ Olivia Plateau1 & Christian Foth 1 1234567890():,;
ARTICLE https://doi.org/10.1038/s42003-020-0914-4 OPEN Birds have peramorphic skulls, too: anatomical network analyses reveal oppositional heterochronies in avian skull evolution ✉ Olivia Plateau1 & Christian Foth 1 1234567890():,; In contrast to the vast majority of reptiles, the skulls of adult crown birds are characterized by a high degree of integration due to bone fusion, e.g., an ontogenetic event generating a net reduction in the number of bones. To understand this process in an evolutionary context, we investigate postnatal ontogenetic changes in the skulls of crown bird and non-avian ther- opods using anatomical network analysis (AnNA). Due to the greater number of bones and bone contacts, early juvenile crown birds have less integrated skulls, resembling their non- avian theropod ancestors, including Archaeopteryx lithographica and Ichthyornis dispars. Phy- logenetic comparisons indicate that skull bone fusion and the resulting modular integration represent a peramorphosis (developmental exaggeration of the ancestral adult trait) that evolved late during avialan evolution, at the origin of crown-birds. Succeeding the general paedomorphic shape trend, the occurrence of an additional peramorphosis reflects the mosaic complexity of the avian skull evolution. ✉ 1 Department of Geosciences, University of Fribourg, Chemin du Musée 6, CH-1700 Fribourg, Switzerland. email: [email protected] COMMUNICATIONS BIOLOGY | (2020) 3:195 | https://doi.org/10.1038/s42003-020-0914-4 | www.nature.com/commsbio 1 ARTICLE COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-020-0914-4 fi fi irds represent highly modi ed reptiles and are the only length (L), quality of identi ed modular partition (Qmax), par- surviving branch of theropod dinosaurs. -
Avialan Status for Oviraptorosauria
Avialan status for Oviraptorosauria TERESA MARYAŃSKA, HALSZKA OSMÓLSKA, and MIECZYSŁAW WOLSAN Maryańska, T., Osmólska, H., and Wolsan, M. 2002. Avialan status for Oviraptorosauria. Acta Palaeontologica Polonica 47 (1): 97–116. Oviraptorosauria is a clade of Cretaceous theropod dinosaurs of uncertain affinities within Maniraptoriformes. All pre− vious phylogenetic analyses placed oviraptorosaurs outside a close relationship to birds (Avialae), recognizing Dromaeo− sauridae or Troodontidae, or a clade containing these two taxa (Deinonychosauria), as sister taxon to birds. Here we pres− ent the results of a phylogenetic analysis using 195 characters scored for four outgroup and 13 maniraptoriform (ingroup) terminal taxa, including new data on oviraptorids. This analysis places Oviraptorosauria within Avialae, in a sister−group relationship with Confuciusornis. Archaeopteryx, Therizinosauria, Dromaeosauridae, and Ornithomimosauria are suc− cessively more distant outgroups to the Confuciusornis−oviraptorosaur clade. Avimimus and Caudipteryx are succes− sively more closely related to Oviraptoroidea, which contains the sister taxa Caenagnathidae and Oviraptoridae. Within Oviraptoridae, “Oviraptor” mongoliensis and Oviraptor philoceratops are successively more closely related to the Conchoraptor−Ingenia clade. Oviraptorosaurs are hypothesized to be secondarily flightless. Emended phylogenetic defi− nitions are provided for Oviraptoridae, Caenagnathidae, Oviraptoroidea, Oviraptorosauria, Avialae, Eumaniraptora, Maniraptora, and Maniraptoriformes. -
Reproduction in Mesozoic Birds and Evolution of the Modern Avian Reproductive Mode Author(S): David J
Reproduction in Mesozoic birds and evolution of the modern avian reproductive mode Author(s): David J. Varricchio and Frankie D. Jackson Source: The Auk, 133(4):654-684. Published By: American Ornithological Society DOI: http://dx.doi.org/10.1642/AUK-15-216.1 URL: http://www.bioone.org/doi/full/10.1642/AUK-15-216.1 BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses. Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use. Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder. BioOne sees sustainable scholarly publishing as an inherently collaborative enterprise connecting authors, nonprofit publishers, academic institutions, research libraries, and research funders in the common goal of maximizing access to critical research. Volume 133, 2016, pp. 654–684 DOI: 10.1642/AUK-15-216.1 REVIEW Reproduction in Mesozoic birds and evolution of the modern avian reproductive mode David J. Varricchio and Frankie D. Jackson Earth Sciences, Montana State University, Bozeman, Montana, USA [email protected], [email protected] Submitted November 16, 2015; Accepted June 2, 2016; Published August 10, 2016 ABSTRACT The reproductive biology of living birds differs dramatically from that of other extant vertebrates. -
Body and Limb Size Dissociation at the Origin of Birds: Uncoupling Allometric Constraints Across a Macroevolutionary Transition
ORIGINAL ARTICLE doi:10.1111/evo.12150 BODY AND LIMB SIZE DISSOCIATION AT THE ORIGIN OF BIRDS: UNCOUPLING ALLOMETRIC CONSTRAINTS ACROSS A MACROEVOLUTIONARY TRANSITION T. Alexander Dececchi1,2 and Hans C. E. Larsson3 1Biology Department, University of South Dakota, 414 E Clark Street, Vermillion, South Dakota 57069 2E-mail: [email protected] 3Redpath Museum, McGill University, 859 Sherbrooke Street West, Montreal, Quebec H3A 2K6 089457 Received May 30, 2012 Accepted April 17, 2013 The origin of birds and powered flight is a classic major evolutionary transition. Research on their origin often focuses on the evolution of the wing with trends of forelimb elongation traced back through many nonavian maniraptoran dinosaurs. We present evidence that the relative forelimb elongation within avian antecedents is primarily due to allometry and is instead driven by a reduction in body size. Once body size is factored out, there is no trend of increasing forelimb length until the origin of birds. We report that early birds and nonavian theropods have significantly different scaling relationships within the forelimb and hindlimb skeleton. Ancestral forelimb and hindlimb allometric scaling to body size is rapidly decoupled at the origin of birds, when wings significantly elongate, by evolving a positive allometric relationship with body size from an ancestrally negative allometric pattern and legs significantly shorten by keeping a similar, near isometric relationship but with a reduced intercept. These results have implications for the evolution of powered flight and early diversification of birds. They suggest that their limb lengths first had to be dissociated from general body size scaling before expanding to the wide range of fore and hindlimb shapes and sizes present in today’s birds. -
The Tetrapod Fossil Record from the Uppermost
geosciences Review The Tetrapod Fossil Record from the Uppermost Maastrichtian of the Ibero-Armorican Island: An Integrative Review Based on the Outcrops of the Western Tremp Syncline (Aragón, Huesca Province, NE Spain) Manuel Pérez-Pueyo 1,* , Penélope Cruzado-Caballero 1,2,3,4 , Miguel Moreno-Azanza 1,5,6 , Bernat Vila 7, Diego Castanera 1,7 , José Manuel Gasca 1 , Eduardo Puértolas-Pascual 1,5,6, Beatriz Bádenas 1 and José Ignacio Canudo 1 1 Grupo Aragosaurus-IUCA, Facultad de Ciencias, Universidad de Zaragoza, C/Pedro Cerbuna, 12, 50009 Zaragoza, Aragón, Spain; [email protected] (P.C.-C.); [email protected] (M.M.-A.); [email protected] (D.C.); [email protected] (J.M.G.); [email protected] (E.P.-P.); [email protected] (B.B.); [email protected] (J.I.C.) 2 Área de Paleontología, Departamento de Biología Animal, Edafología y Geología, Universidad de La Laguna, Citation: Pérez-Pueyo, M.; 38200 San Cristóbal de La Laguna, Santa Cruz de Tenerife, Spain 3 Cruzado-Caballero, P.; Instituto de Investigación en Paleobiología y Geología (IIPG), Universidad Nacional de Río Negro, Moreno-Azanza, M.; Vila, B.; 8500 Río Negro, Argentina 4 IIPG, UNRN, Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Castanera, D.; Gasca, J.M.; 2300 Buenos Aires, Argentina Puértolas-Pascual, E.; Bádenas, B.; 5 GEOBIOTEC, Department of Earth Sciences, NOVA School of Science and Technology, Campus de Caparica, Canudo, J.I. The Tetrapod Fossil 2829-516 Caparica, Portugal Record from the Uppermost 6 Espaço Nova Paleo, Museu de Lourinhã, Rua João Luis de Moura 95, 2530-158 Lourinhã, Portugal Maastrichtian of the Ibero-Armorican 7 Institut Català de Paleontologia Miquel Crusafont, Edifici Z, C/de les Columnes s/n, Campus de la Island: An Integrative Review Based Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain; [email protected] on the Outcrops of the Western Tremp * Correspondence: [email protected] Syncline (Aragón, Huesca Province, NE Spain).