Vibration Damping of Alpine Skis with Implemented Flow Motion Technology
Total Page:16
File Type:pdf, Size:1020Kb
DEGREE PROJECT IN MECHANICAL ENGINEERING, SECOND CYCLE, 30 CREDITS STOCKHOLM, SWEDEN 2019 Vibration damping of alpine skis with implemented Flow Motion Technology JOHN PALMBORG HAMPUS SÖDERMAN KTH ROYAL INSTITUTE OF TECHNOLOGY SCHOOL OF INDUSTRIAL ENGINEERING AND MANAGEMENT Master of Science Thesis TRITA-ITM-EX 2019:243 VIBRATION DAMPING OF ALPINE SKIS WITH IMPLEMENTED FLOW MOTION TECHNOLOGY John Palmborg Hampus Söderman Approved Examiner Supervisor 2019-06-09 Ulf Sellgren Stefan Björklund Commissioner Contact person Flow Motion Technology AB Fredrik Andersson Abstract Flow Motion Technology AB has previously developed a technology to improve hockey skates and inlines. The technology called Flow Motion Technology (FMT) is utilizing the smooth and effective rolling motion of a human footstep, and has proven to be very successful after implementation in both hockey skates and inlines. Flow Motion Technology AB has interest in investigating whether the technology can be implemented in other sports applications, which this thesis project concerns. The project examines the implementation of FMT in the alpine skiing segment. The purpose is to provide Flow Motion Technology AB with a foundation for evaluating the potential of investing further in the development of FMT applied in alpine skiing. FMT is implemented in a feature positioned between ski and binding of most alpine race skis, commonly called a race plate. The work is divided into two parts; The first part covers the development and manufacturing of a prototype along with detailed description of the procedures and methods used. The second part is about the tests of the prototype’s vibration-damping properties carried out in laboratory environment along with analysis of the results. Initial field tests are also carried out followed by fundamental analysis. An existing plate intended for competition use is tested in parallel with the prototype and is used as a reference when analyzing the results. The results show that the ski equipped with the FMT plate dampened vibrations on an average of 27 % faster than the reference plate. Measurements was compiled for three damping intervals specified for the tests performed in laboratory. A statistically significant difference in all three cases was obtained. The measured maximum amplitude of the acceleration in the vibrations was also significantly lower for the ski implemented with the FMT plate compared to the reference plate. The eigen frequencies of the ski measured in laboratory were not significantly affected if the ski was fitted with the FMT plate or the reference plate. The eigen frequencies measured in field generally corresponded to the measured in laboratory, with the difference that they were offset on an average of 7 Hz higher in field. Keywords: alpine skiing, damping, race plate, vibrations Examensarbete TRITA-ITM-EX 2019:243 DÄMPNING AV VIBRATIONER I ALPINSKIDOR MED IMPLEMENTERAD FLOW MOTION TECHNOLOGY John Palmborg Hampus Söderman Godkänt Examinator Handledare 2019-06-09 Ulf Sellgren Stefan Björklund Uppdragsgivare Kontaktperson Flow Motion Technology AB Fredrik Andersson Sammanfattning Flow Motion Technology AB har tidigare utvecklat en teknologi för att förbättra hockeyskridskor och inlines. Teknologin kallad Flow Motion Technology (FMT) utnyttjar den naturliga och effektiva rullande rörelse i en människas fotsteg, och har efter implementation i hockeyskridskor och inlines visat sig vara framgångsrik. Flow Motion Technology AB vill undersöka om denna teknologi kan implementeras i andra idrottssammanhang för att utvärdera möjligheter att bredda företagets affärsområde. Detta examensarbete är en del av denna undersökning, och i denna rapport beskrivs implementationen av FMT i segmentet alpinskidåkning. Syftet med projektet är att förse Flow Motion Technology AB med underlag för att utvärdera lönsamheten i att investera mer i utvecklingen av FMT riktad mot alpinskidåkning. FMT implementeras i projektet i en raceplatta, en komponent monterad mellan skida och bindning. Arbetet är uppdelat i två delar; utveckling och tillverkning av en funktionsprototyp med detaljerad beskrivning av tillvägagångssätt och metoder, samt tester av prototypens vibrationsdämpande prestanda i labbmiljö med tillhörande analys av resultat. Initiala tester utförs även i fält med enklare analys av resultat. En befintlig bindningsplatta avsedd för tävling testas parallellt med den utvecklade plattan och används som referens vid analys av resultaten. Resultaten visar att plattan implementerad med FMT dämpade en skidas vibrationer i genomsnitt 27 % snabbare än vad referensplattan gjorde vid de tre dämpningsintervall som specificerats för testen i labbmiljö. En statistiskt signifikant skillnad i alla tre fall. Den uppmätta maxamplituden för accelerationen i vibrationerna var även statistiskt signifikant lägre för skidan implementerad med FMT jämfört med referensplattan. Egenfrekvenserna uppmätta i labb påverkades inte nämnvärt om skidan var monterad med FMT-plattan eller referensplattan. De egenfrekvenser som uppmättes i fält motsvarade generellt de som uppmättes i labb med skillnaden att de var förskjutna till att i genomsnitt vara 7 Hz högre. Nyckelord: alpin skidåkning, dämpning, raceplatta, vibrationer FOREWORD We would like to thank our supervisors, Stefan Björklund at KTH and Fredrik Andersson at Flow Motion Technology AB, for their guidance and help throughout the project. We would like thank the whole Flow Motion Technology team for the warm welcome and for letting us take on this exciting project. We would also like to give our greatest thanks to ESSIQ AB for all support and for letting us write our thesis at your office, especially to our mentor Jacob Leygraf, Lars Berglind and Magnus Engelmark for always assisting. In addition, we would like to give special thanks to our sponsors for making our prototype possible to manufacture and tests possible to perform. We really can not thank you enough: Mikael Östensson and Fredrik Lindblom at Marström Composite AB for inviting us to your factory and supplying us with material, tools and expertise in the field of carbon fiber manufacturing. Jonas Lundström at Jönköpings Modelltillverkning AB for providing the core material of our prototype. Magnus Asplund at Dewesoft AB for supplying us with top performance DAQ system and guidance. Håkan Andersson at RISE, for supplying us with accelerometers and expertise within the field of vibration measurement. Gustavsson Composite for providing carbon fiber and equipment for our prototype devel- opment. Håkan Johansson at Composult AB for guidance in the field of composite theory and man- ufacturing and skiing dynamics. NOMENCLATURE FMT Flow Motion Technology FFT Fast Fourier transform DAQ Data acquisition UD Uni directional COM Center of mass CAD Computer-aided design FEA Finite element analysis FEM Finite element method CONTENTS 1 INTRODUCTION 1 1.1 Background and problem description . 1 1.1.1 Research question . 1 1.2 Purpose . 2 1.3 Method description . 2 1.4 Delimitations . 2 1.5 Risk assessment . 3 1.6 Project planning . 3 2 FRAME-OF-REFERENCE 5 2.1 Alpine ski dynamics and vibrations . 5 2.2 Test methods for ski vibrations and damping . 7 2.3 Alpine ski damping equipment - background and state of the art . 8 2.4 Flow Motion Technology . 11 2.5 Previous work . 12 2.5.1 Previous prototype . 13 2.5.2 Tests . 13 2.6 FIS regulations . 14 2.7 Fast Fourier Transform . 15 3 IMPLEMENTATION 17 3.1 Ski physics and calculations . 17 3.1.1 Ski bending when performing a carve turn . 17 3.1.2 Torsion of plate . 19 3.2 Prototype . 21 3.2.1 Requirement specification . 21 3.2.2 Materials . 21 3.2.3 Sandwich structure . 23 3.2.4 Composite layup & Rule of Mixtures . 24 3.2.5 Making a core . 28 3.2.6 Making a mould . 29 3.2.7 Layup of layers . 29 3.2.8 Vacuum forming and Autoclave . 31 3.2.9 Post manufacturing, finishing and mounting . 32 3.3 Test procedure . 35 3.3.1 Equipment and measurement system setup . 35 3.3.2 Lab test . 39 3.3.3 Field . 41 4 RESULTS AND ANALYSIS 43 4.1 Final design of prototype . 43 4.2 Stiffness of prototype . 43 4.3 Strength of prototype . 45 4.4 Lab test analysis . 46 4.5 Field test analysis . 49 4.6 Comparison of laboratory and field data . 51 5 CONCLUSION AND DISCUSSION 53 5.1 Conclusions . 53 5.2 Discussion . 54 6 RECOMMENDATIONS AND FUTURE WORK 57 7 APPENDICES 61 7.1 Risk Assessment . 61 7.2 Prototype Requirement Specification . 62 7.3 SikaBlock M700 - Technical specification . 63 7.4 DAQ: Dewe 43 A - Specification . 65 7.5 Brüel & Kjær DeltaTron Accelerometer Type 4397 - Specification . 66 7.6 Data sheet KISO 358 BUTYL Superior - Specification . 67 7.7 DEWESoft Set up - FFT Analyser . 68 7.8 DEWESoft Set up - Recorder . 69 7.9 Lab test data . 70 7.10 Field test data . 71 7.11 Gantt Chart . 73 7.12 MATLAB Scripts . 76 7.12.1 Solid Mechanics - design of prototype . 76 7.12.2 Test data - Function fitting . 79 7.13 Power supply - battery . 80 7.14 FMT Prototype - Drawings . 81 7.15 Composite properties . 86 List of Figures 1 An illustration of how an alpine slalom track is generalized [1]. 5 2 Forces acting on skier: centrifugal force FC , gravitational force Fg, resultant force FR [2]..................................... 6 3 Dimensions and positioning of specific details in an ISO 6267 test rig [5]. 7 4 A diagram by Gary C. Foss and Bard Glenne which illustrates the power spectral density [g2/Hz], as function of frequency [Hz]. Field test on hard snow (Yellow) and soft snow (Green) [6]. 8 5 Dynastar skis with the Contact System, a red plastic shock absorber on the tip of the ski. 8 6 2019 model Völkl Racetiger SL skis with UVO mass damper in the tip [14]. 9 7 2019 model Atomic Redster G9 ski with Srevotec carbon fiber rod along the top of the ski connected to damper under the binding [15]. 9 8 Salomon Pilot System binding with plate [17]. 10 9 2019 model Head WCR plate with hydraulic oil dampening [18].