The Habitat and Dietary Preferences of the Extinct Tethythere Desmostylus, Inferred from Stable Isotope Analysis

Total Page:16

File Type:pdf, Size:1020Kb

The Habitat and Dietary Preferences of the Extinct Tethythere Desmostylus, Inferred from Stable Isotope Analysis Paleobiology, 29(4), 2003, pp. 506±519 A paleoecological paradox: the habitat and dietary preferences of the extinct tethythere Desmostylus, inferred from stable isotope analysis Mark T. Clementz, Kathryn A. Hoppe, and Paul L. Koch Abstract.ÐThe Desmostylia, an extinct order of mammals related to sirenians and proboscideans, are known from the late Oligocene to late Miocene of the North Paci®c. Though often categorized as marine mammals on the basis of fossil occurrences in nearshore deposits, reconstructions of desmostylian habitat and dietary preferences have been somewhat speculative because morpho- logical and sedimentological information is limited. We analyzed the carbon, oxygen, and stron- tium isotope compositions of enamel from Desmostylus and co-occurring terrestrial and marine taxa from middle Miocene sites in California to address the debate surrounding desmostylian ecol- ogy. The d13C value of tooth enamel can be used as a proxy for diet. Desmostylus had much higher d13C values than coeval terrestrial or marine mammals, suggesting a unique diet that most likely consisted of aquatic vegetation. Modern aquatic mammals tend to exhibit lower variability in d18O values than terrestrial mammals. Both fossil marine mammals and Desmostylus exhibited low d18O variability, suggesting that Desmostylus spent a large amount of time in water. Finally, the Sr isotope composition of marine organisms re¯ects that of the ocean and is relatively invariant when com- pared with values for animals from land. Sr isotope values for Desmostylus were similar to those for terrestrial, rather than marine, mammals, suggesting Desmostylus was spending time in estu- arine or freshwater environments. Together, isotopic data suggest that Desmostylus was an aquatic herbivore that spent a considerable portion of its life foraging in estuarine and freshwater ecosys- tems. Mark T. Clementz. Department of Earth Sciences, University of California, Santa Cruz, California 95064. E-mail: [email protected] Kathryn A. Hoppe. Department of Environmental Science, Policy & Management, University of California, Berkeley, California 94720. E-mail: [email protected] Paul L. Koch. Department of Earth Sciences, University of California, Santa Cruz, Califorina 95064. E-mail: [email protected] Accepted: 5 March 2003 Introduction vores in coastal ecosystems has no modern an- Mammalian herbivores are a minor com- alog, so the dynamics of ancient coastal eco- ponent of the total fauna in modern marine systems may have been very different from and coastal ecosystems, limited to just four si- those today. renian species. Nonetheless, these herbivores The feeding ecology and habitat preferences are thought to play critical roles in structuring of desmostylians are not well understood, but the species richness and productivity of these before we can begin to explore what part, if ecosystems (Bowen 1997; Peterken and Con- any, desmostylians played in past coastal eco- acher 1997). These effects may have been even systems, we need such basic autecological greater in the past, when the diversity of data. Here, we reconstruct the ecology of one large-bodied, mammalian herbivores was genus, Desmostylus, through stable isotope higher (Domning and Furusawa 1992; Aran- analysis of tooth enamel. Using carbon iso- da-Manteca et al. 1994; Domning 2001). Other topes, we assessed feeding preferences, ex- groups of mammals may have exploited the ploring levels of dependence on terrestrial abundant vegetation in shallow coastal waters versus aquatic food sources. To assess the ad- that were widespread from the Eocene aptation of Desmostylus to aquatic habitats, we through the Miocene, such as the Desmostylia, used a method that relies on contrasts in ox- an extinct group of hippo-sized mammals re- ygen isotope variability between terrestrial lated to sirenians. The coexistence of several and aquatic species. Finally, we explored dif- species of large-bodied mammalian herbi- ferences in habitation of marine, estuarine, q 2003 The Paleontological Society. All rights reserved. 0094-8373/00/2904-0005/$1.00 HABITAT AND DIETARY PREFERENCES OF THE EXTINCT TETHYTHERE DESMOSTYLUS 507 FIGURE 1. Proposed cladogram for the mirorder Tethytheria modi®ed after Inuzuka et al. 1995. and terrestrial systems by identifying differ- eria (Domning et al. 1986; Novacek and Wyss ences in strontium isotope composition 1987) (Fig. 1). The Desmostylia is composed of among taxa. two families, the Paleoparadoxidae, which possessed low-crowned or bunodont molars, Background and the Desmostylidae, which had high- The Desmostylia. Desmostylians are large, crowned or hypsodont molars (Inuzuka et al. hippo-sized mammals known to have inhab- 1995; Inuzuka 2000). Both families coexisted ited the Paci®c coast of North America and along the northern Paci®c coast of Asia and Asia from the late Oligocene (;28Ma)tolate North America until the late middle Miocene. middle Miocene (;10 Ma) (Barnes et al. 1985; Desmostylian ecology is currently a mys- Inuzuka et al. 1995; Inuzuka 2000). Several tery. Though most desmostylian fossils have characters of the skull suggest that desmos- been found in nearshore marine deposits, tylians share a common ancestry with sireni- there are occasional reports of desmostylians ans and proboscideans, which are classi®ed associated with terrestrial mammals at sites with desmostylians in the mirorder Tethyth- where the depositional environment is un- clear. Desmostylian morphology has also gen- erated con¯icting ecological interpretations. Early reconstructions portrayed desmostyli- ans with a pinniped-like posture (Fig. 2A), suggesting they were fully aquatic swimmers (Repenning 1965), but recent studies compar- ing desmostylians with extant aquatic and ter- restrial mammals have challenged this idea. Cole and Domning (1998) argued that des- mostylian postcranial elements were most FIGURE 2. Three different skeletal reconstructions of similar to those of modern terrestrial ungu- desmostylians based on morphological data and pro- lates or extinct ground sloths, and they sug- posed lifestyle. A, Cole and Domning (1998) proposed gested a mode of locomotion and a lifestyle that Paleoparadoxia exhibited a posture and joint me- chanics similar to those of extinct ground sloths and the similar to those of the semiaquatic hippopot- extant hippopotamus. B, Repenning's (1965) reconstruc- amus. A more radical interpretation was sug- tion of Desmostylus, with a posture similar to that of modern otariid pinnipeds, was based on interpreting gested by Inuzuka (1984). Unlike other mam- the fore- and hindlimbs as modi®ed into ¯ippers. C, mals, which hold their limbs directly under Inuzuka (1984) proposed a completely new style of pos- the body, Inuzaka's reconstructed desmosty- ture for Desmostylus, termed herpetiform, which was thought to enhance stability in high-wave-energy envi- lians had a ``herpetiform'' or sprawling pos- ronments. ture similar to lizards, which would have pro- 508 MARK T. CLEMENTZ ET AL. vided a high degree of stability against lateral ences in photosynthetic physiology, sources of forces, such as those produced by waves in ®xed carbon, and environmental conditions. nearshore ecosystems. It is unclear which (if In terrestrial ecosystems, differences are re- any) interpretation is correct. lated to photosynthetic pathway (O'Leary Most interpretations imply some use of 1988), resulting in relatively high d13Cvalues aquatic habitats by desmostylians, but the ex- (213 6 2½) for plants using C4 photosynthe- tent to which they foraged within these eco- sis (e.g., warm-climate grasses), low d13C val- systems is uncertain. Cranial and dental mor- ues (227 6 3½) for C3 photosynthesizers phology, as well as their phylogenetic posi- (e.g., trees, most shrubs, herbs, and cool-cli- tion, suggests that desmostylians were prin- mate grasses), and d13C values that can be any- cipally herbivores, though at least one study where between these extremes for plants us- has proposed that they consumed mollusks ing CAM photosynthesis (e.g., most succu- (McLeod and Barnes 1984). Their northern lents). In aquatic systems, environmental con- geographical distribution and the deposition- ditions (dissolved [CO2], mixing of the water al settings of their occurrences led Domning column, nutrient supply, etc.) have a stronger et al. (1986) to conclude that desmostylians in¯uence on primary-producer d13C values, primarily ate marine vegetation (e.g., macroal- creating differences in mean d13C values for gae, seagrass) in cold, marginal marine envi- kelp (217 6 4½), seagrass (210 6 3½), near- ronments. However, if desmostylians were ca- shore and offshore marine phytoplankton pable of terrestrial locomotion (Cole and (220 6 2½, 223 6 2½, respectively), and Domning 1998), they could have come ashore freshwater vegetation (226 6 7½) (Osmond to feed on terrestrial plants, ®lling an ecolog- et al. 1981; Boon and Bunn 1994; Hemminga ical niche similar to that of the hippopotamus. and Mateo 1996; Rau et al. 2001; Ravens et al. Thus, even the dietary preferences of this ex- 2002). tinct group of mammals are unresolved. Many studies have exploited these differ- Carbon Isotopes and Foraging Preferences. ences in primary-producer d13C values to trace Analysis of carbon isotopes in biogenic sub- the foraging habits of terrestrial and marine strates (e.g., bone or enamel carbonate, colla- consumers (Cerling and Harris 1999; Cle- gen) has proven useful for paleodietary recon- mentz and Koch 2001) (see Table 1). Within
Recommended publications
  • MARINE MAMMALS, EXTINCTIONS of Glenn R
    MARINE MAMMALS, EXTINCTIONS OF Glenn R. VanBlaricom,* Leah R. Gerber,† and Robert L. Brownell, Jr.‡ *U.S. Geological Survey and University of Washington, †University of California, Santa Barbara, and ‡National Marine Fisheries Service I. Introduction principal source for taxonomic nomenclature, includ- II. Patterns and Case Studies of Extinction in ing common names, is the recent review of Rice (1998). Marine Mammals The order Cetacea includes whales, dolphins, and III. Discussion porpoises (Table I). The ‘‘pinnipedia’’ is a group of species in three families in the mammalian order Carni- vora (Table I). The pinnipeds include the seals, fur seals, sea lions, and walrus. The term pinnipedia is no I. INTRODUCTION longer recognized formally by marine mammal taxono- mists, but it continues to appear in the systematic ver- A. Taxonomic Definition of nacular as a matter of tradition and convenience. The order Sirenia includes the extant manatees and dugong ‘‘Marine Mammals’’ and the extinct Steller’s sea cow (Table I). The order The marine mammals include one extinct order and Desmostylia is the only recognized order of marine three major extant taxa that were or are fully aquatic, mammals to become entirely extinct. in most cases occurring entirely in the marine habitats Two largely terrestrial families of the order Carnivora of the major ocean basins and associated coastal seas also include species recognized as marine mammals and estuaries. In addition, a few species of largely terres- (Table I). Sea otters and chungungos (family Mustel- trial taxa are currently regarded as marine mammals. idae) live entirely or primarily in marine habitats. Polar We consider 127 recent mammal species in total to bears (family Ursidae) also spend a significant propor- be marine mammals for purposes of this review.
    [Show full text]
  • Sirenian Feeding Apparatus: Functional Morphology of Feeding Involving Perioral Bristles and Associated Structures
    THE SIRENIAN FEEDING APPARATUS: FUNCTIONAL MORPHOLOGY OF FEEDING INVOLVING PERIORAL BRISTLES AND ASSOCIATED STRUCTURES By CHRISTOPHER DOUGLAS MARSHALL A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNrVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REOUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 1997 DEDICATION to us simply as I dedicate this work to the memory of J. Rooker (known "Rooker") and to sirenian conservation. Rooker was a subject involved in the study during the 1993 sampling year at Lowry Park Zoological Gardens. Rooker died during the red tide event in May of 1996; approximately 140 other manatees also died. During his rehabilitation at Lowry Park Zoo, Rooker provided much information regarding the mechanism of manatee feeding and use of the perioral bristles. The "mortality incident" involving the red tide event in southwest Florida during the summer of 1996 should serve as a reminder that the Florida manatee population and the status of all sirenians is precarious. Although some estimates suggest that the Florida manatee population may be stable, annual mortality numbers as well as habitat degradation continue to increase. Sirenian conservation and research efforts must continue. ii ACKNOWLEDGMENTS Research involving Florida manatees required that I work with several different government agencies and private parks. The staff of the Sirenia Project, U.S. Geological Service, Biological Resources Division - Florida Caribbean Science Center has been most helpful in conducting the behavioral aspect of this research and allowed this work to occur under their permit (U.S. Fish and Wildlife Permit number PRT-791721). Numerous conversations regarding manatee biology with Dr.
    [Show full text]
  • 71St Annual Meeting Society of Vertebrate Paleontology Paris Las Vegas Las Vegas, Nevada, USA November 2 – 5, 2011 SESSION CONCURRENT SESSION CONCURRENT
    ISSN 1937-2809 online Journal of Supplement to the November 2011 Vertebrate Paleontology Vertebrate Society of Vertebrate Paleontology Society of Vertebrate 71st Annual Meeting Paleontology Society of Vertebrate Las Vegas Paris Nevada, USA Las Vegas, November 2 – 5, 2011 Program and Abstracts Society of Vertebrate Paleontology 71st Annual Meeting Program and Abstracts COMMITTEE MEETING ROOM POSTER SESSION/ CONCURRENT CONCURRENT SESSION EXHIBITS SESSION COMMITTEE MEETING ROOMS AUCTION EVENT REGISTRATION, CONCURRENT MERCHANDISE SESSION LOUNGE, EDUCATION & OUTREACH SPEAKER READY COMMITTEE MEETING POSTER SESSION ROOM ROOM SOCIETY OF VERTEBRATE PALEONTOLOGY ABSTRACTS OF PAPERS SEVENTY-FIRST ANNUAL MEETING PARIS LAS VEGAS HOTEL LAS VEGAS, NV, USA NOVEMBER 2–5, 2011 HOST COMMITTEE Stephen Rowland, Co-Chair; Aubrey Bonde, Co-Chair; Joshua Bonde; David Elliott; Lee Hall; Jerry Harris; Andrew Milner; Eric Roberts EXECUTIVE COMMITTEE Philip Currie, President; Blaire Van Valkenburgh, Past President; Catherine Forster, Vice President; Christopher Bell, Secretary; Ted Vlamis, Treasurer; Julia Clarke, Member at Large; Kristina Curry Rogers, Member at Large; Lars Werdelin, Member at Large SYMPOSIUM CONVENORS Roger B.J. Benson, Richard J. Butler, Nadia B. Fröbisch, Hans C.E. Larsson, Mark A. Loewen, Philip D. Mannion, Jim I. Mead, Eric M. Roberts, Scott D. Sampson, Eric D. Scott, Kathleen Springer PROGRAM COMMITTEE Jonathan Bloch, Co-Chair; Anjali Goswami, Co-Chair; Jason Anderson; Paul Barrett; Brian Beatty; Kerin Claeson; Kristina Curry Rogers; Ted Daeschler; David Evans; David Fox; Nadia B. Fröbisch; Christian Kammerer; Johannes Müller; Emily Rayfield; William Sanders; Bruce Shockey; Mary Silcox; Michelle Stocker; Rebecca Terry November 2011—PROGRAM AND ABSTRACTS 1 Members and Friends of the Society of Vertebrate Paleontology, The Host Committee cordially welcomes you to the 71st Annual Meeting of the Society of Vertebrate Paleontology in Las Vegas.
    [Show full text]
  • Ore Bin / Oregon Geology Magazine / Journal
    THE ORE.-BIN Volume XVI Vol. 16, No.1 THE ORE.-BIN 1 January 1954 Portland, Oregon STATE DEPARTKENT OF GEOLOGY AND KINERAL INDUSTRIES Head Ottice: 1069 State Ottioe Bldg., Portland 1, Oregon Telephone: Columbia 2161, Ext. 488 State Governing Board ~ Kason L. Bingham, Chairman, Portland R. E. Corooran Geologist Niel R. Allen Grants Pass Hollis K. Dole Geologist Austin Dunn Baker L. L. Hoagland Assayer & Chemist Ralph S. Kason Kining Engineer F. W. Libbey, Direotor T. C. Katthews Speotrosoopist Lenin Ramp Geologist K. L. Steere Geologist R. E. stewart Geologist F18ld Ottices 20" First Street, Baker 2'9 S.E. "H" street, Grants Pass N. S. Wagper, Field Geologist David J. White, Field Geologist ****************************** THE ASTORIA LANDSLIDES Erosion to most ot us means the slow, almost imperoeptible, wearing down ot the higher parts ot the earth's crust by running water, wind, or ice. Seemingly mountains remain the same height and stream valleys the same depth throughout the years. The only rapid changes in the landscape which are accepted as normal are the neat exoavations made when new roads, dams, or other man-made structures are constructed. It 1s not sur­ prising that special attention to the ohoioe of a toundation for an ordinary building is seldom given, tor our experience tells us that the durability ot the structure is infinitely less than that of the ground on whioh it is bull t. It oomes as a shock to us when exceptions to our everyday observations ocour. Suoh is the oase in the land­ sliding at Astoria, Oregon,at the mouth of the Columbia River.
    [Show full text]
  • SUPPLEMENTARY INFORMATION: Tables, Figures and References
    Samuels et al. Evolution of the patellar sesamoid bone in mammals SUPPLEMENTARY INFORMATION: Tables, Figures and References Supplementary Table S1: Mammals$ Higher taxa Genus sp. Estimated. age of Patellar Comments# (partial) specimen, location state 0/1/2 (absent/ ‘patelloid’/ present) Sinoconodonta Sinoconodon Jurassic 0 Patellar groove absent, suggests no rigneyi (Kielan- patella Jaworowska, Cifelli & Luo, Sinoconodon is included on our 2004) phylogeny within tritylodontids. Morganucodonta Megazostrodon Late Triassic, southern 0 rudnerae (Jenkins Africa & Parrington, 1976) Morganucodonta Eozostrodon sp. Late Triassic, Wales 0 Asymmetric patellar groove, (Jenkins et al., specimens disarticulated so it is hard 1976) to assess the patella but appears absent Docodonta Castorocauda 164 Mya, mid-Jurassic, 0 Semi-aquatic adaptations lutrasimilis (Ji, China Luo, Yuan et al., 2006) Docodonta Agilodocodon 164 Mya, mid-Jurassic, 0 scansorius China (Meng, Ji, Zhang et al., 2015) Docodonta Docofossor 160 Mya 0 brachydactylus (Luo, Meng, Ji et al., 2015) Docodonta Haldanodon 150-155 Mya, Late 0 Shallow patellar groove exspectatus Jurassic, Portugal (Martin, 2005b) Australosphenida Asfaltomylos Mid-Jurassic, South ? Postcranial material absent patagonicus America (Martin, 2005a) Australosphenida Ornithorhynchus Extant 2 Platypus, genome sequenced Monotremata anatinus (Warren, Hillier, Marshall Graves et (Herzmark, 1938; al., 2008) Rowe, 1988) Samuels et al. Australosphenida Tachyglossus + Extant 2 Echidnas Monotremata Zaglossus spp. (Herzmark, 1938; Rowe, 1988) Mammaliaformes Fruitafossor 150 Mya, Late Jurassic, 0 Phylogenetic status uncertain indet. windscheffeli (Luo Colorado & Wible, 2005) Mammaliaformes Volaticotherium Late Jurassic/Early ? Hindlimb material incomplete indet. antiquus (Meng, Cretaceous Hu, Wang et al., 2006) Eutriconodonta Jeholodens 120-125 Mya, Early 0 Poorly developed patellar groove jenkinsi (Ji, Luo Cretaceous, China & Ji, 1999) Eutriconodonta Gobiconodon spp.
    [Show full text]
  • 25 Squires and Fritsche
    25 SQUIRES AND FRITSCHE Isurus sp. TRACE FOSSILS PI. 4, fig. 8 Unidentified burrows Isurus sp. (mako shark) teeth are the most " common shark teeth in the Sespe Creek area. Most The few unidentified burrows collected from the are moderately well preserved, nearly complete or Vaqueros Formation are about 9 cm long and about 1.5 complete, and not rounded by abrasion. Average cm in diameter. Burrows are more abundant in the length of complete specimens is about 1.5 cm; larger Santa Margarita Formation, where the most common type fragments are about 2.5 cm in length. is vertical, 1 to 3 cm in diameter, and straight to slightly curving. Some forms are branching, and at Genus Carcharodon Smith in Muller and Henle, 1838 locality 287, some resemble Ophiomorpha. Carcharodon angustidens L. Agassiz Kingdom PLANTAE PI. 4, fig. 3 Division RHODOPHYCOPHYTA Class RHODOPHYCEAE Carcharodon angustidens L. Agassiz, 1843, p. 255, Order CRYPTQNEMIALES pi. 28, figs. 20-25. Leriche, p. 13-14, pi. 11, figs. 8, 8a, 8b. Family Corallinaceae The figured specimen (PI. 4, fig. 3) of Carchar- Abundant whole and fragmented specimens of. an odon angustidens (great white shark) is a 6-cm-long unidentified coralline alga occur in a thin bed at tooth. Other specimens found include only a few locality 313. Small hemispherical colonies up to fragments. Remains of Carcharodon are previously 2.5 cm in height were collected, but most of the unreported from the Vaqueros Formation in the Sespe specimens are scattered fragments separated by Creek region (Loel and Corey, 1932). medium-grained sandstone.
    [Show full text]
  • IDL-1426.Pdf
    The International Development Research Centre is a public corporation created by the Parliament of Canada in 1970 to support research designed to adapt science and technology to the needs of developing countries. The Centre's activity is concentrated in five sectors: agriculture, food and nutrition sciences; health sciences; information sciences; communications; and social sciences. IDRC is financed solely by the Government of Canada; its policies, however, are set by an international Board of Governors. The Centre's headquarters are in Ottawa, Canada. Regional offices are located in Africa, Asia, Latin America, and the Middle East. ©1978 International Development Research Centre Postal Address: Box 8500, Ottawa, Canada KlG 3H9 Head Office: 60 Queen Street, Ottawa Ronald, K. Selley, L.J. Amoroso, E.C. IDRC IDRC-TS13e Biological synopsis of the manatee. Ottawa, IDRC, 1978. 112 p. /IDRC publication/. Monograph on the manatee, an aquatic mammal (/animal species/) of the /tropical zone/s of I Africa south of Sahara/ and /Latin America/, with an extensive /bibliography/ - discusses the /classification/ of the species and subspecies of the genus Trichechus; /morphology/, /physiology/, /behaviour/, /reproduction/, /animal ecology/ (role in /aquatic plant/ /weed control/), and measures for /animal protection/ of the manatee. UDC: 599.55 ISBN: 0-88936-168-1 Microfiche edition available IDRC-TS13e Biological Synopsis of the Manatee K. Ronald, L.J. Selley, and E.C. Amoroso1 College ofBiological Science, University of Guelph, Guelph, Ontario 1 Present address: Agricultural Research Council, Institute of Animal Physiology, Babraham, Cambridge, England. This work was carried out with the aid of a grant from the International Development Research Centre.
    [Show full text]
  • Evolution of the Sirenia: an Outline
    Caryn Self-Sullivan, Daryl P. Domning, and Jorge Velez-Juarbe Last Updated: 8/1/14 Page 1 of 10 Evolution of the Sirenia: An Outline The order Sirenia is closely associated with a large group of hoofed mammals known as Tethytheria, which includes the extinct orders Desmostylia (hippopotamus-like marine mammals) and Embrithopoda (rhinoceros-like mammals). Sirenians probably split off from these relatives in the Palaeocene (65-54 mya) and quickly took to the water, dispersing to the New World. This outline attempts to order all the species described from the fossil record in chronological order within each of the recognized families of Prorastomidae, Protosirenidae, Dugongidae, and Trichechidae. This outline began as an exercise in preparation for my Ph. D. preliminary exams and is primarily based on decades of research and peer-reviewed literature by Dr. Daryl P. Domning, to whom I am eternally grateful. It has been recently updated with the help of Dr. Jorge Velez-Juarbe. However, this document continues to be a work-in-progress and not a peer reviewed publication! Ancestral line: Eritherium Order Proboscidea Elephantidae (elephants and mammoths) Mastodontidae Deinotheriidae Gomphotheriidae Ancestral line: Behemotops Order Desmostylia (only known extinct Order of marine mammal) Order Sirenia Illiger, 1811 Prorastomidae Protosirenidae Dr. Daryl Domning, Howard University, November 2007 Dugongidae with Metaxytherium skull. Photo © Caryn Self-Sullivan Trichechidae With only 5 species in 2 families known to modern man, you might be surprised to learn that the four extant species represent only a small fraction of the sirenians found in the fossil record. As of 2012, ~60 species have been described and placed in 4 families.
    [Show full text]
  • Novitates PUBLISHED by the AMERICAN MUSEUM of NATURAL HISTORY CENTRAL PARK WEST at 79TH STREET, NEW YORK, N.Y
    AMERICANt MUSEUM Novitates PUBLISHED BY THE AMERICAN MUSEUM OF NATURAL HISTORY CENTRAL PARK WEST AT 79TH STREET, NEW YORK, N.Y. 10024 Number 2870, pp. 1-8, figs. 1-3 April 6, 1987 Selected Features of the Desmostylian Skeleton and Their Phylogenetic Implications MICHAEL J. NOVACEK1 AND ANDRE R. WYSS2 ABSTRACT According to several standard descriptions, des- pertaining to these traits are either in error, or have mostylians lack certain specializations shared by alternative phylogenetic implications. Hence, proboscideans, sirenians, and hyracoids. These comparisons of these conditions do not exclude specializations are amastoidy and the serial ar- desmostylians from the superordinal group Teth- rangement ofthe carpals with the concomitant loss ytheria (proboscideans and sirenians) or the more of contact between the lunar and unciform. We inclusive Paenungulata (tethytheres and hyra- argue that original descriptions of desmostylians coids). INTRODUCTION The Desmostylia are an extinct order of be more conservative than sirenians (and, by mammals with specializations ofthe skeleton implication, proboscideans) with respect to suitable for an amphibious mode of life. Al- the reduction ofmastoid exposure (Hay, 1915; though this group was formerly associated Abel, 1922; VanderHoof, 1937) and the se- with the aquatic Sirenia (Simpson, 1945), and rial arrangement ofthe carpal elements (Shi- is now placed within a superordinal category kama, 1966). These differences have influ- Tethytheria, which also includes the Probos- enced more recent students of the problem cidea and Sirenia (McKenna, 1975), these (e.g., Tassy, 1981), who have opted for a close avowed relationships present some prob- association ofProboscidea (including the late lems. According to standard descriptions, Eocene-early Oligocene genus Moeritheri- desmostylians lack certain skeletal special- um) and Sirenia to the exclusion of Desmo- izations shared by Proboscidea and Sirenia.
    [Show full text]
  • Two New Oligocene Desmostylians and a Discussion of Tethytherian Systematics
    SMITHSONIAN CONTRIBUTIONS TO PALEOBIOLOGY • NUMBER 59 Two New Oligocene Desmostylians and a Discussion of Tethytherian Systematics Daryl P. Domning, Clayton E. Ray, and Malcolm C. McKenna SMITHSONIAN INSTITUTION PRESS City of Washington 1986 ABSTRACT Domning, Daryl P., Clayton E. Ray, and Malcolm C. McKenna. Two New Oligocene Desmostylians and a Discussion of Tethytherian Systematics. Smith­ sonian Contributions to Paleobiology, number 59, 56 pages, 23 figures, 1986.— A new genus, comprising two new species of desmostylians, is de­ scribed from marine Oligocene deposits of the Pacific Northwest. Behemotops proteus, new genus, new species, is based on an immature mandibular ramus and apparently associated skeletal fragments from the middle or (more likely) upper Oligocene lower part of the Pysht Formation of Clallam County, Washington. A related new species, Behemotops emlongi, is founded on a mandibular ramus of an old individual and a mandibular fragment with canine tusk from the uppermost Oligocene (early Arikareean equivalent) Yaquina Formation of Lincoln County, Oregon. The two new species are the most primitive known desmostylians and compare favorably with the primitive Eocene proboscideans Anthracobune and Moeritherium, and to the still more primitive tethythere Minchenella from the Paleocene of China. For many years the Desmostylia were widely regarded as members of the mammalian order Sirenia before being accepted as a taxon coordinate with the Sirenia and Proboscidea (Reinhart, 1953). On the basis of cladistic analysis we go a step further and regard the Desmostylia as more closely related to Proboscidea than to Sirenia because the Desmostylia and Proboscidea are interpreted herein to share a more recent common ancestor than either order does with the Sirenia.
    [Show full text]
  • A Partial Skeleton of Behemotops (Desmostylia
    consistent across both monophyodont and diphyodont taxa, thus falsifying the hypothesis. Poster Session IV, (Saturday) Therefore the relative size of the developing dentition does not influence the size of the THEROPOD TEETH FROM THE LATE CRETACEOUS OF CHERA (VALENCIA, mandible, and its utility in dietary reconstruction, in the taxa studied here. This finding has EASTERN SPAIN) important implications for our understanding of the coordinated development and evolution COMPANY, Julio, Universidad Politecnica de Valencia , Valencia , Spain; TORICES, of the dentition and skeletal masticatory system. Angelica, Universidad Complutense, Madrid, Spain; PEREDA-SUBERBIOLA, Xabier, Universidad del Pais Vasco/EHU, Bilbao, Spain; RUIZ-OMEÑACA, José, Museo del Jurasico de Asturias (MUJA), Colunga, Spain Poster Session IV, (Saturday) A PARTIAL SKELETON OF BEHEMOTOPS (DESMOSTYLIA, MAMMALIA) Several exposures of the Late Campanian-Early Maastrichtian palustrine deposits of the FROM VANCOUVER ISLAND, BRITISH COLUMBIA Sierra Perenchiza Formation at Chera Basin (Valencia province, Eastern Spain) have COCKBURN, Thomas, Royal British Columbia Museum, Victoria, BC, Canada; BEATTY, provided abundant micro- and macrovertebrate fossil remains. The vertebrate assemblage Brian, New York College of Osteopathic Medicine, Old Westbury, NY, USA recovered includes remains of actinopterygians, amphibians, squamates, chelonians, crocodyliforms, pterosaurs and dinosaurs. Among the last ones, there are representatives of In July of 2007, a partial articulated skeleton of a desmostylian
    [Show full text]
  • Furry Folk: Synapsids and Mammals
    FURRY FOLK: SYNAPSIDS AND MAMMALS Of all the great transitions between major structural grades within vertebrates, the transition from basal amniotes to basal mammals is represented by the most complete and continuous fossil record, extending from the Middle Pennsylvanian to the Late Triassic and spanning some 75 to 100 million years. —James Hopson, “Synapsid evolution and the radiation of non-eutherian mammals,” 1994 At the very beginning of their history, amniotes split into two lineages, the synapsids and the reptiles. Traditionally, the earliest synapsids have been called the “mammal-like reptiles,” but this is a misnomer. The earliest synapsids had nothing to do with reptiles as the term is normally used (referring to the living reptiles and their extinct relatives). Early synapsids are “reptilian” only in the sense that they initially retained a lot of primitive amniote characters. Part of the reason for the persistence of this archaic usage is the precladistic view that the synapsids are descended from “anapsid” reptiles, so they are also reptiles. In fact, a lot of the “anapsids” of the Carboniferous, such as Hylonomus, which once had been postulated as ancestral to synapsids, are actually derived members of the diapsids (Gauthier, 1994). Furthermore, the earliest reptiles (Westlothiana from the Early Carboniferous) and the earliest synapsids (Protoclepsydrops from the Early Carboniferous and Archaeothyris from the Middle Carboniferous) are equally ancient, showing that their lineages diverged at the beginning of the Carboniferous, rather than synapsids evolving from the “anapsids.” For all these reasons, it is no longer appropriate to use the term “mammal-like reptiles.” If one must use a nontaxonomic term, “protomammals” is a alternative with no misleading phylogenetic implications.
    [Show full text]