How Can Seismic Hazard Around the New Madrid Seismic Zone Be Similar to That in California ?

Total Page:16

File Type:pdf, Size:1020Kb

How Can Seismic Hazard Around the New Madrid Seismic Zone Be Similar to That in California ? How Can Seismic Hazard around the New Madrid Seismic Zone Be Similar to That in California ? Arthur Frankel U.S. Geological Survey, Denver INTRODUCTION ard from a single fault that generates earthquakes of a single magnitude. I compare hazard for a site in San Francisco With the increasing use of probabilistic seismic hazard assess- 15 km from the San Andreas Fault (Figure 1) and a site near ment (PSHA) in building codes, bridge design, loss studies, the Arkansas-Tennessee border 15 km from the narrow zone setting of insurance premiums, etc., it is evident that an of seismicity (M < 4) that likely indicates the location of the improved understanding of this method and its implications fault that generated some of the M > 7 earthquakes in the would be helpful to nonpractitioners. In this article I explain New Madrid zone (Figure 1), such as those that occurred in one result of PSHA that has caused confusion: how seismic 1811-1812. The conclusions in this paper would also be hazard at low probability levels can be similar, for some found for sites at other distances from these faults. ground-motion parameters, in the vicinity of the New The annual probability P (U_> U 0) that ground motions Madrid seismic zone in the central U.S. to the hazard in parts U at the site will be equal to or greater than some specified of California, despite the different earthquake recurrence value U 0 is the product rates in the two areas. The short answer is that one also has to consider the ground shaking generated by each earthquake, (1) which is expected to be larger for central U.S. earthquakes of ,,,(u__ Uo a given magnitude than California earthquakes of the same magnitude. The similarity in seismic hazard between the New where P(E) is the annual probability of the earthquake occur- Madrid area and California was questioned by Stein et al. ring and P(U_> U01E) is the probability of having shaking U 0 (2003) and justified in a reply by Frankel (2003). or greater at the site if that earthquake occurs. Here U is peak Probabilistic seismic hazard assessment provides esti- ground acceleration (PGA) or another measure such as mates of the probability of having ground shaking larger than response spectral acceleration (S.A.) at a certain frequency. I'll a certain amount (see Cornell, 1968). This is described in a use PGA and S.A. at 1 and 5 Hz in this article. Note that 1 seismic hazard curve, the essential product of PSHA. The and 5 Hz S.A. values are used in the International Building probabilities can be expressed as annual probabilities or as Code. One and 5 Hz are the nominal natural frequencies for probabilities over a specified number of years. Historically, frame buildings with ten and two stories, respectively. probabilities have often been expressed in terms of 50 years, The second factor on the right-hand side of Equation 1 which is frequently quoted as the effective lifetime of a typical depends on the ground motion expected for an earthquake building. The term "seismic hazard" is used here in two with a given magnitude M and distance D from the site. This senses: (1) to describe the annual probability of having a is often expressed in an "attenuation relation" or, more accu- ground motion larger than a specified value or (2) to describe rately, a "ground-motion prediction relation." It is critical to the ground motions with a specified probability of being recognize that there is variability in ground motions for a exceeded. The following arguments apply to both uses of the given magnitude and distance. This can be caused by varia- term. tions of rupture direction, focal mechanism, stress release, path effects, site conditions, etc. Typically, the ground PSHA EXAMPLES FOR CALIFORNIAAND NEW motion for any M,D is observed to follow a log-normal prob- MADRID ability distribution (e.g., Youngs et al., 1995), such as shown in Figure 2. This distribution is characterized by a median Hazard from a Single Source value, which is the ground motion that is exceeded in half the To see how seismic hazard can be similar between New observations, and the standard deviation. The second factor Madrid and California, consider the simplest example of haz- on the right-hand side of Equation 1 is the area under the dis- Seismological Research Letters September/October2004 Volume75, Number5 575 -122.6" -122.4" -122.2" -122" -90.4" -90.2" -90" -89.8" -89.6" I I I 36.2" I I 1 I / 36.2" 38,2" ssour - 7"t. I" 38" 38. ~ 35.8" 35.8" 37.8" 37,8" tl~ Arkan#sas ~ t 35.6" 35.6" 37.6" 37.6" "~ 35.4" 35,4" 37.4" ~.4"- 15 k 1 35.2" I f 35.2" -122.6" -122.4" -122.2" -122" -90.4" -90.2" -90" -89,8" -89.6" A ML ~-4.0 ~5,4 mblg ~-4.0 ~ 4.8 i Figure 1. Maps of the San Francisco Bay area (left) and New Madrid area (right), with filled circles indicating the sites considered. Solid lines indicate major faults in the San Francisco Bay area and the likely source of some of the characteristic earthquakes in New Madrid, based on the trend of microseismicity. For the San Francisco area, stars are earthquakes with M L >_ 4.0, 1933-2000. For New Madrid, stars are earthquakes with mbLg >_ 4.0, 1933-2000. Aftershocks were removed from both catalogs. Sizes of stars are keyed to magnitude. e-(b 121 _Q ,,_._ Peak Acceleration (g) Peak Acceleration (g) Peak Acceleration (g) ~10 "3 g 10 4 0,10 1.00 PGA (g) i Figure 2. Construction of a hazard curve from a single source, in this case M 7.8 earthquakes on the San Andreas Fault, with return time of 200 years. PGA is peak ground acceleration (same as "peak acceleration" in upper plots). Hazard curve is for a site 15 km from fault. At top are plots showing the area under the log-normal distribution for PGA values greater than 0.2 g, 0.38 g, and 0.6 g. The median PGA is 0.38 g. The hazard curve values are calculated using Equation 1. The probability densities are plotted as a function of log ground motion. 576 Seismological Research Letters Volume 75, Number5 September/October2004 tribution for values greater than ground motion U0. So, if U o Moving to higher ground motions, the hazard curve falls equals the median value, the probability of having ground off with a rate related to the variability of the ground-motion motion U0 or greater equals 0.5. For very low values of U0 distribution. The area under the distribution for values this probability approaches 1, and for very high U0 this prob- greater than 0.6 g equals 0.11. Thus the probability of ability approaches 0. exceeding 0.6 g equals 1/200 • 0.11, or about 1/1,800. Figure 2 shows the construction of a hazard curve for the Figure 3 shows hazard curves derived for this site in San site near the San Andreas Fault. Two segments of the San Francisco for San Andreas Fault hazard, using four different Andreas Fault most affect San Francisco: the Peninsular and attenuation relations: Sadigh et al. (1997), Abrahamson and North Coast segments. Here I use recurrence times and mag- Silva (1997), Boore et al. (1997), and Campbell and Bozo- nitudes developed in the recent report by the Working Group rgnia (2003), all derived from data from western North on California Earthquake Probabilities (2003, which I desig- American earthquakes. These attenuation relations were used nate as WG02). The mean recurrence time for scenarios in the 2002 national seismic hazard maps (Frankel et al., involving one or both of these segments is about 180 years 2002). The median PGA values for M 7.8 at 15 km horizon- (WG02), with a range of moment magnitudes M from 7.2 to tal distance vary from 0.30-0.38 g (Table 1), depending on 7.9. For scenarios involving M 7.7-7.9 on these segments, the attenuation relation, causing the horizontal shift in the the average recurrence time is 240 years (WG02). I choose a hazard curves. I have used the same variability of 0.38 natu- magnitude of 7.8 for this example, equal to the magnitude of ral-log units for each attenuation relation. Of course, ifI con- the 1906 earthquake on this portion of the San Andreas Fault sidered different earthquake recurrence times, this would (WG02), and an average recurrence time of 200 years. shift the hazard curves vertically in the plot. For this example, I use the Sadigh et al. (1997) ground- Hazard curves derived for the site near the New Madrid motion prediction relation to calculate a median PGA of source are also shown in Figure 3. Again I consider a single 0.38 g from a M 7.8 strike-slip earthquake at 15 km horizon- source. I use a recurrence time of 500 years for the character- tal distance from the fault. I assume a minimum fault depth istic source for large New Madrid earthquakes. This was of 0 km. I consider other attenuation relations later in the derived from the paleoliquefaction studies of Tuttle et al. paper. I use the Sadigh et al. (1997) value for a "rock" site (2002). They dated prehistoric sand blows and found two condition, which for California conforms to a "firm-rock" previous sequences of large earthquakes that produced lique- site condition with shear-wave velocity of about faction similar to the 1811-1812 earthquakes.
Recommended publications
  • About the New Madrid Seismic Zone
    About the New Madrid Seismic Zone The New Madrid seismic zone (NMSZ) extends more than 120 miles southward from Cairo, Illinois, at the junction of the Mississippi and Ohio rivers, into Arkansas and parts of Kentucky and Tennessee. It roughly follows Interstate 55 through Blytheville down to Marked Tree, Arkansas, crossing four state lines and the Mississippi River in three places as it progresses through some of the richest farmland in the country. The greatest earthquake risk east of the Rocky Mountains is along the NMSZ. Damaging earthquakes are not as frequent as in California, but when they do occur, the destruction covers more than 15 times the area because of the underlying geology and soil conditions prevalent in the region. The zone is active, averaging about 200 earthquakes per year, though most of them are too small to be felt. With modern seismic networks, the capability to detect earthquakes has greatly increased, and many more very small earthquakes are being detected now than in the past. There is a common misconception that the number of earthquakes has increased over the years, but the increase is due to more sophisticated recording methods that can detect earthquakes that were previously unrecorded. The history of the region tells us, however, that the earthquake risk is the most serious potential disaster we could face. In the winter of 1811-1812, a series of very large earthquakes occurred along the fault system buried deep within the NMSZ. Using felt information reported in newspapers and from eyewitness accounts of effects, magnitudes have been estimated to be 7.8, 8.0, and 8.1.
    [Show full text]
  • Seismic Tomography Uses Earthquake Waves to Probe the Inner Earth CORE CONCEPTS Sid Perkins, Science Writer
    CORE CONCEPTS Seismic tomography uses earthquake waves to probe the inner Earth CORE CONCEPTS Sid Perkins, Science Writer Computerized tomography (CT) scans revolutionized medicine by giving doctors and diagnosticians the ability to visualize tissues deep within the body in three dimensions. In recent years, a different sort of imaging technique has done the same for geophysi- cists. Seismic tomography allows them to detect and depict subterranean features. The advent of the approach has proven to be a boon for researchers looking to better understand what’s going on beneath our feet. Results have of- fered myriad insights into environmental conditions within the Earth, sometimes hundreds or even thou- sands of kilometers below the surface. And in some cases, the technique offers evidence that bolsters models of geophysical processes long suspected but previously only theorized, researchers say. Seismic tomography “lets us image Earth’s structures at all sorts of scales,” says Jeffrey Freymueller, a geo- Data gathered by a network of seismic instruments (red) have enabled researchers physicist at Michigan State University in East Lansing to discern a region of relatively cold, stiff rock (shades of green and blue) beneath eastern North America. This is likely to be the remnants of an ancient tectonic and director of the national office of the National Sci- plate. Image credit: Suzan van der Lee (Northwestern University, Evanston, IL). ence Foundation’s EarthScope. That 15-year program, among other things, operates an array of seismometers— some permanent, some temporary—that has col- through rocks that are colder, denser, and drier. By lected data across North America.
    [Show full text]
  • Study Says USGS Maps for Central U.S. Overstate Earthquake Hazard A
    Study says USGS maps for central U.S. overstate earthquake hazard A new publication from the Kentucky Geological Survey at the University of Kentucky concludes that the national earthquake hazard maps developed by the U.S. Geological Survey seriously overstate the hazard in the New Madrid Seismic Zone, which includes western Kentucky, resulting in overly stringent building codes and policies. Research that resulted in the publication also suggests that economic development is reduced and insurance costs are unnecessarily higher in western Kentucky because of the overstated hazard. The publication, “Earthquake Hazard Mitigation in the New Madrid Seismic Zone: Science and Public Policy,” is available at the KGS publications website here. The publication was developed from the master’s degree thesis of principal author Alice M. Orton. The study points out that, with very few damaging earthquakes in the New Madrid Seismic Zone, assessing the zone’s actual earthquake hazard is difficult. In such cases, mathematical earthquake models based on the San Andreas Fault and other western U.S. seismic zones have been developed to calculate seismic hazard in the New Madrid region. Geologic differences between the western United States and the central part of the country limit the applicability of western U.S. data to the central United States. This leads the study’s authors to conclude that the application of the most commonly used mathematical model to determine the hazard in the central United States, probabilistic seismic hazard analysis, is flawed and its results misinterpreted and misused for public policy decisions. The authors point out that large uncertainty is inherent in earthquake hazard assessment for regions like the central United States.
    [Show full text]
  • Paleoseismology of the Central Calaveras Fault, Furtado Ranch Site
    FINAL TECHNICAL REPORT EVALUATION OF POTENTIAL ASEISMIC CREEP ALONG THE OUACHITA FRONTAL FAULT ZONE, SOUTHEASTERN OKLAHOMA Recipient: William Lettis & Associates, Inc. 1777 Botelho Drive, Suite 262 Walnut Creek, CA 94596 Principal Investigators: Keith I. Kelson and Jeff S. Hoeft William Lettis & Associates, Inc. (tel: 925-256-6070; fax: 925-256-6076; email: [email protected]) Program Element III: Research on earthquake physics, occurrence, and effects U. S. Geological Survey National Earthquake Hazards Reduction Program Award Number 03HQGR0030 October 2007 This research was supported by the U.S. Geological Survey (USGS), Department of the Interior, under USGS award numbers 03HQGR0030. The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Government. AWARD NO. 03HQGR0030 EVALUATION OF POTENTIAL ASEISMIC CREEP ALONG THE OUACHITA FRONTAL FAULT ZONE, SOUTHEASTERN OKLAHOMA Keith I. Kelson and Jeff S. Hoeft William Lettis & Associates, Inc.; 1777 Botelho Dr., Suite 262, Walnut Creek, CA 94596 (tel: 925-256-6070; fax: 925-256-6076; email: [email protected]) ABSTRACT Previously reported evidence of aseismic creep along the Choctaw fault in southeastern Oklahoma suggested the possibility of a potentially active fault associated with the southwestern part of the Ouachita Frontal fault zone (OFFZ). The OFFZ lies between two known active tectonic features in the mid- continent: the New Madrid seismic zone (NMSZ) in the Mississippi embayment, and the Meers fault in southwestern Oklahoma. Possible evidence of aseismic fault creep with left-lateral displacement was identified in the 1930s on the basis of deformed pipelines, curbs, and buildings within the town of Atoka, Oklahoma.
    [Show full text]
  • Data for Quaternary Faults, Liquefaction Features, and Possible Tectonic Features in the Central and Eastern United States, East of the Rocky Mountain Front
    U.S. Department of the Interior U.S. Geological Survey Data for Quaternary faults, liquefaction features, and possible tectonic features in the Central and Eastern United States, east of the Rocky Mountain front By Anthony J. Crone and Russell L. Wheeler Open-File Report 00-260 This report is preliminary and has not been reviewed for conformity with U.S. Geological Survey editorial standards nor with the North American Stratigraphic Code. Any use of trade names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government. 2000 Contents Abstract........................................................................................................................................1 Introduction..................................................................................................................................2 Strategy for Quaternary fault map and database .......................................................................10 Synopsis of Quaternary faulting and liquefaction features in the Central and Eastern United States..........................................................................................................................................14 Overview of Quaternary faults and liquefaction features.......................................................14 Discussion...............................................................................................................................15 Summary.................................................................................................................................18
    [Show full text]
  • Quaternary Fault and Fold Database of the United States
    Jump to Navigation Quaternary Fault and Fold Database of the United States As of January 12, 2017, the USGS maintains a limited number of metadata fields that characterize the Quaternary faults and folds of the United States. For the most up-to-date information, please refer to the interactive fault map. Reelfoot scarp and New Madrid seismic zone (Class A) No. 1023 Last Review Date: 1994-04-12 citation for this record: Crone, A.J., and Schweig, E.S., compilers, 1994, Fault number 1023, Reelfoot scarp and New Madrid seismic zone, in Quaternary fault and fold database of the United States: U.S. Geological Survey website, https://earthquakes.usgs.gov/hazards/qfaults, accessed 01/04/2021 10:24 AM. Synopsis In the winter of 1811-1812, at least three major earthquakes occurred in the New Madrid seismic zone, and the area remains the most seismically active area in central and eastern North America. The 1811-1812 earthquakes were among the largest historical earthquakes to occur in North America and were perhaps the largest historical intraplate earthquakes in the world. The earthquakes produced widespread liquefaction throughout the seismic zone and prominent to subtle surface deformation in several areas, but they did not produce any known surface faulting. Other than the pervasive sand blows throughout the seismic zone, the Reelfoot scarp is the most prominent geomorphic feature that has been produced by the modern tectonism. Recent studies of the scarp have provided valuable information on the recurrence of deformation on the scarp, calculated uplift rates, and the history of faulting. The evidence of calculated uplift rates, and the history of faulting.
    [Show full text]
  • Impact of New Madrid Seismic Zone Earthquakes on the Central USA
    New Madrid Seismic Zone Catastrophic Earthquake Response Planning Project Impact of New Madrid Seismic Zone Earthquakes on the Central USA - Volume I - MAE Center Report No. 09-03 October 2009 Principal Investigator, University of Illinois Amr S. Elnashai Co-Investigator, Virginia Tech University Theresa Jefferson Co-Investigator, The George Washington University Frank Fiedrich Technical Project Manager, University of Illinois Lisa Johanna Cleveland Administrative Project Manager, University of Illinois Timothy Gress Mid-America Earthquake Center Civil and Environmental Engineering Department University of Illinois Urbana, Illinois 61801, USA Tel.: +1 217 244 6302, [email protected] Contributions Mid-America Earthquake Center at the University of Illinois Amr S. Elnashai, Project Principal Investigator Billie F. Spencer, Co-Investigator Arif Masud, Co-Investigator Tim Gress, Administration Manager Lisa Johanna Cleveland, Technical Manager Anisa Como, Lead Researcher Junho Song, Technical Advisor Liang Chang, Analyst Can Ünen, Analyst Bora Genctürk, Analyst Thomas Frankie, Analyst Fikri Acar, Anlayst Adel Abdelnaby, Analyst Hyun-Woo Lim, Analyst Jong Sung Lee, GIS Analyst Meghna Dutta, GIS Analyst Jessica Vlna, Administrator Breanne Ertmer, Administrator Nasiba Alrawi, Information Technology Coordinator Center for Technology, Security and Policy at Virginia Tech University and Institute for Crisis, Disaster & Risk Management at George Washington University Theresa Jefferson, Principal Investigator (VT) John Harrald, Co-Principal Investigator
    [Show full text]
  • Seismic Velocity Database for the New Madrid Seismic Zone and Its Vicinity
    Kentucky Geological Survey James C. Cobb, State Geologist and Director University of Kentucky, Lexington Seismic Velocity Database for the New Madrid Seismic Zone and Its Vicinity Qian Li Kentucky Geological Survey, University of Kentucky Edward W. Woolery Department of Earth and Environmental Sciences, University of Kentucky Matthew M. Crawford Kentucky Geological Survey, University of Kentucky David M. Vance Pioneer Natural Resources, Irving, Texas Information Circular 27 Series XII, 2013 Our Mission Our mission is to increase knowledge and understanding of the mineral, energy, and water resources, geologic hazards, and geology of Kentucky for the benefit of the Commonwealth and Nation. © 2006 University of Kentucky Earth Resources—OurFor further information Common contact: Wealth Technology Transfer Officer Kentucky Geological Survey 228 Mining and Mineral Resources Building University of Kentucky Lexington, KY 40506-0107 www.uky.edu/kgs ISSN 0075-5591 Technical Level Technical Level General Intermediate Technical General Intermediate Technical ISSN 0075-5583 Contents Abstract .........................................................................................................................................................1 Introduction .................................................................................................................................................1 The Data .......................................................................................................................................................2
    [Show full text]
  • Introduction—Investigations of the New Madrid Seismic Zone
    Introduction—Investigations of the New Madrid Seismic Zone Summary and Discussion of Crustal Stress Data in the Region of the New Madrid Seismic Zone Preliminary Seismic Reflection Study of Crowley's Ridge, Northeast Arkansas U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1538-A-C MISSOURI •Hk" I*. •"'Mk ARKANSAS I* Cover. Part of a gray, shaded-relief, reduced-to-pole magnetic anomaly map. Map area includes parts of Missouri, Illinois, Indiana, Kentucky, Tennessee, and Arkansas. Illumination is from the west. Figure is from Geophysical setting of the Reelfoot rift and relations between rift structures and the New Madrid seismic zone, by Thomas G. Hildenbrand and John D. Hendricks (chapter E in this series). Investigations of the New Madrid Seismic Zone Edited by Kaye M. Shedlock and Arch C. Johnston A. Introduction—Investigations of the New Madrid Seismic Zone By Kaye M. Shedlock and Arch C. Johnston B. Summary and Discussion of Crustal Stress Data in the Region of the New Madrid Seismic Zone By W. L. Ellis C. Preliminary Seismic Reflection Study of Crowley's Ridge, Northeast Arkansas By Roy B. VanArsdale, Robert A. Williams, Eugene S. Schweig III, Kaye M. Shedlock, Lisa R. Kanter, and Kenneth W. King U.S. GEOLOGICAL SURVEY PROFESSIONAL PAPER 1538-A-C Chapters A, B, and C are issued as a single volume and are not available separately UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1994 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Robert M. Hirsch, Acting Director Published in the Central Region, Denver, Colorado Manuscript approved for publication July 22,1993 Edited by Richard W.
    [Show full text]
  • "Tectonic Development of New Madrid Seismic Zone."
    . TECTONIC DEVELOPMENT OF THE NEW MADRID SEISMIC ZONE by Lawrence W. Braile, William J. Hirze, John L. Sexton e-N Department of Geosciences Y Purdue University West Lafayette, IN 47907 G. Randy Keller Department of Geological Sciences University of Texas at El Paso El Paso, TX 79968 and Edward G. Lidiak Department of Geology and Planetary Sciences University of Pittsburgh Pittsburgh, PA 15260 ABSTPACT Geological and geophysical studies of the New Madrid Seismic Zone have revealed a buried late Precambrian rift beneath the upper Mississippi Embayment area. The rift has influenced the tectonics and geologic history of the area since late Precambrian time and is presently associated with the contemporary earthquake activity of the New Madrid Seismic Zone. The rift formed during late Precambrian to earliest Cambrian time as a result of continental breakup and has been reactivated by compressional or tensional stresses related to plate tectonic interactions. The configuration of the buried rift is interpreted from gravity, magnetic, seismic refraction, seismic reflection and stratigraphic studies. The increased mass of the crust in the rift zone, which is reflected by regional positive gravity anomalies over the upper Mississippi Embayment area, has resulted in periodic subsidence and control of sedimentation and river drainage in this cratonic region since formation of the rift complex. The correlation of the buried rift with contemporary earthquake activity suggests that the earthquakes result from slippage along zones of weakness associated with the ancient rif t structures. The slippage is due to reactivation of the structure by the contemporary, nearly east- west regional compress've stress which is the result of plate motions.
    [Show full text]
  • Supplementary Information
    doi: 10.1038/nature08502 SUPPLEMENTARY INFORMATION 1. Sources for aftershock data in Fig. 1 a) Loma Prieta earthquake: http://neic.usgs.gov/neis/epic/ b) Dixie Valley earthquakes: http://www.seismo.unr.edu/Catalog/search.html c) New Madrid seismic zone: http://www.ceri.memphis.edu/seismic/catalogs/cat_nm.html http://www.eas.slu.edu/Earthquake_Center/earthquake_dos.html 2. Data, sources, and references for Fig. 2. Reference numbers are the same as in the paper, with the addition of ones listed below labeled “S.” Where rate data are not available, we use a nearby measurement. Rate uncertainties are difficult to precisely estimate, but are about 0.2 mm/yr for plate interior faults, 2 mm/yr for plate boundary zone faults, and 5 mm/yr for plate boundary faults. For the aftershock sequences constrained only for the upper or lower bounds, we arbitrarily plot the unconstrained upper and lower limits as 5,000 and 100 years, respectively, for intraplate earthquakes, and 500 and 50 years for events in broad plate boundary zones. Location Date(y/m/d) Magnitude Duration (yr) Loading rate and (mm/yr) and references references Eastern Reelfoot, ~4000 BC ~M 7 < 6,000 (16) < 0.2 (14) central US New Madrid, 1811/12/16 Mw 7.2 > 197 < 0.2 (14) central US 1812/01/23 Mw 7.0 1812/02/07 Mw 7.4 Meers Fault, ~800 AD ~M 7 < 1,200 (17) < 0.2 (14) Oklahoma Charlevoix, 1663/02/05 M 7.0 > 346 0.7 (15) Canada Haicheng, China 1975/02/04 M 7.0 > 35 1 (S1, S2) Tangshan, China 1976/07/28 M 7.5 > 34 2 (S1) Hebgen Lake, 1959/08/17 M 7.3 > 50 3 (9) Montana Wasatch, Utah ~
    [Show full text]
  • Seismic Hazards Range Not Counting the Far Offshore Activity on the Blanco Lori Dengler/For the Times-Standard Fault
    including five in the 7 range and twelve 6s. The Explorer region is also very active, tallying up nearly 800 quakes including 23 in the M6 range. The Juan de Fuca is the largest area and between the other two. It had fewer Not My Fault: Digging deeper into than half as many earthquakes and only one in the M6 US seismic hazards range not counting the far offshore activity on the Blanco Lori Dengler/For the Times-Standard fault. Posted December 20, 2020 To confuse the story even further, none of the modern Last week’s column generated more questions about earthquake activity in the Cascadia subduction zone seismic hazards. Why is the earthquake hazard lower in region is on the subduction zone interface. The last Oregon than in California or Washington and what’s with interplate earthquake was more than 300 years ago. The all those Midwestern and Eastern hotspots when most of current activity in the Gorda and Explorer regions are the continental US is so far from plate boundaries? because these two plates are now so small that they are breaking up. The movement of the larger plates around Let’s look at the West Coast first. We’re close to plate them has put them in a seismic vise. Many scientists boundaries, the San Andreas transform in most of argue that the Explorer region is no longer a coherent California and the Cascadia subduction zone in Northern plate and likely was not part of the most recent Cascadia California up to Southern Canada. No surprise that our subduction zone earthquake in 1700.
    [Show full text]