The Tadpole and Advertisement Call of Physalaemus Aguirrei Bokermann, 1966 (Amphibia, Anura, Leptodactylidae)

Total Page:16

File Type:pdf, Size:1020Kb

The Tadpole and Advertisement Call of Physalaemus Aguirrei Bokermann, 1966 (Amphibia, Anura, Leptodactylidae) Short Notes 197 The tadpole and advertisement call of Physalaemus aguirrei Bokermann, 1966 (Amphibia, Anura, Leptodactylidae) Bruno V.S. Pimenta, Carlos Alberto Gonçalves Cruz Museu Nacional/UFRJ, Departamento de Vertebrados, Quinta da Boa Vista, 20940-040, Rio de Janeiro, RJ, Brazil e-mail: [email protected]; [email protected] The neotropical frog genus Physalaemus is currently composed of 41 valid species (Frost, 2002) arranged in four groups (Lynch, 1970). The Physalaemus cuvieri group is the most diversified, with 20 species occurring from northern to southern South America (Frost, 2002). Information about tadpoles of nine species and vocalizations of fifteen species of this group are available in literature (see Bokermann, 1962, 1966a, 1966b, 1967; Barrio, 1964, 1965; Langone, 1989; Heyer et al., 1990; Rossa-Feres and Jim, 1993; Duellman, 1997; Perroti, 1997; Cannatella et al., 1998; Tárano, 2001). However, Physalaemus aguirrei is a poorly known species of this group, occurring in the Atlantic Forest in the states of Espírito Santo and Bahia, Brazil (Van Sluys, 1998; Frost, 2002). According to Bokermann (1966a), this species can be found dwelling on the forest floor litter but breeds in temporary ponds in open habitats. Feio et al. (1999) pointed out that P. aguirrei, P. maximus, P. olfersii,andP. soaresi could compose a new species group, due to morphological similarities, and their forest breeding habits but they lacked necessary evidence to confirm this suggestion. Herein, we follow Lynch’s (1970) organisation of the P. cuvieri group. The purpose of this paper is to provide information on tadpole morphology, advertisement call structure and habitat of P. aguirrei. Tadpoles were obtained from a foam nest collected in a temporary pond inside the forest at Parque Nacional Descobrimento (17◦06S, 39◦20W), Municipality of Prado, southern region of the State of Bahia, Brazil, on 22 April 2002. The nest was partially degraded and had a small number of embryos inside, indicating that oviposition had not occurred recently. The tadpoles were reared in laboratory. Seven tadpoles at stage 36 and two at stage 37 (Gosner, 1960) were preserved in 5% formalin and deposited at Museu Nacional, Rio de Janeiro (MNRJ 30591). Measurements (table 1) were made with an ocular grid and a caliper. The terminology we use follows Altig and Johnston (1986) and Johnston and Altig (1986). Advertisement calls were recorded with a Sony TCD-D8 DAT-recorder with a Sennheiser K6/ME66 micro- phone set, on the same date and locality where tadpoles were collected. Sonograms were analyzed with the soft- ware Avisoft-Sonagraph Light 1, version 2.7. Vocalizations were digitalized and edited at a sampling frequency of 22 KHz, FFT with 256 points, and 16 bit resolution. Air temperature was recorded with a digital thermometer to the nearest 0.1◦C. Terminology follows Duellman (1970). Description of the tadpole. Stages 36-37 (Gosner, 1960). Mean total length 20.6 mm (16.6-25.4 mm; n = 9). Body robust, oval in dorsal and ventral views, elliptical in lateral view (fig. 1A, B, C); snout rounded in dorsal and lateral views; body length about 40% (39- 43%) of total length; body width approximately 70% (62-80%) of body length. Nostrils © Koninklijke Brill NV, Leiden, 2004 Amphibia-Reptilia 25: 197-204 Also available online - www.brill.nl 198 Short Notes Table 1. Mean (x)¯ , range and standard deviation (s) of measurements (in mm) of Physalaemus aguirrei tadpoles (n = 9; stages 36-37). x¯ Range s Total length 20.6 16.6-25.4 3.50 Body length 8.2 7.9-8.8 0.28 Body width 5.7 5.1-6.5 0.48 Body height 4.5 3.8-5.3 0.49 Tail length 12.4 8.5-16.6 3.29 Tail height 4.0 3.6-4.6 0.33 Distance nostril-snout 1.2 0.9-1.6 0.22 Distance eye-nostril 1.0 0.8-1.2 0.12 Interorbital distance 2.6 2.5-2.8 0.10 Internostril distance 0.9 0.8-1.0 0.05 Eye diameter 1.1 1.0-1.2 0.08 Oral disc width 2.2 1.8-2.5 0.21 large, nearly round, located and oriented dorsally, closer to eyes than to snout; internostril distance about 35% of interocular distance; eyes located dorsolaterally; eye-nostril distance about 89% of eye diameter; spiracle single, sinistral, short and projected, opening at the end of the second third of body length and posterodorsally oriented; vent tube medial, wide and long, attached to ventral fin, with opening oriented posteriorly (fig. 1C). Tail with approximately 60% of total length, with nearly the same height of body; tail musculature moderated; dorsal fin extending onto the posterior third of body; ventral fin wide arched, narrower than dorsal, that is nearly rectilineal; tail tip slightly directed upwards (fig. 1A). Oral disc anteroventral, laterally emarginated, its width approximately 38% of body width; one series of marginal papillae in the upper lip, interrupted by a wide medial gap; lower lip with two emarginations; marginal papillae of medial margin have their bases in one series, but with alternate papillae projected anteriorly and posteriorly, emulating a double row; margins on each side of the emarginations with one series of marginal papillae and one series of submarginal papillae; labial tooth row formula 2(2)/3(1). The two anterior and the first posterior teeth rows have approximately the same length; second posterior teeth row slightly shorter than first, and third posterior teeth row with nearly half length of first; upper jaw sheath arch-shaped and lower sheath “V”-shaped (fig. 1D). Color of tadpole in 5% formalin: Body translucent with many brown spots on dorsum; two or three weakly pigmented brown transverse stripes on the dorsal surface of tail, lateral surfaces with scattered brown dots; fins translucent with brown dots, more abundant on dorsal fin; legs with brown spots on dorsal surfaces. A brown blotch between the eyes, extending to the middle of body. Advertisement call consisted of a single note with a fundamental frequency and seven harmonics between 0.43 and 4.73 kHz, with descendent frequency modulation (fig. 2A). The mean duration of the advertisement call was 0.23 s (s = 0.01, range = 0.21-0.25, n = 55 calls of one male) (fig. 2B), and the mean intercall interval (defined here as the time from the end of one call to the beginning of the next call) was 1.22 s (s = 0.80, Short Notes 199 Figure 1. Tadpole of Physalaemus aguirrei, stage 37 of Gosner (1960): (A) lateral view; (B) dorsal view; (C) ventral view (scale = 5 mm); (D) oral disc (scale = 1 mm). range = 0.65-6.57, n = 55 calls of one male). Fundamental frequency was about 0.43 and 1.03 kHz; the dominant frequency was 3.10 kHz, corresponding to the sixth harmonic (fig. 2C); the eighth harmonic ranged from 3.53 to 4.73 kHz. Foam nests and tadpoles of P. aguirrei and P. signifer were found in the same pond. Physalaemus signifer tadpoles are smaller (maximum total length 17.5 mm on stage 36, n = 13), have no emarginations on lower lip, and posterior teeth rows with approximately the same length. Adults diverged spatially on calling and oviposition sites: males of P. signifer were calling under leaf litter on humid ground, 1.0-3.0 meters away from the edges of the pond, whereas males of P. aguirrei were calling hidden under fallen trunks and in small water-filled holes on the edges of the pond; nests of P. signifer were on humid ground at the edges of the pond, partially or completely covered by leaf detritus (cf. Weber and 200 Short Notes Figure 2. (A) Sonogram, (B) waveform, and (C) spectrogram of the advertisement call of Physalaemus aguirrei; recorded at Parque Nacional Descobrimento, Prado, Bahia, Brazil on 22 April 2002, 06:51 PM. Air temperature = 26.6◦C. Unvouchered specimen. Carvalho-e-Silva, 2001; Wogel et al., 2002), whereas the nests of P. aguirrei were floating on the water, anchored by emergent vegetation. Short Notes 201 The P. cuvieri group is extremely heterogeneous in external tadpole morphology, presenting no larval synapomorphies to define the group (Langone, 1989; Perroti, 1997). The tadpole of P. aguirrei is distinguished from the others known of the P. cuvieri group by differences in size, nostrils shape, labial tooth row formula, arrangement and distribution of marginal papillae, jaw shape, spiracle position and vent tube orientation. Data about the tadpole of P. aguirrei and other species of this group, were obtained from Bokermann (1962), Barrio (1964), Langone (1989), Rossa-Feres and Jim (1993), Duellman (1997), and Perroti (1997), and are summarized in table 2. The labial tooth row formula of P. cuvieri is presented by Heyer et al. (1990) as 2(2)/3(1) and by Perroti (1997) as 2(2)/2. The latter work cites Bokermann (1962) as the source of this information. The oral disc drawn by Bokermann (1962), however, shows the 2/3(1) formula, as cited by Rossa-Feres and Jim (1993). It seems that some aspects of the oral morphology of this species vary between populations. Bokermann (1962) shows a medial gap on the lower lip, while Heyer et al. (1990) show three gaps. Rossa-Feres and Jim (1993) also mentioned the presence of a ventral gap in the oral disc of P. gracilis, while it is absent according to Perroti (1997). Both cited Langone (1989), whose research shows no ventral gap. Bokermann (1966a) described the advertisement call of P. aguirrei with a fundamental frequency and seven harmonics, an intercall interval of 0.5-0.7 s, and a dominant frequency between 2.0 and 3.0 kHz, corresponding to the third to seventh harmonics.
Recommended publications
  • Toxicity of Glyphosate on Physalaemus Albonotatus (Steindachner, 1864) from Western Brazil
    Ecotoxicol. Environ. Contam., v. 8, n. 1, 2013, 55-58 doi: 10.5132/eec.2013.01.008 Toxicity of Glyphosate on Physalaemus albonotatus (Steindachner, 1864) from Western Brazil F. SIMIONI 1, D.F.N. D A SILVA 2 & T. MO tt 3 1 Laboratório de Herpetologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil. 2 Programa de Pós-Graduação em Ecologia e Conservação da Biodiversidade, Universidade Federal de Mato Grosso, Cuiabá, Mato Grosso, Brazil. 3 Setor de Biodiversidade e Ecologia, Universidade Federal de Alagoas, Av. Lourival Melo Mota, s/n, Maceió, Alagoas, CEP 57072-970, Brazil. (Received April 12, 2012; Accept April 05, 2013) Abstract Amphibian declines have been reported worldwide and pesticides can negatively impact this taxonomic group. Brazil is the world’s largest consumer of pesticides, and Mato Grosso is the leader in pesticide consumption among Brazilian states. However, the effects of these chemicals on the biota are still poorly explored. The main goals of this study were to determine the acute toxicity (CL50) of the herbicide glyphosate on Physalaemus albonotatus, and to assess survivorship rates when tadpoles are kept under sub-lethal concentrations. Three egg masses of P. albonotatus were collected in Cuiabá, Mato Grosso, Brazil. Tadpoles were exposed for 96 h to varying concentrations of glyphosate to determine the CL50 and survivorship. The -1 CL50 was 5.38 mg L and there were statistically significant differences in mortality rates and the number of days that P. albonotatus tadpoles survived when exposed in different sub-lethal concentrations of glyphosate. Different sensibilities among amphibian species may be related with their historical contact with pesticides and/or specific tolerances.
    [Show full text]
  • Physalaemus Cicada
    Check List 8(4): 630–631, 2012 © 2012 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution N Physalaemus cicada Bokermann, 1966 (Anura: Leiuperidae): Distribution extension ISTRIBUTIO D Ronildo Alves Benício 1*, Guilherme Ramos da Silva 2 and Mariluce Gonçalves Fonseca 1 RAPHIC G EO 1 Universidade Federal do Piauí, Laboratório de Pesquisa Experimental e Ciências Biológicas, Campus Senador Helvídio Nunes de Barros. CEP G 64.600-000. Picos, PI, Brazil. N O 2 Universidade Estadual do Piauí, Departamento de Biologia, Campus Professor Alexandre Alves Oliveira, Avenida Nossa Senhora de Fátima s/n. CEP 64202-220. Parnaíba, PI, Brazil. * Corresponding author. E-mail: [email protected] OTES N Abstract: The genus Physalaemus is widely distributed over South America, east of Andes. Physalaemus cicada belongs to the Physalaemus cuvieri group, is widely distributed over the Caatinga and is usually found in lentic and/or temporary water Physalaemus cicada for Piauí state, in the municipality of Picos. bodies. Herein, we extend its geographical distribution providing the first record of The genus Physalaemus Fitzinger, 1896 is characterized (07°5’15.88”, 41°24’1.67”, elevation 206 m), and according by traits regarding skin texture, several osteologic features, to Lima et al. and reproductive mode (Nascimento et al. 2005). The with an average annual rainfall less than 900 mm, two to genus comprises 45 species (Frost 2011), distributed in three months (2000)of rainfall the unevenlyclimate is distributed defined as andsemi-arid, mean seven species group: Physalaemus cuvieri group, P. signifer annual temperatures 27.3°C.
    [Show full text]
  • Linking Environmental Drivers with Amphibian Species Diversity in Ponds from Subtropical Grasslands
    Anais da Academia Brasileira de Ciências (2015) 87(3): 1751-1762 (Annals of the Brazilian Academy of Sciences) Printed version ISSN 0001-3765 / Online version ISSN 1678-2690 http://dx.doi.org/10.1590/0001-3765201520140471 www.scielo.br/aabc Linking environmental drivers with amphibian species diversity in ponds from subtropical grasslands DARLENE S. GONÇALVES1, LUCAS B. CRIVELLARI2 and CARLOS EDUARDO CONTE3*,4 1Programa de Pós-Graduação em Zoologia, Universidade Federal do Paraná, Caixa Postal 19020, 81531-980 Curitiba, PR, Brasil 2Programa de Pós-Graduação em Biologia Animal, Universidade Estadual Paulista, Rua Cristovão Colombo, 2265, Jardim Nazareth, 15054-000 São José do Rio Preto, SP, Brasil 3Universidade Federal do Paraná. Departamento de Zoologia, Caixa Postal 19020, 81531-980 Curitiba, PR, Brasil 4Instituto Neotropical: Pesquisa e Conservação. Rua Purus, 33, 82520-750 Curitiba, PR, Brasil Manuscript received on September 17, 2014; accepted for publication on March 2, 2015 ABSTRACT Amphibian distribution patterns are known to be influenced by habitat diversity at breeding sites. Thus, breeding sites variability and how such variability influences anuran diversity is important. Here, we examine which characteristics at breeding sites are most influential on anuran diversity in grasslands associated with Araucaria forest, southern Brazil, especially in places at risk due to anthropic activities. We evaluate the associations between habitat heterogeneity and anuran species diversity in nine body of water from September 2008 to March 2010, in 12 field campaigns in which 16 species of anurans were found. Of the seven habitat descriptors we examined, water depth, pond surface area and distance to the nearest forest fragment explained 81% of total species diversity.
    [Show full text]
  • Anuran Assemblage Changes Along Small-Scale Phytophysiognomies in Natural Brazilian Grasslands
    bioRxiv preprint doi: https://doi.org/10.1101/2020.07.31.229310; this version posted August 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Anuran assemblage changes along small-scale phytophysiognomies in natural Brazilian grasslands Diego Anderson Dalmolin1*, Volnei Mathies Filho2, Alexandro Marques Tozetti3 1 Laboratório de Metacomunidades, Departamento de Ecologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil. 2 Fundação Universidade Federal do Rio Grande, Rio Grande, Rio Grande do Sul, Brasil 3Laboratório de Ecologia de Vertebrados Terrestres, Universidade do Vale do Rio dos Sinos, Avenida Unisinos 950, 93022-000 São Leopoldo, Rio Grande do Sul, Brazil. * Corresponding author: Email: [email protected] bioRxiv preprint doi: https://doi.org/10.1101/2020.07.31.229310; this version posted August 3, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 Abstract 2 We studied the species composition of frogs in two phytophysiognomies (grassland and 3 forest) of a Ramsar site in southern Brazil. We aimed to assess the distribution of 4 species on a small spatial scale and dissimilarities in community composition between 5 grassland and forest habitats. The sampling of individuals was carried out through 6 pitfall traps and active search in the areas around the traps.
    [Show full text]
  • Unusual Primitive Heteromorphic ZZ/ZW Sex Chromosomes
    Hereditas 144: 206Á212 (2007) Unusual primitive heteromorphic ZZ/ZW sex chromosomes in Proceratophrys boiei (Anura, Cycloramphidae, Alsodinae), with description of C-Band interpopulational polymorphism FERNANDO ANANIAS1,A´ LVARO DHIMAS S. MODESTO2, SAMANTHA CELI MENDES2 and MARCELO FELGUEIRAS NAPOLI3 1Curso de Cieˆncias Biolo´gicas, Universidade Sa˜o Francisco (USF), Braganc¸a Paulista, Sa˜o Paulo, Brazil 2Curso de Cieˆncias Biolo´gicas, Universidade Braz Cubas (UBC), Mogi das Cruzes, Sa˜o Paulo, Brazil 3Museu de Zoologia, Departamento de Zoologia, Instituto de Biologia, Universidade Federal da Bahia (UFBA), Salvador, Bahia, Brazil Ananias, F., Modesto, A. D. S., Mendes, S. C. and Napoli, M. F. 2007. Unusual primitive heteromorphic ZZ/ZW sex chromosomes in Proceratophrys boiei (Anura, Cycloramphidae, Alsodinae), with description of C-Band interpopulational polymorphism. * Hereditas 144: 206Á212. Lund, Sweden. eISSN 1601-5223. Received August 6, 2007. Accepted September 20, 2007 We performed cytogenetic analyses on specimens from three population samples of Proceratophrys boiei from southeastern and northeastern Brazil. We stained chromosomes of mitotic and meiotic cells with Giemsa, C-banding and Ag-NOR methods. All specimens of P. boiei presented a karyotype with a full chromosome complement of 2n22, metacentric and submetacentric. We observed the secondary constriction within the short arm of pair 8, which was in the same position of the nucleolus organizer region (NOR). NOR heteromorphism was observed within two specimens from the municipality of Mata de Sa˜oJoa˜o (northeastern Bahia State). The C-banding evidenced an unusual heterochromatic pattern in the genome of P. boiei. In the southernmost population samples (Sa˜o Paulo State), we observed large blocks of heterochromatin in the centromeric regions of all chromosomes, whereas the northernmost samples (Bahia State) presented a small amount of constitutive heterochromatin.
    [Show full text]
  • Chromosomal Analysis of Physalaemus Kroyeri and Physalaemus Cicada (Anura, Leptodactylidae)
    UNIVERSIDADE ESTADUAL DE CAMPINAS SISTEMA DE BIBLIOTECAS DA UNICAMP REPOSITÓRIO DA PRODUÇÃO CIENTIFICA E INTELECTUAL DA UNICAMP Versão do arquivo anexado / Version of attached file: Versão do Editor / Published Version Mais informações no site da editora / Further information on publisher's website: https://compcytogen.pensoft.net/article/9319/ DOI: 10.3897/CompCytogen.v10i2.9319 Direitos autorais / Publisher's copyright statement: ©2016 by Pensoft. All rights reserved. DIRETORIA DE TRATAMENTO DA INFORMAÇÃO Cidade Universitária Zeferino Vaz Barão Geraldo CEP 13083-970 – Campinas SP Fone: (19) 3521-6493 http://www.repositorio.unicamp.br COMPARATIVE A peer-reviewed open-access journal CompCytogen 10(2):Chromosomal 311–323 (2016) analysis of Physalaemus kroyeri and Physalaemus cicada... 311 doi: 10.3897/CompCytogen.v10i2.9319 RESEARCH ARTICLE Cytogenetics http://compcytogen.pensoft.net International Journal of Plant & Animal Cytogenetics, Karyosystematics, and Molecular Systematics Chromosomal analysis of Physalaemus kroyeri and Physalaemus cicada (Anura, Leptodactylidae) Stenio Eder Vittorazzi1, Luciana Bolsoni Lourenço1, Mirco Solé2, Renato Gomes Faria3, Shirlei Maria Recco-Pimentel1 1 Departamento de Biologia Estrutural e Funcional, Instituto de Biologia, Universidade Estadual de Campi- nas, 13083-863 Campinas, São Paulo, Brazil 2 Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, 45662-000, Ilhéus, Bahia, Brazil 3 Departamento de Biologia, Centro de Ciências Biológicas e da Saúde, Universidade Federal de Sergipe, 49100-000, São Cristóvão, Sergipe, Brazil Corresponding author: Shirlei Maria Recco-Pimentel ([email protected]) Academic editor: I. Kuznetcova | Received 25 May 2016 | Accepted 25 June 2016 | Published 8 July 2016 http://zoobank.org/B9B339C5-EB2C-4ED4-BE8E-1E5F1FA0405B Citation: Vittorazzi SE, Lourenço LB, Solé M, Faria RG, Recco-Pimentel SM (2016) Chromosomal analysis of Physalaemus kroyeri and Physalaemus cicada (Anura, Leptodactylidae).
    [Show full text]
  • Rodrigo Zieri
    Rodrigo Zieri INFLUÊNCIA HORMONAL SOBRE O SISTEMA PIGMENTAR EM Eupemphix nattereri (ANURA): EFEITOS DO ALPHA-MSH, ESTRADIOL E TESTOSTERONA UNIVERSIDADE ESTADUAL PAULISTA INSTITUTO DE BIOCIÊNCIAS, LETRAS E CIÊNCIAS EXATAS SÃO JOSÉ DO RIO PRETO - SP PROGRAMA DE PÓS-GRADUAÇÃO EM BIOLOGIA ANIMAL RODRIGO ZIERI INFLUÊNCIA HORMONAL SOBRE O SISTEMA PIGMENTAR EM EUPEMPHIX NATTERERI (ANURA): EFEITOS DO ALPHA-MSH , ESTRADIOL E TESTOSTERONA Tese apresentada para obtenção do título de Doutor em Biologia Animal, área de Biologia Animal, junto ao Programa de Pós-Graduação em Biologia Animal do Instituto de Biociências, Letras e Ciências Exatas da Universidade Estadual Paulista “Júlio de Mesquita Filho”, Campus de São José do Rio Preto. ORIENTADOR: PROF. DR. CLASSIUS DE OLIVEIRA CO-ORIENTADOR: PROF. DR. SEBASTIÃO ROBERTO TABOGA - 2010 - Zieri, Rodrigo. Influência hormonal sobre o Sistema Pigmentar em Eupemphix nattereri (Anura): efeitos do MSH, estradiol e testosterona / Rodrigo Zieri. - São José do Rio Preto : [s.n.], 2010. 106 f. : il. ; 30 cm. Orientador: Classius de Oliveira Co-orientador: Sebastião Roberto Taboga Tese (doutorado) - Universidade Estadual Paulista, Instituto de Biociências, Letras e Ciências Exatas 1. Células pigmentares viscerais. 2. Anuro - Morfologia. 3. Eupemphix nattereri. 4. MSH. 5. Estradiol. 6. Testosterona. I. Oliveira, Classius de. II. Taboga, Sebastião Roberto. III. Universidade Estadual Paulista, Instituto de Biociências, Letras e Ciências Exatas. IV. Título. CDU – 597.8 Ficha catalográfica elaborada pela Biblioteca do IBILCE Campus de São José do Rio Preto - UNESP RODRIGO ZIERI Influência Hormonal sobre o Sistema Pigmentar em Eupemphix nattereri (Anura): Efeitos do alpha-MSH , Estradiol e Testosterona BANCA EXAMINADORA TITULARES: Prof. Dr. Classius de Oliveira Professor Adjunto UNESP – São José do Rio Preto Orientador Profª.
    [Show full text]
  • Baixar Este Arquivo
    1 Https://online.unisc.br/seer/index.php/cadpesquisa ISSN on-line: 1677-5600 Doi: 10.17058/cp.v29i1.11152 Universidade de Santa cruz do Sul - Unisc Recebido em 06 de Fevereiro de 2017 Aceito em 17 de Maio de 2017 Autor para contato: [email protected] Fungos aquáticos (Oomycota, Chytridiomycota) ocorrentes em anfíbios anuros em dois remanescentes de Mata Mtlântica, localizados em Santa Cruz do Sul e Venâncio Aires, RS, Brasil Aquatic fungi (Oomycota, Chytridiomycota) ocurring in anuran amphibians in two remaining of the Atlantic Forest in Santa Cruz do Sul and Venâncio Aires municipalilties, Southern Brazil Francine Kist Closs Universidade de Santa Cruz do Sul – Unisc – Santa Cruz do Sul – Rio Grande do Sul - Brasil Jair Putzke Universidade Federal do Pampa – Unipampa – Bagé – Rio Grande do Sul – Brasil Resumo Palavras-chave Fungos patógenos de anfíbios estão entre os maiores vilões à biodiversidade de anuros, sendo de Fungos Zoospóricos. extrema importância um maior conhecimento destes organismos causadores de doenças. Buscou-se Patógenos. Mata Atlântica. conhecer os fungos zoospóricos ocorrentes em anuros em remanescentes de Mata Atlântica na Anurofauna. região de Venâncio Aires e Santa Cruz do Sul – RS. As amostragens em campo realizaram-se entre outubro de 2014 e abril de 2015, em Linha Estrela em Venâncio Aires e dentro da UNISC em Santa Cruz do Sul. As amostragens de anuros foram feitas a partir do método de procura visual ativa e procura em sítios de reprodução. Em laboratório, foi utilizado o método de isolamento por iscas para fungos aquáticos, adaptada. Foram amostrados 24 indivíduos de Anura, compostos por 9 espécies, enquadrados em 3 famílias (Hylidae, Leptodactylidae e Leiuperidae).
    [Show full text]
  • Reserva Natural Laguna Blanca, Departmento San Pedro
    Russian Journal of Herpetology Vol. 23, No. 1, 2016, pp. 25 – 34 RESERVA NATURAL LAGUNA BLANCA, DEPARTAMENTO SAN PEDRO: PARAGUAY’S FIRST IMPORTANT AREA FOR THE CONSERVATION OF AMPHIBIANS AND REPTILES? Paul Smith,1,2 Karina Atkinson,2 Jean-Paul Brouard,2 Helen Pheasey2 Submitted December 30, 2014. Geographical sampling bias and restricted search methodologies have resulted in the distribution of Paraguayan reptiles and amphibians being patchily known. Available data is almost entirely based on brief collecting trips and rapid ecological inventories, often several decades apart, which inevitably struggle to detect more inconspicuous species and patterns of abundance. This has led to a deficit in our knowledge of the true distribution and abun- dance of Paraguayan reptiles and amphibians. The establishment of the NGO Para La Tierra at Reserva Natural Laguna Blanca (RNLB), Depto. San Pedro, Paraguay allowed the first modern sustained, multi-method inventory of Paraguayan reptiles and amphibians to be performed at a single site. Despite the small size of the reserve (804 ha), a total of 57 reptiles (12 of national conservation concern) and 32 amphibians (one of national conserva- tion concern) were collected during five years of random sampling, qualifying RNLB as the most biodiverse re- serve for reptiles and amphibians in the country. Six species occurring at RNLB have been found at no other Para- guayan locality. Legal protection for this private reserve expired in January 2015 and the conservation implica- tions of the inventory results are discussed. It is proposed that the long term legal protection of the reserve be con- sidered a national conservation priority and that the diversity of the herpetofauna be recognized with the designa- tion of RNLB as Paraguay’s first Important Area for the Conservation of Amphibians and Reptiles.
    [Show full text]
  • Download PDF (Inglês)
    Biota Neotropica 18(3): e20170322, 2018 www.scielo.br/bn ISSN 1676-0611 (online edition) Article Anuran amphibians in state of Paraná, southern Brazil Manuela Santos-Pereira1* , José P. Pombal Jr.2 & Carlos Frederico D. Rocha1 1Universidade do Estado do Rio de Janeiro, Ecologia, Rua São Francisco Xavier, 524, Rio de Janeiro, RJ, Brasil 2Universidade Federal do Rio de Janeiro, Museu Nacional, Departamento de Vertebrados, Rio de Janeiro, RJ, Brasil *Corresponding author: Manuela Santos-Pereira, e-mail: [email protected] SANTOS-PEREIRA, M., POMBAL Jr., J.P., ROCHA, C.F.D. Anuran amphibians in state of Paraná, southern Brazil. Biota Neotropica. 18(3): e20170322. http://dx.doi.org/10.1590/1676-0611-BN-2017-0322 Abstract: The state of Paraná, located in southern Brazil, was originally covered almost entirely by the Atlantic Forest biome, with some areas of Cerrado savanna. In the present day, little of this natural vegetation remains, mostly remnants of Atlantic Forest located in the coastal zone. While some data are available on the anurans of the state of Paraná, no complete list has yet been published, which may hamper the understanding of its potential anuran diversity and limit the development of adequate conservation measures. To rectify this situation, we elaborated a list of the anuran species that occur in state of Paraná, based on records obtained from published sources. We recorded a total of 137 anuran species, distributed in 13 families. Nineteen of these species are endemic to the state of Paraná and five are included in the red lists of the state of Paraná, Brazil and/or the IUCN.
    [Show full text]
  • Leptodactylus Bufonius Sally Positioned. the Oral Disc Is Ventrally
    905.1 AMPHIBIA: ANURA: LEPTODACTYLIDAE Leptodactylus bufonius Catalogue of American Amphibians and Reptiles. Schalk, C. M. and D. J. Leavitt. 2017. Leptodactylus bufonius. Leptodactylus bufonius Boulenger Oven Frog Leptodactylus bufonius Boulenger 1894a: 348. Type locality, “Asunción, Paraguay.” Lectotype, designated by Heyer (1978), Museum of Natural History (BMNH) Figure 1. Calling male Leptodactylus bufonius 1947.2.17.72, an adult female collected in Cordillera, Santa Cruz, Bolivia. Photograph by by G.A. Boulenger (not examined by au- Christopher M. Schalk. thors). See Remarks. Leptodactylus bufonis Vogel, 1963: 100. Lap- sus. sally positioned. Te oral disc is ventrally po- CONTENT. No subspecies are recognized. sitioned. Te tooth row formula is 2(2)/3(1). Te oral disc is slightly emarginated, sur- DESCRIPTION. Leptodactylus bufonius rounded with marginal papillae, and possess- is a moderately-sized species of the genus es a dorsal gap. A row of submarginal papil- (following criteria established by Heyer and lae is present. Te spiracle is sinistral and the Tompson [2000]) with adult snout-vent vent tube is median. Te tail fns originate at length (SVL) ranging between 44–62 mm the tail-body junction. Te tail fns are trans- (Table 1). Head width is generally greater parent, almost unspotted (Cei 1980). Indi- than head length and hind limbs are moder- viduals collected from the Bolivian Chaco ately short (Table 1). Leptodactylus bufonius possessed tail fns that were darkly pigment- lacks distinct dorsolateral folds. Te tarsus ed with melanophores, especially towards contains white tubercles, but the sole of the the terminal end of the tail (Christopher M. foot is usually smooth.
    [Show full text]
  • Anurans from a Cerrado-Atlantic Forest Ecotone in Campos Gerais
    Check List 10(3): 574–582, 2014 © 2014 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution Anurans from a Cerrado-Atlantic Forest ecotone in PECIES S Campos Gerais region, southern Brazil OF Vinicius Guerra Batista 1* and Rogério Pereira Bastos 2 ISTS L 1 Programa de Pós-Graduação em Ecologia de Ambientes Aquáticos Continentais, Universidade Estadual de Maringá, NUPELIA - Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura, Bloco G-90, Av. Colombo, 5790, CEP 87020-900. Maringá, PR, Brasil. 2 Laboratório de Herpetologia e Comportamento Animal, Departamento de Ecologia, Instituto de Ciências Biológicas, Universidade Federal de Goiás, Campus Samambaia, 74001-970, Cx. Postal 131, Goiânia, GO, Brasil. * Corresponding author. E-mail: [email protected] Abstract: Knowledge of the richness and distribution of anurans living in ecotone regions is still incipient, especially in transition zones between threatened phytogeographic areas like the Cerrado and the Atlantic Forest. This study presents a checklist of anuran amphibians in an ecotone (Cerrado-Atlantic Forest) in the Campos Gerais, Paraná State, Brazil. species, six of them in larval stage only and eight of them in adult stage only. The anurofauna accounted for 21.05% of the speciesSamplings registered were conducted for the Cerrado in 66 water and 9.58% bodies of (ponds) the species between found October in the Atlantic2012 and Forest. March Four 2013. species We identified are endemic 42 anuran to the Cerrado and eight to the Atlantic Forest. Our results show that this region has a rich anurofauna with species characteristic of different biomes.
    [Show full text]