Flora of New Zealand Ferns and Lycophytes

Total Page:16

File Type:pdf, Size:1020Kb

Flora of New Zealand Ferns and Lycophytes FLORA OF NEW ZEALAND FERNS AND LYCOPHYTES SALVINIACEAE P.J. BROWNSEY & L.R. PERRIE Fascicle 10 – MARCH 2015 © Landcare Research New Zealand Limited 2015. Unless indicated otherwise for specific items, this copyright work is licensed under the Creative Commons Attribution 3.0 New Zealand license. Attribution if redistributing to the public without adaptation: “Source: Landcare Research" Attribution if making an adaptation or derivative work: “Sourced from Landcare Research" See Image Information for copyright and licence details for images. CATALOGUING IN PUBLICATION Brownsey, P.J. (Patrick John), 1948- Flora of New Zealand [electronic resource] : ferns and lycophytes. Fascicle 10, Salviniaceae / P.J. Brownsey and L.R. Perrie. -- Lincoln, N.Z. : Manaaki Whenua Press, 2015. 1 online resource ISBN 978-0-478-34779-1 (pdf) ISBN 978-0-478-34761-6 (set) 1.Ferns -- New Zealand - Identification. I. Perrie, L.R. (Leon Richard). II. Title. III. Manaaki Whenua- Landcare Research New Zealand Ltd. UDC 582.394.771(931)DC 587.30993 DOI: 10.7931/B1H59T This work should be cited as: Brownsey, P.J. & Perrie, L.R. 2015: Salviniaceae. In: Breitwieser, I.; Heenan, P.B.; Wilton, A.D. Flora of New Zealand — Ferns and Lycophytes. Fascicle 10. Manaaki Whenua Press, Lincoln. http://dx.doi.org/10.7931/B1H59T Cover image: Azolla rubra, plants floating on the surface of standing water with irregularly branched stems bearing densely imbricate bilobed floating leaves Contents Introduction..............................................................................................................................................1 Taxa Salviniaceae Martinov ....................................................................................................................... 2 Azolla Lam. ........................................................................................................................................2 Azolla pinnata R.Br. ........................................................................................................................... 3 Azolla rubra R.Br. .............................................................................................................................. 5 Salvinia Ség. ......................................................................................................................................6 Salvinia ×molesta D.S.Mitch. .............................................................................................................7 References ........................................................................................................................................... 10 Acknowledgements ...............................................................................................................................12 Maps .....................................................................................................................................................13 Index .....................................................................................................................................................15 Image Information .................................................................................................................................16 Introduction The family Salviniaceae is represented in New Zealand by two genera, Azolla and Salvinia. Azolla has one indigenous and one naturalised species, whilst Salvinia is represented by a single species which has been declared a noxious weed. Azolla rubra is indigenous, occurring in slow-moving streams and ponds throughout the North Island and the eastern half of the South Island. Azolla pinnata was first recorded in 1969, and is largely confined to the northern North Island, but is now spreading southwards, and has replaced A. rubra in some parts of Northland. Salvinia ×molesta is an extremely aggressive weed of lakes and ponds in Northland and Auckland. Both genera are free-floating, aquatic ferns with highly modified leaves adapted for flotation; they are characteristically heterosporous, producing mega- and microsporangia in hardened sporocarps. Azolla has small leaves and forms red carpets of growth on the water surface. Salvinia has dimorphic leaves arranged in whorls of three, and in S. ×molesta, characteristic egg-whisk-shaped hairs on the floating leaves for buoyancy. 1 Salviniaceae Martinov, Tekhno-Bot. Slovar, 559 (1820) = Azollaceae Wettst., Handb. Syst. Bot. 2, 77 (1903) Type taxon: Salvinia Ség. Aquatic ferns, free-floating. Stems slender, branching, glabrous or hairy; roots either long and pendent, or absent. Leaves either monomorphic and bilobed, with the upper lobe aerial and green and the lower colourless and floating, or dimorphic and arranged in whorls of 3, with two floating and one submerged; not articulated, herbaceous, papillate or with very specialised hairs, non-circinate when young. Veins anastomosing, or absent. Sporocarps globose or conical, sessile or stalked, glabrous or hairy, either attached to the lower lobes of bilobed leaves, or to the submerged leaves, splitting open irregularly, each sporocarp bearing either mega- or microsporangiate sori. Annulus absent. Heterosporous, spores trilete, lacking chlorophyll; one megaspore in each megasporangium and 32–64 microspores in each microsporangium. Megaspores spheroidal, plain to tuberculate; microspores spheroidal, and plain to rugulate. Taxonomy: A family of two genera and about 17 species. The Salviniaceae comprises floating aquatic ferns with highly modified leaves adapted for flotation, mega- and micro-sporangia borne in hardened sporocarps that give rise to mega- and micro-spores, and spores which germinate into greatly reduced gametophytes still attached to the parent spore. Pryer (1999) and Pryer et al. (2004) showed that the heterosporous ferns, Salviniales, are one of three major lineages of “core leptosporangiate” ferns, along with tree ferns and polypod ferns. Nagalingum et al. (2008) subsequently confirmed that Salviniales is divided into two strongly supported families, the Marsileaceae and Salviniaceae, and that within Salviniaceae there is strong support for recognition of two genera, Azolla and Salvinia. Schneider & Pryer (2002) also demonstrated that the spores of Marsileaceae are markedly different to those of Salviniaceae and all homosporous ferns. The morphology of the reproductive structures in heterosporous water ferns has been critically examined by Nagalingum et al. (2006). Some authors (Schneller 1990a; Chinnock 1998; Jones 1998) recognise two separate families, Azollaceae and Salviniaceae, on the basis of the significant differences in the morphology of the two groups, but we follow Smith et al. (2006) and Christenhusz et al. (2011) in recognising just one family. It is represented in New Zealand by one indigenous genus (Azolla) and one fully naturalised genus (Salvinia). Distribution: Widespread in tropical and temperate regions. One native and one naturalised genus with three species in New Zealand; none endemic. Biostatus: Indigenous (Non-endemic). Table 1: Number of species and named hybrids in New Zealand within Salviniaceae Martinov Category Number Indigenous (Non-endemic) 1 Exotic: Fully Naturalised 2 Total 3 Azolla Lam., Encycl. 1, 343 (1783) Type taxon: Azolla filiculoides Lam. Etymology: From the Greek azo (to dry), and ollyo (to kill), a reference to the fact that plants are killed by drying out. Aquatic ferns, free-floating. Stems short, branching, glabrous or sometimes hairy, bearing pendent roots. Leaves monomorphic, bilobed; the upper lobe aerial, green, papillate, containing the cyanobacterium Anabaena in a large cavity on the lower surface; the lower lobe colourless and floating; both lobes glabrous. Veins absent. Sporocarps usually absent in NZ; when present, borne on the first leaf of a lateral branch, in the axil of the lower lobe and protected by the upper lobe; megasporocarps oblong-conical; microsporocarps ovoid to globular, usually larger than megasporocarps. Megaspores solitary in each megasporangium, bearing hair-like filaments at the base and floats (massulae) at the apex. Microspores 32–64 in each microsporangium, mixed with massulae that bear hooked processes (glochidia). Megaspores spheroidal, coarsely tuberculate, perforate; microspores spheroidal, plain. 2 1 Plants regularly 2-3-pinnate; roots with fine lateral rootlets .................... .................... pinnata Plants irregularly branched; roots simple ........................................................................ rubra Distribution: Seven species widespread in tropical and temperate regions (Reid et al. 2006); four occur in North and South America, two in Africa and Asia, and two in Australia, one of which is also native to New Zealand and the other introduced. One naturalised and one native species in New Zealand. Biostatus: Indigenous (Non-endemic). Table 2: Number of species in New Zealand within Azolla Lam. Category Number Indigenous (Non-endemic) 1 Exotic: Fully Naturalised 1 Total 2 Cytology: The base chromosome number in Azolla is x = 22 (Schneller 1990a). Notes: Plants of Azolla are free-floating and capable of covering large areas of slow-moving or still water. They are easily recognised as a red carpet of growth on the water surface. In New Zealand, fertile plants are rarely found, and reproduction is usually vegetative by fragmentation of the lower branches of the plants. Only five collections with sporocarps have been detected in New Zealand herbaria (AK 284894, CHR 168181, 214754, WELT
Recommended publications
  • 1 5 Chapter 1 Introduction I. LIFE CYCLES and DIVERSITY of VASCULAR PLANTS the Subjects of This Thesis Are the Pteri
    Chapter 1-15 Chapter 1 Introduction I. LIFE CYCLES AND DIVERSITY OF VASCULAR PLANTS The subjects of this thesis are the pteridophytes and seed plants that are conventionally classified as the vascular plants or tracheophytes. Vascular plants were traditionally defined by the possession of specialized conducting tissues, called phloem and xylem. Mosses are now believed to have inherited their conducting tissues from a common ancestor with the tracheophytes (Mishler & Churchill 1984) but are not considered in this thesis. Vascular plants can be divided into four groups with respect to life cycle. These groups are homosporous pteridophytes, heterosporous pteridophytes, gymnosperms and angiosperms. This is not intended to be a phylogenetic classification. There are about a quarter of a million species of vascular plant alive today. The vast majority are angiosperms and most of the remainder are homosporous pteridophytes. Heterosporous pteridophytes and gymnosperms contribute only a small number of species (Table 1.1). TABLE 1.1 Estimated number of extant species in each of the major groups of vascular plants (data from Parker 1982). Homosporous pteridophytes 12,000 species Heterosporous pteridophytes <1,000 species Gymnosperms <1,000 species Angiosperms >200,000 species A. Homosporous pteridophytes Homosporous pteridophytes produce a single type of spore. Spores are dispersed and develop into photosynthetic or mycoparasitic gametophytes. A gametophyte's gender is indeterminate at the time of spore dispersal, and a single gametophyte may produce eggs and/or sperm. Sperm are motile, and require free water to fertilize eggs. The young sporophyte is nourished by the maternal gametophyte during early development but later becomes Chapter 1-16 nutritionally independent.
    [Show full text]
  • Water Ferns Azolla Spp. (Azollaceae) As New Host Plants for the Small China-Mark Moth, Cataclysta Lemnata (Linnaeus, 1758) (Lepidoptera, Crambidae, Acentropinae)
    ©Societas Europaea Lepidopterologica; download unter http://www.soceurlep.eu/ und www.zobodat.at Nota Lepi. 40(1) 2017: 1–13 | DOI 10.3897/nl.40.10062 Water ferns Azolla spp. (Azollaceae) as new host plants for the small China-mark moth, Cataclysta lemnata (Linnaeus, 1758) (Lepidoptera, Crambidae, Acentropinae) Atousa Farahpour-Haghani1,2, Mahdi Hassanpour1, Faramarz Alinia2, Gadir Nouri-Ganbalani1, Jabraeil Razmjou1, David Agassiz3 1 University of Mohaghegh Ardabili, Faculty of Agriculture and Natural Resources, Department of Plant Protection, Ardabil, Iran 2 Rice Research Institute of Iran (RRII), Agricultural Research, Education and Extension Organization (AREEO), Rasht, Iran 3 Department of Life Sciences, Natural History Museum, London SW7 5BD, England http://zoobank.org/307196B8-BB55-492B-8ECC-1F518D9EC9E4 Received 1 August 2016; accepted 3 November 2016; published: 20 January 2017 Subject Editor: Bernard Landry. Abstract. Water ferns (Azolla spp., Azollaceae) are reported for the first time as host plants for the larvae of the small China-mark moth Cataclysta lemnata (Linnaeus) (Lepidoptera: Crambidae: Acentropinae) in rice fields and waterways of northern Iran. Cataclysta lemnata is a semi-aquatic species that has been recorded to feed on Lemnaceae and a few other aquatic plants. However, it has not been reported before on Azolla spp. Larvae use water fern as food source and shelter and, at high population density in the laboratory, they completely wiped water fern from the water surface. Feeding was confirmed after rearing more than eight continual generations of C. lemnata on water fern in the laboratory. Adults obtained this way are darker and have darker fuscous markings in both sexes compared with specimens previously reported and the pattern remains unchanged after several generations.
    [Show full text]
  • Mexican Mosquito Fern (Azolla Mexicana)
    COSEWIC Assessment and Update Status Report on the Mexican Mosquito-fern Azolla mexicana in Canada THREATENED 2008 COSEWIC status reports are working documents used in assigning the status of wildlife species suspected of being at risk. This report may be cited as follows: COSEWIC. 2008. COSEWIC assessment and update status report on the Mexican Mosquito-fern Azolla mexicana in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vi + 35 pp. (www.sararegistry.gc.ca/status/status_e.cfm). Previous reports: COSEWIC. 2000. COSEWIC assessment and update status report on the Mexican mosquito-fern Azolla mexicana in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. vi + 11 pp. Martin, M.E. 2000. Update COSEWIC status report on the Mexican mosquito-fern Azolla mexicana in Canada, in COSEWIC assessment and update status report on the Mexican mosquito-fern Azolla mexicana in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 1-11 pp. Brunton, D.F. 1984. COSEWIC status report on the mosquito fern Azolla mexicana in Canada. Committee on the Status of Endangered Wildlife in Canada. Ottawa. 36 pp. Production note: COSEWIC would like to acknowledge Brian Klinkenberg for writing the status report on the Mexican Mosquito-fern Azolla mexicana in Canada, prepared under contract with Environment Canada, overseen and edited by Erich Haber, Co-chair, COSEWIC Vascular Plants Specialist Subcommittee. For additional copies contact: COSEWIC Secretariat c/o Canadian Wildlife Service Environment Canada Ottawa, ON K1A 0H3 Tel.: 819-953-3215 Fax: 819-994-3684 E-mail: COSEWIC/[email protected] http://www.cosewic.gc.ca Également disponible en français sous le titre Ếvaluation et Rapport de situation du COSEPAC sur l’azolle du Mexique (Azolla mexicana) au Canada – Mise à jour.
    [Show full text]
  • Notes on Japanese Ferns II. by T. Nakai
    Notes on Japanese Ferns II. By T. Nakai (I.) PolypodiaceaeR. BROWN, Prodr. F1. Nov. Holland. p. I45 (i8io), pro parte. Plzysematiurn KAULFVSS in Flora (1829) p. 34I. The species of this genus have not articulation at the stipes of fronds. The indusium is complete sac, bursting irregularly in its maturity. DIEi.S took this for Woodsia on account of the lack of articulation at the stipes of Woodsia polystichoides. The ordinary Woodsiahas horizontal articulation in the middle of the stipes of the frond. But in Woodsiapolystichoides articulation comes at the upper end of the stipes. It is oblique and along the segmental line many lanceolate paleae arrange in a peculiar mode. DIETShas overlooked this fact, and perhaps CHRISTENSENhad the same view. By this peculiar mode of articulation Woodsiapolystichoides evidently repre- sents a distinct section Acrolysis NAKAI,sect. nov. However, the indusium of Woodsiapolystichoides is Woodsia-type; incomplete mem- brane covering the lower part of sorus and ending with hairs. This mode of indusium is fundamentally different from I'hysennatium,and I take Woodsia distinct from Plzysematzum. Among the numbers of species of Japanese Woodsia only one belongs to Pliysenzatium. P/zysernatiulnmanclzuricnse NAKAI, comb. nov. Woodsiamanclzuriensis W. J. HOOKER,2nd Cent. t. 98 (i86i). Diacalpe manclzuriensisTREVISAN Nuo. Giorn. Bot. Ital. VII. p. I6o (I875). Hab. Japonia, Corea, Manchuria et China bor. Vittaria formosana NAKAI,sp. nov. (Eu-Vittaria). Vittaria elongata (non SWARTZ)HARRINGTON in Journ. Linn. Soc. XVI. p. 3 3 (1878); pro parte, quoad plantam ex Formosa. BAKER July,1925 NAKAI-NOTESON JAPANESE FERNS II 177 in BRITTEN,Journ. Bot.
    [Show full text]
  • Waimea Inlet Restoration Information for Communities on Best Practice Approaches CONTENTS
    Waimea Inlet restoration Information for communities on best practice approaches CONTENTS 1. Purpose 1 2. Context 1 2.1 Why restore Waimea Inlet’s native ecosystems? 1 2.2 Long-term benefits of restoration 3 2.3 Threats to Waimea Inlet 3 2.4 ‘Future proofing’ for climate change 4 3. Legal considerations 4 4. Ways to get involved 5 4.1 Join an existing project 5 4.2 Set up your own project 5 4.3 Other ways to contribute 6 5. Basic principles for restoration projects 6 5.1 Habitat restoration and amenity planting values 6 5.2 Ecosourcing 7 5.3 Ecositing 7 6. Project planning and design 8 6.1 Restoration plan and objectives 8 6.2 Health and safety 9 6.3 Baseline surveys of the area’s history, flora, fauna and threats 9 7. Implementation – doing the restoration work 12 7.1 The 5 stages of restoration planting 12 7.2 How to prepare your site 14 7.3 How to plant native species 17 7.4 Cost estimates for planting 19 7.5 Managing sedimentation 19 7.6 Restoring whitebait habitat 19 7.7 Timelines 20 7.8 Monitoring and follow-up 20 Appendix 1: Native ecosystems and vegetation sequences in Waimea Inlet’s estuaries and estuarine margin 21 Appendix 2: Valuable riparian sites in Waimea Inlet for native fish, macroinvertebrates and plants 29 Appendix 3: Tasman District Council list of Significant Natural Areas for native species in Waimea Inlet estuaries, margins and islets 32 Appendix 4: Evolutionary and cyclical nature of community restoration projects 35 Appendix 5: Methods of weed control 36 Appendix 6: Further resources 38 1.
    [Show full text]
  • Identification Guide Freshwater Pests of NZ
    Freshwater pests of New Zealand Invasion of our freshwaters by alien species is a major issue. Today, few if any New Zealand water bodies support a biota that is wholly native. Over 200 freshwater plant and animal species have been introduced to New Zealand, many of which have naturalised and become pests, or have the potential to become pests. Impacts from these species are significant, including reduction in indigenous biodiversity, destabilisation of aquatic habitats, economic losses through lost power generation, impeded drainage or irrigation, and reduced opportunity for recreational activities like boating and fishing. The Ministry for the Environment publication Alien Invaders (Champion et al. 2002) outlines the entry pathways, methods of spread, and impacts and management of freshwater pests, and is recommended for anyone interested in this field. This freshwater pest identification guide is divided into three sections: fish, invertebrates, and plants. It provides keys to the identity of pest fish (7 species) and aquatic weeds (38 species) and provides photographs and information on the known distribution, identification features, similar species and how to distinguish them, dispersal mechanisms, and biosecurity risks for these and an additional 12 introduced invertebrates. The technical terms used in the keys are explained in a glossary at the back of the guide. If you find a pest species in a different locality to those listed in the guide, please forward this information to P. Champion, NIWA, P O Box 11115, Hamilton. Page 5 Page 23 Page 37 Page 84 Field key for identifying the main exotic fish in New Zealand freshwater (Italics indicate fish that key out as native species.
    [Show full text]
  • A Critical Study on Chemistry and Distribution of Phenolic Compounds in Plants, and Their Role in Human Health
    IOSR Journal of Environmental Science, Toxicology and Food Technology (IOSR-JESTFT) e-ISSN: 2319-2402,p- ISSN: 2319-2399. Volume. 1 Issue. 3, PP 57-60 www.iosrjournals.org A Critical Study on Chemistry and Distribution of Phenolic Compounds in Plants, and Their Role in Human Health Nisreen Husain1, Sunita Gupta2 1 (Department of Zoology, Govt. Dr. W.W. Patankar Girls’ PG. College, Durg (C.G.) 491001,India) email - [email protected] 2 (Department of Chemistry, Govt. Dr. W.W. Patankar Girls’ PG. College, Durg (C.G.) 491001,India) email - [email protected] Abstract: Phytochemicals are the secondary metabolites synthesized in different parts of the plants. They have the remarkable ability to influence various body processes and functions. So they are taken in the form of food supplements, tonics, dietary plants and medicines. Such natural products of the plants attribute to their therapeutic and medicinal values. Phenolic compounds are the most important group of bioactive constituents of the medicinal plants and human diet. Some of the important ones are simple phenols, phenolic acids, flavonoids and phenyl-propanoids. They act as antioxidants and free radical scavengers, and hence function to decrease oxidative stress and their harmful effects. Thus, phenols help in prevention and control of many dreadful diseases and early ageing. Phenols are also responsible for anti-inflammatory, anti-biotic and anti- septic properties. The unique molecular structure of these phytochemicals, with specific position of hydroxyl groups, owes to their powerful bioactivities. The present work reviews the critical study on the chemistry, distribution and role of some phenolic compounds in promoting health-benefits.
    [Show full text]
  • Molecular Identification of Azolla Invasions in Africa: the Azolla Specialist, Stenopelmus Rufinasus Proves to Be an Excellent Taxonomist
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/303097315 Molecular identification of Azolla invasions in Africa: The Azolla specialist, Stenopelmus rufinasus proves to be an excellent taxonomist Article in South African Journal of Botany · July 2016 DOI: 10.1016/j.sajb.2016.03.007 READS 51 6 authors, including: Paul T. Madeira Martin P. Hill United States Department of Agriculture Rhodes University 24 PUBLICATIONS 270 CITATIONS 142 PUBLICATIONS 1,445 CITATIONS SEE PROFILE SEE PROFILE Julie Angela Coetzee I.D. Paterson Rhodes University Rhodes University 54 PUBLICATIONS 423 CITATIONS 15 PUBLICATIONS 141 CITATIONS SEE PROFILE SEE PROFILE All in-text references underlined in blue are linked to publications on ResearchGate, Available from: I.D. Paterson letting you access and read them immediately. Retrieved on: 16 August 2016 South African Journal of Botany 105 (2016) 299–305 Contents lists available at ScienceDirect South African Journal of Botany journal homepage: www.elsevier.com/locate/sajb Molecular identification of Azolla invasions in Africa: The Azolla specialist, Stenopelmus rufinasus proves to be an excellent taxonomist P.T. Madeira a,M.P.Hillb,⁎,F.A.DrayJr. a,J.A.Coetzeeb,I.D.Patersonb,P.W.Tippinga a United States Department of Agriculture, Agriculture Research Service, Invasive Plant Research Laboratory, 3225 College Avenue, Ft. Lauderdale, FL 33314, United States b Department of Zoology and Entomology, Rhodes University, Grahamstown, South Africa article info abstract Article history: Biological control of Azolla filiculoides in South Africa with the Azolla specialist Stenopelmus rufinasus has been Received 18 September 2015 highly successful. However, field surveys showed that the agent utilized another Azolla species, thought to be Received in revised form 18 February 2016 the native Azolla pinnata subsp.
    [Show full text]
  • Information Sheet 22: Azolla Filiculoides Water Fern
    Centre for Aquatic Plant Management Information Sheet 22: Azolla filiculoides Water fern Azolla filiculoides is probably the only species of floating fern found in Britain, although there are some known observations of A. caroliniana but no herbarium specimens to check. The plant is a native of North America, where A. filiculoides occurs in the west and A. caroliniana occurs in the east. The two species differ in the number of leaf hairs and the number of edge cells to the leaf fronds. The most characteristic feature of this plant is the red colouration taken on over the winter or when the plant is stressed, it is usually green during the summer months. It reproduces both vegetatively as the fronds grow and sexually by producing spores. Germinating spores can give rise to dense infestations of this plant and are the main method of overwintering. Spore production occurs as a result of stress when the plants start to form dense mats. The spores are released into the water so that controlling or harvesting the floating mats after this stage will not prevent re-infestation. The plant is free-floating often building up into thick layers where wind and currents collect it. Azolla can grow in any depth of water but is not tolerant of waves or turbulence and can be flushed away in fast flowing waters. Free-floating weeds tend to be most troublesome in static or very slow moving water and are usually flushed out of faster flowing rivers, except where they are held back by dams or weirs. It is unusual for Azolla to cause serious land drainage problems because it causes relatively low impedance to flow and tends to be washed out in periods of high flow.
    [Show full text]
  • (Coleoptera: Curculionidae) for the Control of Salvinia
    Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2011 Introduction and Establishment of Cyrtobagous salviniae Calder and Sands (Coleoptera: Curculionidae) for the Control of Salvinia minima Baker (Salviniaceae), and Interspecies Interactions Possibly Limiting Successful Control in Louisiana Katherine A. Parys Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations Part of the Entomology Commons Recommended Citation Parys, Katherine A., "Introduction and Establishment of Cyrtobagous salviniae Calder and Sands (Coleoptera: Curculionidae) for the Control of Salvinia minima Baker (Salviniaceae), and Interspecies Interactions Possibly Limiting Successful Control in Louisiana" (2011). LSU Doctoral Dissertations. 1565. https://digitalcommons.lsu.edu/gradschool_dissertations/1565 This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please [email protected]. INTRODUCTION AND ESTABLISHMENT OF CYRTOBAGOUS SALVINIAE CALDER AND SANDS (COLEOPTERA: CURCULIONIDAE) FOR THE CONTROL OF SALVINIA MINIMA BAKER (SALVINIACEAE), AND INTERSPECIES INTERACTIONS POSSIBLY LIMITING SUCCESSFUL CONTROL IN LOUISIANA. A Dissertation Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Doctor of Philosophy in The Department of Entomology By Katherine A. Parys B.A., University of Rhode Island, 2002 M.S., Clarion University of Pennsylvania, 2004 December 2011 ACKNOWLEDGEMENTS In pursing this Ph.D. I owe many thanks to many people who have supported me throughout this endeavor.
    [Show full text]
  • Azolla-Anabaena Symbiosis : Its Physiology and Use in Tropical
    6. Azolla-Anabaena symbiosis - its physiology and use in tropical agriculture 1. WATANABE 1. Introduction Azolla is a water fem widely distributed in aquatic habitats like ponds, canals, and paddies in temperate and tropical regions. This plant has been of interest to botanists and Asian agronoTIÙsts because of its symbiotic association with a N2 ­ fIxing blue-green alga and rapid growth in nitrogen-defIcient habitats. Recently, the interest in this plant-alga association has been renewed by the demand for less fossil energy·dependent agricultural technology. Reviews on updatinginformation were made by Moore [20], Watanabe [42] ,and Lumpkin and Plucknett [19]. A bibliographic list was published by the Inter­ national Rice Research Institute [15] . 2. Biology and physiology of Azolla-alga relation Azolla belongs to the Azollaceae, a heterosporous free-floating fem, and is close to the family Salviniaceae. There are six extant species of Azolla (Table 1) and 25 fossil species are recorded [14]. These are divided into two subgenera: El{azolla, a New World azolla, and Rhizosperma. Species differentiation is based on the morphology of the sexual organ. The number of septa in the glochidia was used as a taxonomic tool to differentiate Euazolla. This criterion was questioned by taxonomists because of variations within a given species [10] . In the subgenus Rhizosperma, the glochidia are replaced by a root-like structure emerging from the massulae in the micro­ sporangium. In A. nilotica, neither the glochidia nor the root-lïke structure is present on the massulae (Fig. 1). Because the sporocarps are usually absent in naturally grown azolla, it is difft­ cult to identify species.
    [Show full text]
  • Water Spangles (Salvinia Minima) ERSS
    Water Spangles (Salvinia minima) Ecological Risk Screening Summary U.S. Fish & Wildlife Service, December 2014 Revised, April 2018 Web Version, 8/19/2019 Photo: Kurt Stüber. Licensed under Creative Commons Attribution-Share Alike 3.0 Unported. Available: https://commons.wikimedia.org/wiki/File:Salvinia_minima_1.jpg. (April 2018). 1 Native Range and Status in the United States Native Range GISD (2018) lists Salvinia minima as native to Argentina, Belize, Bolivia, Brazil, Colombia, Cuba, Ecuador, El Salvador, Guatemala, Honduras, Mexico, Nicaragua, Panama, Paraguay, Peru, Puerto Rico, Uruguay, and Venezuela. From Howard Morgan (2018): “Native Range: Central and South America; common and wide-ranging from southern Mexico to northern Argentina and Brazil (Mickel a[n]d Beitel 1988, [Stoltze] 1983). De la Sota (1976) 1 remarked that, in Argentina, the natural range of Salvinia minima could not be precisely determined due to its frequency in the watergarden and aquarium trade.” Status in the United States GISD (2018) lists Salvinia minima as alien, invasive and established in Alabama, Florida, Louisiana, Minnesota, New York, and Texas. Howard Morgan (2018) list Salvinia minima as present in the wild in Alabama (first report in 1982), Arkansas (first report in 1998), California (first report in 2008), Florida (first report in 1930), Georgia (first report in 1936), Idaho (first report in 2004), Louisiana (first report in 1980), Maryland (first report in 1984), Massachusetts (first report in 1992), Mississippi (first report in 1999), New Mexico (first report in 1999), New York (first report in 1990), Ohio (first report in 2017), Oklahoma (first report in 1989), Puerto Rico (first report in 1998), South Carolina (first report in 1997), and Texas (first report in 1992).
    [Show full text]