Extensive Or Intensive Fish Farming?

Total Page:16

File Type:pdf, Size:1020Kb

Extensive Or Intensive Fish Farming? Analysis Sub-Saharan Africa Extensive or intensive fish farming? The debate continues on whether to recommend intensive or extensive fish farming to farmers in sub-Saharan Africa xtensive fish farming usually refers growing food crops, and then by to fish farming conducted in diversifying the farmer’s activities over a Emedium- to large-sized ponds or range of agriculture and non-agriculture water bodies; the fish production relies ventures in pursuit of his income merely on the natural productivity of the generating strategies. The rationale water which is only slightly or moderately behind this is to manage risk (ex ante) and enhanced. Externally supplied inputs are to cope with loss (ex post). limited; costs are kept low; capital investment is restricted; the quantity of The strategies devised will have to take fish produced per unit area is low. In brief, into account his assets (resources, human the control over the production factors is capital, know-how) and his investment kept low. The return on labour is high. capacities. To carry out his strategies and best achieve his objectives, enabling Intensive fish farming, on the other hand, market conditions need to be present. implies that the quantity of fish produced These are essentially a market system for per unit of rearing area is great. To agricultural and non-agricultural factors intensify the culture, production factors, and products. For instance, food or labour such as feed, quality of water and quality scarcities can alter performance of the of stocked fingerlings, are controlled to markets and prevent the farmer from improve the production conditions. There achieving his objectives. is steady monitoring during the production cycle. In support of his strategies, the farmer aims at optimizing the use of resources in It goes without saying that all these his reach, putting to use unused or controls entail high-tech practices and underused resources. The objective capital-intensive investments, which add reason for going into fish farming is, to the production costs. The returns must therefore, the expected return to be made justify increased production costs. The from fish farming. The choice of contribution of natural productivity into income-generating activities, amongst fish production is low or negligible. several options available, is made on the Besides this, intensive fish farming carries grounds of their expected returns and with it high costs or threats to the risks involved. environment. Farmers can be largely divided into three Apart from these two forms of fish categories: farming, some speak about semi-intensive fish farming, referring to intermediate • those with little resources and practices, taking elements of both forms. land, no cash, short of labour, who This is, however, ill-defined. are risk-prone and try to diversify their production in spreading Before suggesting which of these forms is risks, but who have little to he recommended, one should look at manoeuvring range; the context under which fish farming is practised. What are the farmer’s • those with more resources, objectives? The first objective is to ensure on-farm and off-farm; and food security/livelihood for his household. This can be secured, firstly, by • the rich ones. SAMUDRA NOVEMBER 1996 23 Analysis Analysis he first group of farmers will basket weaving, herbalist activities, wine practise fish farming as a or beer production, and so on). These Tcomplementary or supplementary incomes are often quite important, as they activity, while the two other groups can are part of the risk-spreading strategy to envisage fish farming as an secure a living. income-generating activity on its own. In cases of failure of agricultural This means that, for the first group, fish production due to climatic or other farming needs to be integrated into a reasons, farmers will increasingly rely on whole farm system, while, in the other off-farm income to tide over the critical two cases, it could stand on its own and period, though, in some cases, as in rural develop into a primary economic activity. Mozambique, off-farm income has no discernible effect on calorie availability. The greater the role fish production plays in the generation of income, the larger the A possible explanation might be that market needs to be to absorb the off-farm activities are primarily accessible produced supply. The less fish is to men, while women are mostly produced, the greater will be the home responsible for the supply of food. consumption of the fish produced. Non-farm income-generating activities Many smallholder farmers, except for the are also important to provide means to poorest ones, have off-farm incomes pay for hired labour in agriculture; (trading activities, handicraft production, women will have to depend more on 24 SAMUDRA NOVEMBER 1996 Analysis mobilizing inter- and intra-household • fish production has proved to linkages to provide for extra labour. provide excellent returns to land and labour and is, therefore, a Cash incomes are also important for the profitable production; and purchase of planting material or fish seed and farm inputs, as formal credit facilities • fish is a high-value commodity. from banking institutions are not available. Incomes generated through On the negative side, several constraints off-farm work, sales of cash and food restraining the adoption of fish farming crops contribute to the emergence of food must be considered. These, mainly, are: and non-food markets with effective demands. With the monetisation of the • the ability to master the know-how economy, reliance on non-market of the new technology; relations, such as informal or exchange labour, is regressing; hired labour to be • the security of land tenure, which paid for in cash and kind is increasing. For justifies the setting up of a costly instance, in Nigeria, traditional patterns of investment (the construction of the gender role in agriculture are changing, pond); and resulting in increased participation of Igbo women in agricultural production • the access to fish seed, to stock the due to greater male participation in pond, and to a market, to sell the non-farm activities and in wage fish. employment. In certain countries, access to wetland Alternative productive activities with areas can be more difficult, as they are a little requirements for capital will be common property resource, as in Malawi. favoured. These offer a rapid return on Secure land tenure should not be investment, which can incorporate understood in its formal sense since, as marginal labour force (children or the such, it is not a necessary condition for elderly). investments on land. Any move into fish farming will be Social and cultural institutions, which supported by an assessment of the assure individuals that they are part of a required conditions, i.e. suitable land stable, equitable, well-adapted set of (water-logged soil or proximity to a water rights and duties, give the tenure stream), availability of water and inputs arrangements meaning. Also, security of (agricultural by-products and manure), land tenure is less important if the the anticipated returns from the available investment pay-back period is short. resources, and whether these are greater than those (expected or real) generated by The various types of fish farming other uses of the same resources accessible to farmers in rural or pen-urban (production of rice in marsh areas, areas in developing countries are, compared to that of fish), and expected essentially, fish farming in earthen ponds, marketing facilities for the fish produced. irrigated rice fields, dams and reservoirs, and in pen or cages. The benefits generated by fish farming are: Irrigation The ponds are either drainable, i.e. fed • a homestead pond has multiple from an irrigation canal or rainfed, or purposes and contributes to non-drainable, dug in the water table. increasing overall farm Existing irrigated rice fields can be used. productivity; This is done by stocking them with fish • fish is an important ingredient in and shrimps. Fisheries production in human nutrition, as a source of dams, reservoirs and natural water bodies animal protein, as a tasty relish can be enhanced by stocking fish in them. and as a prestige food; Further, pens and cages can be set up in dams, reservoirs and lakes to rear fish. SAMUDRA NOVEMBER 1996 25 The bulk of fish produced in sub-Saharan labour force, and the use of hired labour Africa by fish farming comes from ponds must be minimized. and irrigated rice fields. What should be the level of intensity of fish farming? Once these conditions are met and fish Analysis Analysis Before recommending anything, it farming is adopted by the farmers, the fish should be remembered that fish farming produced can be self-consumed and thus can only be envisaged as an economic contribute to the household food security. activity and, therefore, there is a need to However, sustainability of fish farming investigate the prerequisites for the will be enhanced if there is an excess of establishment of a healthy farmed-fish farmed-fish production, a fair outlet for market. Amongst these, successful fish marketing the fish and the establishment farming is one prerequisite. of a farmed fish market. o be successful, the technology To this effect, there must be a demand for should be feasible, productive and farmed-fish; the cumulative offer of Tprofitable. This means that fish farmed-fish produced by the fish farmers farming should be within the capacity of must meet a certain number of criteria: the the farmer—understood as the farmer’s supply must be regular, the quality of household and not as the male or female supply must be adequate and the fish heading the farming household, i.e. must fetch a fair price. The market compatible within his/her indigenous requires that enough cash be in knowledge system; be easily circulation, or at the disposal of the accommodated within his/her time or customers, to enable transactions to take labour availability, cash or capital place easily.
Recommended publications
  • Improving the Efficiency of Lambari Production and Diet Assimilation Using Integrated Aquaculture with Benthic Species Aline M
    Preprints (www.preprints.org) | NOT PEER-REVIEWED | Posted: 23 August 2021 doi:10.20944/preprints202108.0110.v2 Improving the efficiency of lambari production and diet assimilation using integrated aquaculture with benthic species Aline M. Marques1; Andre Z. Boaratti1; Dalton Belmudes1; Julia R. C. Ferreira1; Paulo V. L. Mantoan1; Patricia Moraes-Valenti1; Wagner C. Valenti1 1 Aquaculture Center and CNPq, UNESP—São Paulo State University, São Paulo 14884-900, Brazil; [email protected], [email protected], [email protected], [email protected], [email protected], [email protected] Correspondence: [email protected] Abstract A single farmed fish species assimilates about 20% of the nutrients in the supplied diet. This study evaluated if the culture of complementary ecological- function species can recover nutrients dispersed into the water and transform them into high-valued biomass. A completely randomized experiment was designed with three treatments and four replications of each production system: monoculture of lambari (Astyanax lacustris); integrated aquaculture of lambari and Amazon river prawn (Macrobrachium amazonicum); and integrated aquaculture of lambari, Amazon river prawn, and curimbatá (Prochilodus lineatus). Fingerlings of lambari (0.8 ± 0.8 g) were stocked in twelve earthen- ponds (0.015 ha) at the density of 50 fish m-2. Eight ponds, were stocked with juveniles of Amazon river prawn (1.1 ± 0.2 g) at the density of 25 prawn m−2. Four of these eight ponds were stocked with curimbatá fingerlings (0.2 ± 0.1 g) at a density of 13 fish m-². Only lambari was fed twice a day with an extruded commercial diet.
    [Show full text]
  • Information on Fish and the Fishery Industry in Wartime
    ADVANCE RELEASE ---- A D VA N C 3 RELEASE OFFICE OF WAR INFORMATION Thie Report on UNm isTArnS FISHERmS Is ADvmcE REmsE: For FRIDAY A3TERNOONPapers, September 3, 1943. The attY&Xd Yxdease iS a COmpr8henSiVe mpOrt prepared by the Office of Mar lnfomkion and designed to meet the various need8 of editors, writere, commentators, broadcasters, progzwn planners, photogre- phers, and gthers concerned with presenting the news* It may be re- produced in its entirety, excerpted, oondensed or used a8 baCk@Qmd and reference naaterial. * X-19961 FACTS ABOUT FISH FISH PROTEINS ARE COMPIETE--a meal of fish con- tains all the @xedients necessaxy to build body tissues. You don't have to supplelnsnt a platter of fish with other tissue-building foods. Ocean-caught fish also bring you minerals fmmthe sea--copper, ixon, calcium, phosphoxous, andothexs. SSXBILLZON POUNDSof fish and shellfish will be needed this year to supply our men 3n uniform, OUT Allies, and ouxselvs. This is a billion pounds more than we pro- , duced in oux biggest pxe-war yeas. You can help. Save canned sawn, sardines, and mckexel for Army and Navy use by: Canning ox salt-9ng fish at home; Eating uufazniliax varieties which may be available in your paxt of the countxy. HAVE YOU TRIED squid tith tcmato sauce? Steamed mussels? Skate wJ.th mayonnaise? Shark steak? Carp, buxbot, sheepshead? How about canning surplus fish, Just as you can surplus vegetables from your victoxy men? HERE'S A LIST of government publications on the cooking and home cama of fish: 'Xome Pxesexvatfon of Fishery Products" by Eorma~n 6 D.
    [Show full text]
  • Aquaponics NOMA New Innovations for Sustainable Aquaculture in the Nordic Countries
    NORDIC INNOVATION PUBLICATION 2015:06 // MAY 2015 Aquaponics NOMA New Innovations for Sustainable Aquaculture in the Nordic Countries Aquaponics NOMA (Nordic Marine) New Innovations for Sustainable Aquaculture in the Nordic Countries Author(s): Siv Lene Gangenes Skar, Bioforsk Norway Helge Liltved, NIVA Norway Paul Rye Kledal, IGFF Denmark Rolf Høgberget, NIVA Norway Rannveig Björnsdottir, Matis Iceland Jan Morten Homme, Feedback Aquaculture ANS Norway Sveinbjörn Oddsson, Matorka Iceland Helge Paulsen, DTU-Aqua Denmark Asbjørn Drengstig, AqVisor AS Norway Nick Savidov, AARD, Canada Randi Seljåsen, Bioforsk Norway May 2015 Nordic Innovation publication 2015:06 Aquaponics NOMA (Nordic Marine) – New Innovations for Sustainable Aquaculture in the Nordic Countries Project 11090 Participants Siv Lene Gangenes Skar, Bioforsk/NIBIO Norway, [email protected] Helge Liltved, NIVA/UiA Norway, [email protected] Asbjørn Drengstig, AqVisor AS Norway, [email protected] Jan M. Homme, Feedback Aquaculture Norway, [email protected] Paul Rye Kledal, IGFF Denmark, [email protected] Helge Paulsen, DTU Aqua Denmark, [email protected] Rannveig Björnsdottir, Matis Iceland, [email protected] Sveinbjörn Oddsson, Matorka Iceland, [email protected] Nick Savidov, AARD Canada, [email protected] Key words: aquaponics, bioeconomy, recirculation, nutrients, mass balance, fish nutrition, trout, plant growth, lettuce, herbs, nitrogen, phosphorus, business design, system design, equipment, Nordic, aquaculture, horticulture, RAS. Abstract The main objective of AQUAPONICS NOMA (Nordic Marine) was to establish innovation networks on co-production of plants and fish (aquaponics), and thereby improve Nordic competitiveness in the marine & food sector. To achieve this, aquaponics production units were established in Iceland, Norway and Denmark, adapted to the local needs and regulations.
    [Show full text]
  • Integrated Multi-Trophic Aquaculture Systems: a Solution for Sustainability
    Integrated multi-trophic aquaculture systems: A solution for sustainability Kapil S. Sukhdhane1, V. Kripa2, Divu, D.1, Vinay Kumar Vase1 and Suresh Kumar Mojjada1 1. Veraval Regional Center of ICAR - Central Marine Fisheries Research Institute, Bhidia plot, Veraval, Gujarat 362269, India; 2. ICAR-Central Marine Fisheries Research Institute, Ernakulam North, P.O., Cochin 682018, India. Marine aquaculture is increasingly seen as an alternative organic and inorganic) when cultivated alongside fed fi sh to fi shing to provide a growing human population with species (Chopin et al. 2001; Neori et al. 2004; Troell et al. high-quality protein. Capture fi sheries output is falling short of 2003). world demand, and annual consumption of seafood has been rising and doubled over the last three decades (FAO, 2000). Fed aquaculture species (e.g. fi nfi sh/shrimps) are combined, Aquaculture production has surpassed supplies from capture in the appropriate proportions, with organic extractive fi sheries and contributed around 51% to global fi sh production aquaculture species (e.g. suspension feeders/deposit in 2014. Over the past three decades aquaculture production feeders/herbivorous fi sh) and inorganic extractive aquaculture increased from 6.2 million tonnes in 1983 to 73.8 million species (e.g. seaweeds), for a balanced ecosystem manage- tonnes in 2014 (FAO, 2016). This achievement was possible ment approach that takes into consideration site specifi city, mainly because of the commercialisation of farm produced operational limits, and food safety guidelines and regulations. aquatic animals such as shrimp, salmon, bivalves, tilapia The integrated in IMTA refers to the more intensive cultivation and catfi sh.
    [Show full text]
  • Fishery Basics – Seafood Markets Where Are Fish Sold?
    Fishery Basics – Seafood Markets Where Are Fish Sold? Fisheries not only provide a vital source of food to the global population, but also contribute between $225-240 billion annually to the worldwide economy. Much of this economic stimulus comes from the sale and trade of fishery products. The sale of fishery products has evolved from being restricted to seaside towns into a worldwide market where buyers can choose from fish caught all over the globe. Like many other commodities, fisheries markets are fluctuating constantly. In recent decades, seafood imports into the United States have increased due to growing demands for cheap seafood products. This has increased the amount of fish supplied by foreign countries, expanded efforts in aquaculture, and increased the pursuit of previously untapped resources. In 2008, the National Marine Fisheries Service (NMFS) reported (pdf) that the U.S. imported close to 2.4 million t (5.3 billion lbs) of edible fishery products valued at $14.2 billion dollars. Finfish in all forms (fresh, frozen, and processed) accounted for 48% of the imports and shellfish accounted for an additional 36% of the imports. Overall, shrimp were the highest single-species import, accounting for 24% of the total fishery products imported into the United States. Tuna and Salmon were the highest imported finfish accounting for 18% and 10% of the total imports respectively. The majority of fishery products imported came from China, Thailand, Canada, Indonesia, Vietnam, Ecuador, and Chile. The U.S. exported close to 1.2 million t (2.6 billion lbs) valued at $3.99 billion in 2008.
    [Show full text]
  • Aquaponics Division of Agriculture RESOURCES April 2015
    Alaska Department of Fact Sheet NATURAL Aquaponics Division of Agriculture RESOURCES April 2015 What is Aquaponics? a manner that allows it to be certified, check with the organic Aquaponics is a food production system that links hydroponic certification agency prior to constructing the system. crop production with aquaculture (fish farming). Unlike open- water aquaculture, aquaponics generally operates on land, BE AWARE – Aquaponics is regulated in Alaska and results in production of a food crop. Aquaponics is not a To ensure that your aquaponics system is legal, check with new concept; crops and fish have been grown together for the Alaska Department of Fish & Game. Growing fish for many centuries. However, aquaponics systems are becoming human consumption (including by aquaponic methods) is very popular due to their efficiency, high productivity, and NOT legal in the State of Alaska, and the importation and minimal impact to the environment. transport of most live fish in the state is prohibited without a permit. Fish that are strictly ornamental (such as goldfish) and How Does Aquaponics Work? not raised for human consumption or sport fishing purposes Aquaponics takes advantage of the fact that plants can thrive in the nutrient-rich water from fish ponds. Plants and may be imported into the state and used in a closed system, associated microbes convert byproducts such as ammonia but they may not be reared in or released into the waters of and CO2 to beneficial products such as nitrate and oxygen, the state. Fish wastes and wastewater from ornamental fish in a semi-closed system. may also not be released to the waters of the state.
    [Show full text]
  • Report of the FAO TECHNICAL WORKSHOP on ADVANCING AQUAPONICS: an EFFICIENT USE of LIMITED RESOURCES
    SLC/FIAA/R1214 (En) FAO Fisheries and Aquaculture Report ISSN 2070-6987 Report of the FAO TECHNICAL WORKSHOP ON ADVANCING AQUAPONICS: AN EFFICIENT USE OF LIMITED RESOURCES Saint John’s, Antigua and Barbuda, 14–18 August 2017 Cover photo: Local restaurant owner helps pack his daily box of aquaponic lettuce from a smiling worker at Indies Greens (©FAO/Stankus) FAO Fisheries and Aquaculture Report No. 1214 SLC/FIAA/R1214 (En) Report of the FAO technical workshop on advancing aquaponics: an efficient use of limited resources Saint John’s, Antigua and Barbuda, 14–18 August 2017 Subregional Office for the Caribbean FOOD AND AGRICULTURE ORGANIZATION OF THE UNITED NATIONS Bridgetown, 2017 The designations employed and the presentation of material in this information product do not imply the expression of any opinion whatsoever on the part of the Food and Agriculture Organization of the United Nations (FAO) concerning the legal or development status of any country, territory, city or area or of its authorities, or concerning the delimitation of its frontiers or boundaries. The mention of specific companies or products of manufacturers, whether or not these have been patented, does not imply that these have been endorsed or recommended by FAO in preference to others of a similar nature that are not mentioned. The views expressed in this information product are those of the author(s) and do not necessarily reflect the views or policies of FAO. ISBN 978-92-5-109975-9 © FAO, 2017 FAO encourages the use, reproduction and dissemination of material in this information product. Except where otherwise indicated, material may be copied, downloaded and printed for private study, research and teaching purposes, or for use in non-commercial products or services, provided that appropriate acknowledgement of FAO as the source and copyright holder is given and that FAO’s endorsement of users’ views, products or services is not implied in any way.
    [Show full text]
  • Auctions and Institutional Integration in the Tsukiji Wholesale Fish Market, Tokyo
    Visible Hands: Auctions and Institutional Integration in the Tsukiji Wholesale Fish Market, Tokyo Theodore C. Bestor Working Paper No. 63 Theodore C. Bestor Department of Anthropology Columbia University Mailing Address: Department of Anthropology 452 Schemerhorn Hall Columbia University New York, NY 10027 (212) 854-4571 or 854-6880 FAX: (212) 749-1497 Bitnet: [email protected] Working Paper Series Center on Japanese Economy and Business Graduate School of Business Columbia University September 1992 Visible Hands: Auctions and Institutional Integration in the Tsukiji Wholesale Fish Market, Tokyo Theodore C. Bestor Department of Anthropology and East Asian Institute Columbia University Introduction As an anthropologist specializing in Japanese studies, I am often struck by the uncharacteristic willingness of economists to consider cultural and social factors in their analyses of Japan. Probably the economic system of no society is subject to as much scrutiny, analysis, and sheer speculation regarding its 'special character' as is Japan's. Put another way, emphasis on the special qualities of the Japanese economy suggests a recognition -- implicit or explicit -- that cultural values and social patterns condition economic systems. It remains an open question whether this recognition reflects empirical reality (e.g., perhaps the Japanese economic system is less autonomous than those in other societies) or is an artifact of interpretative conventions (e.g., perhaps both Western and Japanese observers are willing -- if at times antagonistic - partners in ascribing radical 'otherness' to the Japanese economy and therefore are more likely to accord explanatory power to factors that might otherwise be considered exogenous.) Recognition, however, that Japanese economic behavior and institutions are intertwined with and embedded within systems of cultural values and social structural relationships does not imply unanimity of opinion about the significance of this fact.
    [Show full text]
  • Blue Bioeconomy Report
    Cover image BLUE BIOECONOMY REPORT DECEMBER 2020 WWW.EUMOFA.EU Maritime Affairs and Fisheries Manuscript completed in December 2020. The European Commission is not liable for any consequence stemming from the reuse of this publication. Luxembourg: Publications Office of the European Union, 2020 © European Union, 2020 The reuse policy of European Commission documents is implemented based on Commission Decision 2011/833/EU of 12 December 2011 on the reuse of Commission documents (OJ L 330, 14.12.2011, p. 39). Except otherwise noted, the reuse of this document is authorised under a Creative Commons Attribution 4.0 International (CC-BY 4.0) licence (https://creativecommons.org/licenses/by/4.0/). This means that reuse is allowed provided appropriate credit is given and any changes are indicated. For any use or reproduction of elements that are not owned by the European Union, permission may need to be sought directly from the respective rightholders. The European Union does not own the copyright in relation to the following element: cover photo: © Andrew. Source: stock.adobe.com PDF ISBN 978-92-76-23787-7 doi: 10.2771/33246 KL-02-20-897-EN-N FOR MORE INFORMATION AND COMMENTS: Directorate-General for Maritime Affairs and Fisheries B-1049 Brussels Tel: +32 229-50101 E-mail: [email protected] i CONTENTS LIST OF ACRONYMS ............................................................................................................................................................... iii GLOSSARY ...............................................................................................................................................................................
    [Show full text]
  • Specialty Entrees
    Happy Hour Menu Happy Hour Menu Fish Market Bar Lounge Only Fish Market Bar Lounge Only Monday 3:30 - 9:30 pm Monday 3:30 - 9:30 pm Tuesday thru Friday 3:30 - 6:30 pm Tuesday thru Friday 3:30 - 6:30 pm Saturday 11:00 - 4:00 pm Sunday 12:00 - 4:00 pm Saturday 11:00 - 4:00 pm Sunday 12:00 - 4:00 pm Miyagi Oysters 1.50 Miyagi Oysters 1.50 Cocktail sauce and freshly grated horseradish Cocktail sauce and freshly grated horseradish Frito Misto 7.75 Frito Misto 7.75 Rock shrimp, red bell peppers, green olives, sweet chili sauce Rock shrimp, red bell peppers, green olives, sweet chili sauce Rock Shrimp Wonton (3) 6.95 Rock Shrimp Wonton (3) 6.95 Sambal chili, napa cabbage, eel sauce Sambal chili, napa cabbage, eel sauce Coconut Crusted Prawns (3) 7.50 Coconut Crusted Prawns (3) 7.50 Dijon marmalade dipping sauce Dijon marmalade dipping sauce Grilled Fish Taco 4.25 Grilled Fish Taco 4.25 Chipotle Ranch, salsa fresca, fresh lime Chipotle Ranch, salsa fresca, fresh lime Smoked Trout Quesadilla 6.75 Smoked Trout Quesadilla 6.75 Served with salsa fresca, guacamole Served with salsa fresca, guacamole Calamari Fries 8.25 Calamari Fries 8.25 Served with tartar sauce Served with tartar sauce California Roll 6.50 California Roll 6.50 Surimi, cucumber and avocado Surimi, cucumber and avocado Draft Beer 5.50 Draft Beer 5.50 Premium Draft Beer 6.50 Premium Draft Beer 6.50 Premium Bottled Beer (12oz.) 4.50 Premium Bottled Beer (12oz.) 4.50 Wine by the glass: 5.75 Wine by the glass: 5.75 Fish Market Chardonnay Hahn Pinot Noir Fish Market Chardonnay Hahn Pinot
    [Show full text]
  • Assessing the Willingness to Pay in the Pacific Northwest for Salmon Produced by Integrated Multi-Trophic Aquaculture
    Assessing the Willingness to Pay in the Pacific Northwest for Salmon Produced by Integrated Multi-Trophic Aquaculture by Winnie Wing Yan Yip B.B.A. (Hons.), Simon Fraser University, 2008 RESEARCH PROJECT SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF MASTER OF RESOURCE MANAGEMENT in the School of Resource and Environmental Management Faculty of Environment Winnie Wing Yan Yip 2012 SIMON FRASER UNIVERSITY Spring 2012 All rights reserved. However, in accordance with the Copyright Act of Canada, this work may be reproduced, without authorization, under the conditions for “Fair Dealing.” Therefore, limited reproduction of this work for the purposes of private study, research, criticism, review and news reporting is likely to be in accordance with the law, particularly if cited appropriately. Approval Name: Winnie Wing Yan Yip Degree: Master of Resource Management (Planning) Report Number: 530 Title of Research Project: Assessing the Willingness to Pay in the Pacific Northwest for Salmon Produced by Integrated Multi-Trophic Aquaculture Examining Committee: Chair: David Kyobe MRM Candidate, School of Resource and Environmental Management, Simon Fraser University Duncan Knowler Senior Supervisor Associate Professor, School of Resource and Environmental Management Associate Dean, Faculty of Environment Wolfgang Haider Supervisor Professor, School of Resource and Environmental Management Date Defended/Approved: March 12, 2012 ii Abstract Integrated Mutli-Trophic Aquaculture (IMTA) combines the culturing of fish and extractive
    [Show full text]
  • Sustainable Supply Chain Analysis of Shrimp in Indonesia to Meet European Market Demand FINAL REPORT
    Sustainable Supply Chain Analysis of Shrimp in Indonesia to meet European Market Demand FINAL REPORT Mita Eka Fitriani, Mita Supervised by Prof. Dr. Jacques Trienekens Co-Supervised by dr. Gerben van der Velde Table of Contents Abstract ......................................................................................................................... 4 1. Introduction ........................................................................................................... 4 2. Literature Review .................................................................................................. 7 2.1 Sustainability ......................................................................................................... 7 2.2 Shrimp Supply Chain Practices ......................................................................... 12 2.3 Market Demands (European Market) toward sustainability ......................... 15 3. Conceptual Framework ...................................................................................... 19 4. Methodology ........................................................................................................ 20 4.1 Research Design................................................................................................... 20 4.2 Sample selection................................................................................................... 20 4.3 Data collection ..................................................................................................... 21 4.4 Analysis of Data
    [Show full text]