Nextal Amso4 Suite MSDS
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
(12) Patent Application Publication (10) Pub. No.: US 2005/0124724 A1 Burton Et Al
US 2005O124724A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2005/0124724 A1 Burton et al. (43) Pub. Date: Jun. 9, 2005 (54) POLYMER COMPOSITIONS WITH (21) Appl. No.: 10/728,439 BIOACTIVE AGENT, MEDICAL ARTICLES, AND METHODS (22) Filed: Dec. 5, 2003 (75) Inventors: Scott A. Burton, Woodbury, MN (US); Publication Classification Patrick D. Hyde, Burnsville, MN (US); Prabhakara S. Rao, Maplewood, MN (51) Int. Cl." ....................................................... C08K 3/00 (US); Caroline M. Ylitalo, Stillwater, (52) U.S. Cl. .............................................................. 523/122 MN (US) (57) ABSTRACT Correspondence Address: A polymer composition that includes a hydrophilic polymer, 3M INNOVATIVE PROPERTIES COMPANY an optional Secondary organic polymer, and a bioactive PO BOX 33427 agent distributed therein, wherein the bioactive agent is ST. PAUL, MN 55133-3427 (US) Selected from the group consisting of a Silver compound, a copper compound, a Zinc compound, and combinations (73) Assignee: 3M Innovative Properties Company thereof. US 2005/O124724 A1 Jun. 9, 2005 POLYMER COMPOSITIONS WITH BOACTIVE comprising absorbent hydrophilic microparticles, a metal AGENT, MEDICAL ARTICLES, AND METHODS compound Selected from the group consisting of a Silver compound, a copper compound, a Zinc compound, and BACKGROUND combinations thereof, wherein the Silver compound has a 0001 Polymer compositions that include bioactive Solubility of at least 0.1 gram per liter in water; and a agents (e.g., antimicrobial agents) are used for a variety of hydroxide Source that converts the metal compound to the applications, particularly medical applications Such as corresponding metal oxide. The components are combined wound dressings and wound packing materials. Conven in a manner to incorporate the metal oxide within the tional antimicrobial agents include ionizable Silver com microparticles. -
1 Abietic Acid R Abrasive Silica for Polishing DR Acenaphthene M (LC
1 abietic acid R abrasive silica for polishing DR acenaphthene M (LC) acenaphthene quinone R acenaphthylene R acetal (see 1,1-diethoxyethane) acetaldehyde M (FC) acetaldehyde-d (CH3CDO) R acetaldehyde dimethyl acetal CH acetaldoxime R acetamide M (LC) acetamidinium chloride R acetamidoacrylic acid 2- NB acetamidobenzaldehyde p- R acetamidobenzenesulfonyl chloride 4- R acetamidodeoxythioglucopyranose triacetate 2- -2- -1- -β-D- 3,4,6- AB acetamidomethylthiazole 2- -4- PB acetanilide M (LC) acetazolamide R acetdimethylamide see dimethylacetamide, N,N- acethydrazide R acetic acid M (solv) acetic anhydride M (FC) acetmethylamide see methylacetamide, N- acetoacetamide R acetoacetanilide R acetoacetic acid, lithium salt R acetobromoglucose -α-D- NB acetohydroxamic acid R acetoin R acetol (hydroxyacetone) R acetonaphthalide (α)R acetone M (solv) acetone ,A.R. M (solv) acetone-d6 RM acetone cyanohydrin R acetonedicarboxylic acid ,dimethyl ester R acetonedicarboxylic acid -1,3- R acetone dimethyl acetal see dimethoxypropane 2,2- acetonitrile M (solv) acetonitrile-d3 RM acetonylacetone see hexanedione 2,5- acetonylbenzylhydroxycoumarin (3-(α- -4- R acetophenone M (LC) acetophenone oxime R acetophenone trimethylsilyl enol ether see phenyltrimethylsilyl... acetoxyacetone (oxopropyl acetate 2-) R acetoxybenzoic acid 4- DS acetoxynaphthoic acid 6- -2- R 2 acetylacetaldehyde dimethylacetal R acetylacetone (pentanedione -2,4-) M (C) acetylbenzonitrile p- R acetylbiphenyl 4- see phenylacetophenone, p- acetyl bromide M (FC) acetylbromothiophene 2- -5- -
Sodium Sulfate - Wikipedia, the Free Encyclopedia Page 1 of 7
Sodium sulfate - Wikipedia, the free encyclopedia Page 1 of 7 Sodium sulfate From Wikipedia, the free encyclopedia Sodium sulfate is the sodium salt of Sodium sulfate sulfuric acid. When anhydrous, it is a white crystalline solid of formula Na2SO4 known as the mineral thenardite; the decahydrate Na2SO4·10H2O has been known as Glauber's salt or, historically, sal mirabilis since the 17th century. Another Other names solid is the heptahydrate, which transforms Thenardite (mineral) to mirabilite when cooled. With an annual Glauber's salt (decahydrate) production of 6 million tonnes, it is a major Sal mirabilis (decahydrate) commodity chemical and one of the most Mirabilite (decahydrate) damaging salts in structure conservation: when it grows in the pores of stones it can Identifiers achieve high levels of pressure, causing CAS number 7757-82-6 , structures to crack. 7727-73-3 (decahydrate) Sodium sulfate is mainly used for the PubChem 24436 manufacture of detergents and in the Kraft ChemSpider 22844 process of paper pulping. About two-thirds UNII 36KCS0R750 of the world's production is from mirabilite, the natural mineral form of the decahydrate, RTECS number WE1650000 and the remainder from by-products of Jmol-3D images Image 1 chemical processes such as hydrochloric (http://chemapps.stolaf.edu/jmol/jmol.php? acid production. model=%5BNa%2B%5D.%5BNa%2B% 5D.%5BO-%5DS%28%5BO-%5D%29% 28%3DO%29%3DO) Contents SMILES InChI ■ 1History ■ 2 Physical and chemical properties Properties ■ 3 Production Molecular Na2SO4 ■ 3.1 Natural sources formula -
Chemical Names and CAS Numbers Final
Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride -
WO 2017/104134 Al 22 June 2017 (22.06.2017) W P O P C T
(12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/104134 Al 22 June 2017 (22.06.2017) W P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C09J 103/00 (2006.01) C07H 3/02 (2006.01) kind of national protection available): AE, AG, AL, AM, B27N3/00 (2006.01) C07H 3/04 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, (21) Number: International Application DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/JP20 16/005 13 1 HN, HR, HU, ID, IL, IN, IR, IS, KE, KG, KH, KN, KP, (22) International Filing Date: KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, 14 December 2016 (14. 12.2016) ME, MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, (25) Filing Language: English RW, SA, SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, (26) Publication Language: English TJ, TM, TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 2015-247280 18 December 201 5 (18. 12.2015) JP (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant: HENKEL AG & CO. KGAA [DE/DE]; Hen- GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, kelstrasse 67, 40589 Duesseldorf (DE). -
Nextal Pegs Suite MSDS
SAFETY DATA SHEET NeXtal PEGs Suite Version 2.0 Revision Date 04/02/2020 Print Date 04/02/2020 SECTION 1. IDENTIFICATION Product name : NeXtal PEGs Suite Manufacturer or supplier's details Company : NeXtal 6201 Trust Dr Holland, OH 43528 USA Telephone : 419-740-6600 E-mail address : www.calibrescientific.com Emergency telephone : CHEMTREC USA & Canada 1-800-424-9300 Outside USA & Canada (703) 527-3887 Chemtrec ID# 696910 Recommended use of the chemical and restrictions on use Recommended use : Laboratory chemicals SECTION 2. HAZARDS IDENTIFICATION GHS Classification Acute toxicity (Oral) : Category 4 Skin irritation : Category 2 Eye irritation : Category 2A Carcinogenicity : Category 1B Specific target organ : Category 3 (Respiratory system) systemic toxicity - single exposure Acute aquatic toxicity : Category 2 Chronic aquatic toxicity : Category 2 GHS Label element 1 / 17 SAFETY DATA SHEET NeXtal PEGs Suite Version 2.0 Revision Date 04/02/2020 Print Date 04/02/2020 Hazard pictograms : Signal Word : Danger Hazard Statements : H302 Harmful if swallowed. H315 Causes skin irritation. H319 Causes serious eye irritation. H335 May cause respiratory irritation. H350 May cause cancer. H411 Toxic to aquatic life with long lasting effects. Precautionary Statements : Prevention: P201 Obtain special instructions before use. P280 Wear protective gloves/protective clothing/eye protection/ face protection. Response: P308 + P313 IF exposed or concerned: Get medical advice/ attention. Other hazards None known. SECTION 3. COMPOSITION/INFORMATION ON INGREDIENTS -
Spectra Library Index Ichem/SDBS Raman Library
Ichem / SDBS Raman スタンダードライブラリー 株式会社 エス・ティ・ジャパン S p e c t r a L i b r a r y I n d e x (Ver. 40) Ichem / SDBS Raman Library ライブラリー名:ラマンスタンダードライブラリー 商品番号:60001-40 株式会社 エス・ティ・ジャパン 〒103-0014 東京都中央区日本橋蛎殻町 1-14-10 Tel: 03-3666-2561 Fax:03-3666-2658 http://www.stjapan.co.jp 1 【販売代理店】(株)テクノサイエンス Tel:043-206-0155 Fax:043-206-0188 https://www.techno-lab-co.jp/ Ichem / SDBS Raman スタンダードライブラリー 株式会社 エス・ティ・ジャパン ((1,2-DIETHYLETHYLENE)BIS(P-PHENYLENE))DIACETATE ((2-(3-BENZYLSULFONYL-4-METHYLCYCLOHEXYL)PROPYL)SULFONYLMETHYL)BENZENE ((2,4,6-TRIOXOHEXAHYDRO-5-PYRIMIDINYL)IMINO)DIACETIC ACID ((2-CARBOXYETHYL)IMINO)DIACETIC ACID ((2-HYDROXYETHYL)IMINO)DIACETIC ACID ((2-NITROBENZYL)IMINO)DIACETIC ACID ((2-SULFOETHYL)IMINO)DIACETIC ACID ((3-(1-BROMO-1-METHYLETHYL)-7-OXO-1,3,5-CYCLOHEPTATRIEN-1-YL)OXY)DIFLUOROBORANE ((N-BENZYLOXYCARBONYL-L-ISOLEUCYL)-L-PROLYL-L-PHENYLALANYL)-N(OMEGA)-NITRO-L-ARGININE 4-NITROBENZYL ESTER (-)-2-AMINO-1-BUTANOL (-)-2-AMINO-6-MERCAPTOPURINE RIBOSIDE (-)-6,8-P-MENTHADIEN-2-OL (-)-DIACETYL-L-TARTARIC ACID (-)-DIBENZOYL-L-TARTARIC ACID (-)-DI-P-ANISOYL-L-TARTARIC ACID (-)-DI-P-TOLUOYL-L-TARTARIC ACID (-)-KAURENE (-)-MENTHOL (-)-MYRTENOL (-)-N,N,N',N'-TETRAMETHYL-D-TARTARDIAMIDE (-)-N,N'-DIBENZYL-D-TARTRAMIDE (+)-1,3,3-TRIMETHYLNORBORNANE-2-ONE (+)-2-(2,4,5,7-TETRANITRO-9-FLUORENYLIDENEAMINOOXY)PROPIONIC ACID (+)-2-AMINO-1-BUTANOL (+)-2-PINENE (+)-3,9-DIBROMOCAMPHOR (+)-3-CARENE (+)-5-BROMO-2'-DEOXYURIDINE (+)-AMMONIUM 3-BROMO-8-CAMPHORSULFONATE (+)-CAMPHOR (+)-CAMPHOR OXIME (+)-CAMPHORIC ACID (+)-CATECHIN (+)-DI-P-ANISOYL-D-TARTARIC -
Manuscript with Contribution from All the Other Coauthors
1 Interactions of organosulfates with water vapor under sub- and supersaturated 2 conditions 3 4 Chao Peng,1,2 Patricia N. Razafindrambinina,3 Kotiba A. Malek,4 Lanxiadi Chen,1,2,7 Weigang 5 Wang,5 Ru-Jin Huang,6 Yuqing Zhang,1,2 Xiang Ding,1,2 Maofa Ge,5 Xinming Wang,1,2 Akua A. 6 Asa-Awuku,3,4 and Mingjin Tang1,2,7,* 7 8 1 State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environmental 9 Protection and Resources Utilization, and Guangdong-Hong Kong-Macao Joint Laboratory for 10 Environmental Pollution and Control, Guangzhou Institute of Geochemistry, Chinese Academy of 11 Sciences, Guangzhou 510640, China 12 2 CAS Center for Excellence in Deep Earth Science, Guangzhou 510640, China 13 3 Department of Chemistry and Biochemistry, College of Computer, Mathematical and Natural 14 Sciences, University of Maryland, College Park, MD 20742, USA 15 4 Department of Chemical and Biomolecular Engineering, A. James Clark School of Engineering, 16 University of Maryland, College Park, MD 20742, USA 17 5 State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National 18 Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular 19 Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China 20 6 Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and 21 Quaternary Geology, Institute of Earth and Environment, Chinese Academy of Sciences, Xi'an 22 710061, China 1 23 7 University of Chinese Academy of Sciences, Beijing 100049, China 24 25 *Correspondence: Mingjin Tang ([email protected]) 26 27 2 28 Abstract 29 Organosulfates (OS) are important constituents of secondary organic aerosols, but their 30 hygroscopic properties and cloud condensation nucleation (CCN) activities have not been well 31 understood. -
4. Other Data Relevant to an Evaluation of Carcinogenicity and Its Mechanisms
4. Other Data Relevant to an Evaluation of Carcinogenicity and its Mechanisms 4.1 Absorption, distribution, metabolism and excretion of radionuclides The most important routes of intake of radionuclides are by inhalation and ingestion, for both workers and members of the public. Ingestion is a less important route for workers, but a proportion of inhaled material is escalated from the trachea and lungs and swallowed. Entry through contaminated wounds may also occur in certain industrial situations. Entry through intact skin is rare, although exposure to 3 H2O vapour can lead to appreciable doses by this route. Entry of radionuclides into the body by inhalation and ingestion leads to irradiation of the respiratory and gastrointestinal tracts. Entry through contaminated wounds also results in local irradiation of tissues. After intake by any route, the subsequent behaviour of the radionuclide depends on the element concerned and its chemical form during exposure. These factors determine its solubility and the extent to which it is dissolved and absorbed into the blood. On reaching the blood, the distri- bution to and retention in body tissues depend on the chemical nature of the element. If a radionuclide that enters the bloodstream is an isotope of an element that is normally present (e.g. sodium, potassium, chlorine), it will behave like the stable element. If it has similar chemical properties to an element normally present, it will tend to follow the metabolic pathways of that element (e.g. 90Sr and 226Ra behave similarly to calcium and 137Cs and 86Rb similarly to potassium), although the rate of transfer between the various compartments in the body may be different. -
SPECIATE Version 5.1 Database Development Documentation
Addendum SPECIATE Version 5.1 Database Development Documentation June 2020 EPA/600/R-20/189 EPA SPECIATE Workgroup US Environmental Protection Agency Abt Associates EPA Contract No. EP-BPA-17H-0012 The views expressed in this document are those of the authors and do not necessarily represent the views or policies of the U.S. EPA. This document has gone through review process within the Agency and is cleared for publication. Mention of trade names or commercial products does not constitute endorsement or recommendation for use. Abt Associates Report Title Insert Date ▌1 EXECUTIVE SUMMARY Executive Summary EPA is releasing an updated version of the SPECIATE database, SPECIATE 5.1, about a year after the release of SPECIATE 5.0. In lieu of full documentation, this document provides highlights of the revisions to SPECIATE 5.0. Full documentation of the SPECIATE program can be found in the SPECIATE documentation section of EPA’s air emissions modeling website. SPECIATE is the U.S. Environmental Protection Agency’s (EPA) repository of speciation profiles of air pollution sources that provide the species makeup or composition of organic gas, particulate matter (PM) and other pollutants emitted from these sources. Some of the many uses of these source profiles include: (1) creating speciated emissions inventories for regional haze, PM, greenhouse gas (GHG), and photochemical air quality modeling; (2) adding PM species in the EPA’s National Emissions Inventory (NEI); (3) developing black carbon assessments and particulate carbonaceous inventories; (4) estimating air toxic pollutant emissions from PM and organic gas primary emissions; (5) providing input to chemical mass balance (CMB) receptor models; and, (6) verifying profiles derived from ambient measurements by multivariate receptor models (e.g., factor analysis and positive matrix factorization). -
Calcium Chloride
United States Department of Agriculture Agricultural Marketing Service | National Organic Program Document Cover Sheet https://www.ams.usda.gov/rules-regulations/organic/national-list/petitioned Document Type: ☐ National List Petition or Petition Update A petition is a request to amend the USDA National Organic Program’s National List of Allowed and Prohibited Substances (National List). Any person may submit a petition to have a substance evaluated by the National Organic Standards Board (7 CFR 205.607(a)). Guidelines for submitting a petition are available in the NOP Handbook as NOP 3011, National List Petition Guidelines. Petitions are posted for the public on the NOP website for Petitioned Substances. ☒ Technical Report A technical report is developed in response to a petition to amend the National List. Reports are also developed to assist in the review of substances that are already on the National List. Technical reports are completed by third-party contractors and are available to the public on the NOP website for Petitioned Substances. Contractor names and dates completed are available in the report. Ammonium Citrate Crops 1 2 Identification of Petitioned Substance 3 4 Chemical Names: 19 Trade Names: 5 Ammonium Citrate 20 N/A 6 Citric Acid Triammonium Salt 21 7 Ammonium Citrate Tribasic CAS Numbers: 8 Ammonium Citrate Dibasic 3458-72-8 9 Ammonium Citrate Monobasic 3012-65-5 10 Citric Acid Triamine 7632-50-0 11 1,2,3-Propanetricarboxylic acid, 2-hydroxy-, 12 ammonium salt Other Codes: 13 Ammonium Hydrogencitrate EC No. 222-394-5 14 EC No. 221-146-3 15 Other Name: EC No. -
(12) Patent Application Publication (10) Pub. No.: US 2008/0166281 A1 Harms Et Al
US 2008O166281A1 (19) United States (12) Patent Application Publication (10) Pub. No.: US 2008/0166281 A1 Harms et al. (43) Pub. Date: Jul. 10, 2008 (54) METHODS FOR PRODUCING CESIUM (30) Foreign Application Priority Data HYDROXDE SOLUTIONS Jan. 27, 2005 (DE) ......................... 102005OO3999.5 (76) Inventors: Gerd J. Harms, Goslar (DE); O O Alexander Schiedt, Hahausen Publication Classification (DE); Manfred Bick, Oberursel (51) Int. Cl. (DE); Wolfgang Hildebrandt, BOID LL/00 (2006.01) Langelsheim (DE) (52) U.S. Cl. ........................................................ 423/202 Correspondence Address: (57) ABSTRACT FULBRIGHT & JAWORSKI, LLP 666 FIFTHAVE Methods for producing cesium hydroxide Solutions during NEW YORK, NY 10103-3198 which: cesium-containing ore is disintegrated with Sulfuric acid while forming a cesium aluminum Sulfate hydrate, which (21) Appl. No.: 11/795,855 is poorly soluble at low temperatures; the formed cesium alum is separated away in the form of a solution from the Solid (22) PCT Filed: Jan. 25, 2006 ore residues; the aluminum is precipitated out of the cesium alum solution while forming a cesium sulfate Solution; the (86). PCT No.: PCT/EP2006/OOO634 formed cesium sulfate solution is reacted with barium hydroxide or stontium hydroxide while forming a cesium S371 (c)(1), hydroxide solution, and; the formed cesium hydroxide solu (2), (4) Date: Nov. 1, 2007 tion is concentrated and purified. US 2008/0166281 A1 Jul. 10, 2008 METHODS FOR PRODUCING CESIUM contents of Sulfate and/or barium or has a caesium carbonate HYDROXDE SOLUTIONS Solution as the end product. This process does not give cae sium hydroxide solutions. 0007 Caesium hydroxide solutions have numerous appli 0001.