Biomechanics in Cross-Country Skiing Skating Technique and Measurement Techniques of Force Production JYU DISSERTATIONS 97
Total Page:16
File Type:pdf, Size:1020Kb
JYU DISSERTATIONS 97 Olli Ohtonen Biomechanics in Cross-country Skiing Skating Technique and Measurement Techniques of Force Production JYU DISSERTATIONS 97 Olli Ohtonen Biomechanics in Cross-country Skiing Skating Technique and Measurement Techniques of Force Production Esitetään Jyväskylän yliopiston liikuntatieteellisen tiedekunnan suostumuksella julkisesti tarkastettavaksi Sokos Hotel Vuokatin auditoriossa (Kidekuja 2, Vuokatti) kesäkuun 29. päivänä 2019 kello 12. Academic dissertation to be publicly discussed, by permission of the Faculty of Sport and Health Sciences of the University of Jyväskylä, at the auditorium of Sokos Hotel Vuokatti (Kidekuja 2, Vuokatti), on June 29, 2019 at 12 o’clock noon. JYVÄSKYLÄ 2019 Editors Simon Walker Faculty of Sport and Health Sciences, University of Jyväskylä Ville Korkiakangas Open Science Centre, University of Jyväskylä Cover picture by Antti Närhi. Copyright © 2019, by University of Jyväskylä Permanent link to this publication: http://urn.fi/URN:ISBN:978-951-39-7797-9 ISBN 978-951-39-7797-9 (PDF) URN:ISBN:978-951-39-7797-9 ISSN 2489-9003 ABSTRACT Ohtonen, Olli Biomechanics in cross-country skiing skating technique and measurement techniques of force production Jyväskylä: University of Jyväskylä, 2019, 76 p. JYU Dissertations ISSN 2489-9003; 97) ISBN 978-951-39-7797-9 (PDF) Requirements of a successful skier have changed during last decades due to e.g. changes in race forms and developments of equipment. The purpose of this the- sis was to clarify in four Articles (I-IV) what are the requests modern skate ski- ing sets for the athletes in a biomechanical point of view. Firstly, it was ex- plained how skiers control speed from low to maximal speeds (I). Secondly, the effects of long simulated ski race were determined with traditional force meas- urement methods (III) as well as with novel propulsion methods (IV). During the work process a need for updated multi-dimensional leg force sensor ap- peared and it was materialized (II). During the thesis 16 national level athletes participated in the different experiments of the study. Measurements for con- trolling speed were carried out with 3D force sensor for legs and pole force sen- sor for arms. Conventional cycle, force and joint kinematic parameters were analysed (I). After, a need for reliable force sensor appeared especially for ante- rior-posterior forces. Two 2D force binding sensors (Skate binding: vertical and medio-lateral directions and Classic binding: vertical and anterior-posterior di- rections) were designed and built. Validation was done in different tempera- tures and mechanical stress situations as well as in diverse normal and sport specific jumping situations and skiing with both techniques (II). Effects of simu- lated ski skating race (20 km) on athletes’ performance were analysed by direct force measurements from legs with updated force binding and from arms with pole force sensors. In addition, EMG and cycle definitions were conducted (III). Novel analysing method for propulsion was tested on the same data using ad- ditional 3D movement analysis (IV). Skiers control their speed during V2- skating with cycle length and cycle rate while length is dominant with lower speeds and rate governs with higher speeds. Force production of the arms and legs with increasing speeds is aided by vertical oscillation of COM (I). New force binding system was verified to be valid for skate skiing while some im- provements were needed for classic binding (II). Effects of long simulated race were detected with slower skiing speed at the end of race caused by lower EMG activity and force production as indications of fatigue (III). Propulsion analyses gave new insights on athlete diagnostics by revealing the decrement of force production especially with legs which was overlooked with traditional analys- ing methods (IV). Keywords: cross-country skiing, speed adaptation, force measurement, fatigue, propulsion TIIVISTELMÄ (FINNISH ABSTRACT) Ohtonen, Olli Luisteluhiihdon biomekaniikka sekä suorituksen aikaisten voimien mittaamisen menetelmät Jyväskylä: University of Jyväskylä, 2019, 76 p. JYU Dissertations ISSN 2489-9003; 97) ISBN 978-951-39-7797-9 (PDF) Menestyksekkään hiihtäjän vaatimukset ovat muuttuneet viime aikoina merkit- tävästi esimerkiksi uusien kilpailumuotojen ja välinekehityksen myötä. Tämän tutkimuksen tarkoituksena oli selvittää neljässä artikkelissa (I-IV), mitä vaati- muksia nykyaikainen luisteluhiihto asettaa hiihtäjälle biomekaanisesta näkö- kulmasta. Ensiksi selvitettiin kuinka hiihtäjät kontrolloivat nopeutta hitaasta maksimaaliseen vauhtiin (I). Toiseksi tutkittiin pitkän simuloidun luisteluhiih- tokilpailun vaikutuksia hiihtäjään perinteisillä voiman analysointimenetelmillä (III), sekä uudella propulsiovoimamenetelmällä (IV). Työprosessin aikana to- dettiin tarve uudelle voimanmittausmenetelmälle ja se toteutettiin (II). Tämän tutkielman aikana 16 kansallisen tason hiihtäjää osallistui tutkimuksen eri osiin. Nopeuskontrollitutkimuksessa käytettiin 3D voima-anturia jaloille ja sauva- voima-anturia käsille. Lisäksi mitattiin sykli- ja nivelkulmamuuttujia. Tämän työ-osion aikana todettiin tarve tarkemmalle jalkojen voimanmittausmenetel- mälle, erityisesti pitkittäiseen suuntaan (I). Kaksi 2D voima-anturia (pysty- ja poikittaisvoima luisteluun sekä pysty- ja pitkittäisvoima perinteiseen) suunni- teltiin, rakennettiin ja validoitiin. Validointi toteutettiin eri lämpötiloissa ja me- kaanisissa kuormituksissa, sekä erilaisissa lajinomaisissa hypyissä. Lisäksi an- turit testattiin referenssimenetelmiä vastaan lumella hiihdettäessä molemmilla tekniikoilla (II). Simuloidun luisteluhiihtokilpailun (20 km) vaikutuksia urheili- joiden voimantuottoihin tutkittiin uudella 2D voimanmittauslaitteistolla jaloista ja sauvavoima-anturilla käsistä. Lisäksi tutkittiin lihasaktiivisuutta ja sykli- muuttujia (III). Uutta propulsiovoimamenetelmää testattiin samalla datalla 3D liikeanalyysin kanssa (IV). Hiihtäjät kontrolloivat nopeutta hiihtosyklillä ja – frekvenssillä, joista syklin mitan kasvattaminen on hallitsevampi matalammilla nopeuksilla, ja frekvenssin nostaminen kovilla nopeuksilla. Massakeskipisteen lisääntynyt pystysuuntainen liike edesauttaa voimantuottojen kasvua hiihtono- peuden kasvaessa (I). Uusi voimanmittausmenetelmä osoitettiin luotettavaksi luisteluhiihtoon, mutta perinteisen hiihdon anturiin tarvitaan parannuksia (II). Pitkä luisteluhiihtokilpailu aiheutti väsymystä, mikä nähtiin hidastuneena lop- pukirivauhtina. Tämä johtui heikentyneestä lihasaktiivisuudesta ja sitä kautta madaltuneista voimantuotoista (III). Propulsiovoima-analyysi paljasti suurem- man voimien laskun jaloissa, mitä ei pystytty todentamaan perinteisillä voiman analysointimenetelmillä (IV). Avainsanat: maastohiihto, nopeusmuutokset, voimanmittaukset, väsymys, propulsio Author’s address Olli Ohtonen Sports Technology Faculty of Sport and Health Sciences University of Jyväskylä Kidekuja 2, 88610 Vuokatti, Finland [email protected] Supervisors Professor Vesa Linnamo, Ph.D. Sports Technology Faculty of Sport and Health Sciences University of Jyväskylä, Finland Professor Stefan Lindinger, Ph.D. Department of Food and Nutrition and Sport Science University of Gothenburg, Sweden Reviewers Professor Walter Herzog, Ph.D. Human Performance Lab Faculty of Kinesiology University of Calgary, Canada Associate Professor Thomas Losnegard, Ph.D. Department of Physical Performance Norwegian School of Sport Sciences, Norway Opponent Professor Øyvind Sandbakk, Ph.D. Department of Neuromedicine and Movement Science Faculty of Medicine and Health Sciences Norwegian University of Science and Technology, Norway ACKNOWLEDGEMENTS This thesis was a long 8-year process conducted during years 2011 to 2019 in the Sports Technology Unit, Vuokatti, Biology of Physical Activity, Faculty of Sport and Health Sciences, University of Jyväskylä. I would like to express my grati- tude to all the people who have contributed to this work. Firstly, I want to thank both of my supervisors. My main supervisor, Pro- fessor Vesa Linnamo, you gave me the opportunity to carry out this thesis over a longer period of time due to other work tasks. I appreciate those conversa- tions in your corner office, you always had time and provided me help. My second supervisor, Professor Stefan Lindinger, I admire your enthusiasm and owe a great thanks to you on your expertise and how you guided me to the sci- ence of cross-country skiing. I acknowledge both of the reviewers I had to my thesis. Professor Walter Herzog (University of Calgary, Canada) and Associate Professor Thomas Los- negard (Norwegian School of Sport Sciences, Norway), thank you for the valu- able comments on the manuscript which improved the final thesis. I want to express my gratitude to co-authors of this work, Caroline Göpfert, Walter Rapp and Teemu Lemmettylä, your contribution and passion on this process was huge. Also a great thanks goes to the laboratory staff of the University, Seppo Seppälä, Markku Ruuskanen and others who materialized the needed measurement systems for this thesis. I want to thank my colleagues in Vuokatti, Keijo Ruotsalainen, Teemu Heikkinen, Jarmo Piirainen, Niina Sippola, Anni Hakkarainen and Antti Leppävuori for assisting me in several parts of this process from cold Ski Tun- nel environments to building suitable sensors and analyzing software. Also thanks goes to Christina Mishica and Ritva Taipale for the language revision of the articles and thesis. This is teamwork to the greatest extent. I am grateful