Bibliografía Bibliografía

Total Page:16

File Type:pdf, Size:1020Kb

Bibliografía Bibliografía 6.- BIBLIOGRAFÍA BIBLIOGRAFÍA Abbott F.V., Franklin K.B., Westbrook R.F. The formalin test: scoring properties of the first and second phases of the pain response in rats. Pain. (1995). 60: 91- 102. Abdelhamid E.E., Sultana M., Portoghese P.S., Takemori A.E. Selective blockage of delta opioid receptors prevents the development of morphine tolerance and dependence in mice. J Pharmacol Exp Ther. (1991). 258: 299-303. Acosta C.G., Lopez H.S. Delta opioid receptor modulation of several voltage- dependent Ca(2+) currents in rat sensory neurons. J Neurosci. (1999). 19: 8337-8348. Adams, J.U., Tallarida, R.J., Geller, E.B., Adler, M.W. Isobolographic Superadditivity detween Delta and Mu Opioid Agonists in the Rat Depends on the Ratio of Compounds, the Mu Agonist and the Analgesic Assay Used. J Pharmacol Exp Ther. (1993). 266: 1261-1267. Aghajanian G.K., Wang Y.Y. Pertussis toxin blocks the outward currents evoked by opiate and alpha 2-agonists in locus coeruleus neurons. Brain Res. (1986). 371: 390-394. Akil H., Madden J., Patrick R.L., Barchas J.D. Stress-induced increase in endogenous opiate peptides; concurrent analgesia and its partial reversal by naloxone. En Koterlitz H.W. (Eds.). Opiates and Endogenous Opioid Peptides, Elsevier, Amsterdam. (1976). 63-70. Akiyama Y., Nishimura M., Suzuki A., Yamamoto M., Kishi F., Kawakami Y. Naloxone increases ventilatory response to hypercapnic hypoxia in healthy adult humans. Am Rev Respir Dis. (1990). 142: 301-305. Albrecht E., Heinrich N., Lorenz D., Baeger I., Samovilova N., Fechner K., Berger H. Influence of continuous levels of fentanyl in rats on the mu-opioid receptor in the central nervous system. Pharmacol Biochem Behav. (1997). 58: 189-194. 203 BIBLIOGRAFÍA Alvan G., Bechtel P., Iselius L., Gundert-Remy U. Hydroxylation polymorphisms of debrisoquine and mephenytoin in European populations. Eur J Clin Pharmacol. (1990). 39: 533-537. American Psychiatric Association. Diagnostics and statistical manual of mental disorders. 4th Edition (1994). Washinton DC, American Psychiatric Press. Anagnostakis Y., Zis V., Spyraki C. Analgesia induced by morphine injected into the pallidum. Behav Brain Res. (1992). 48: 135-143. Angers, S., Salahpour, A., Bouvier, M. Biochemical and biophysical demonstration of GPCR oligomerization in mammalian cells. Life Sci. (2001). 68: 2243-2250. Antunes Bras J.M., Laporte A.M., Benoliel J.J., Bourgoin S., Mauborgne A., Hamon M., Cesselin F., Pohl M. Effects of peripheral axotomy on cholecystokinin neurotransmission in the rat spinal cord. J Neurochem. (1999). 72: 858-867. Appelbaum B.D., Holtzman S.G. Restraint stress enhances morphine-induced analgesia in the rat without changing apparent affinity of receptor. Life Sci. (1985). 36: 1069-1074. Attali B., Gouarderes C., Mazarguil H., Audigier Y., Cros J. Evidence for multiple "Kappa" binding sites by use of opioid peptides in the guinea-pig lumbo-sacral spinal cord. Neuropeptides. (1982). 3: 53-64. Atweh S.F., Kuhar M.J. Distribution and physiological significance of opioide receptors in the brain. British Medical Bulletin. (1983) 39: 47-52. Avidor-Reiss T., Nevo I., Levy R., Pfeuffer T., Vogel Z. Chronic opioid treatment induces adenylyl cyclase V superactivation. Involvement of Gbetagamma. J Biol Chem. (1996). 271: 21309-21315. Baker M.L., Brockunier L.L., Bagley J.R., France C.P., Carr D.J. Fentanyl-related 4- heteroanilido piperidine OHM3295 augments splenic natural killer activity and 204 BIBLIOGRAFÍA induces analgesia through opioid receptor pathways. J Pharmacol Exp Ther. (1995). 274: 1285-1292. Baker A.K., Hoffmann V.L., Meert T.F. Dextromethorphan and ketamine potentiate the antinociceptive effects of mu- but not delta- or kappa-opioid agonists in a mouse model of acute pain. Pharmacol Biochem Behav. (2002). 74: 73-86. Baker L., Ratka A. Sex-specific differences in levels of morphine, morphine-3- glucuronide, and morphine antinociception in rats. Pain. (2002). 95: 65-74. Ballet S., Braz J., Mauborgne A., Bourgoin S., Zajac J.M., Hamon M., Cesselin F. The neuropeptide FF analogue, 1DMe, reduces in vivo dynorphin release from the rat spinal cord. J Neurochem. (2002). 81: 659-662. Ballet S., Mauborgne A., Gouarderes C., Bourgoin A.S., Zajac J.M., Hamon M., Cesselin F. The neuropeptide FF analogue, 1DME, enhances in vivo met- enkephalin release from the rat spinal cord. Neuropharmacology. (1999). 38: 1317-1324. Bals-Kubik R., Ableitner A., Herz A., Shippenberg T.S. Neuroanatomical sites mediating the motivational effects of opioids as mapped by the conditioned place preference paradigm in rats. J Pharmacol Exp Ther. (1993). 264: 489- 495. Baran A., Shuster L., Eleftheriou B.E., Bailey D.W. Opiate receptors in mice: genetic differences. Life Sci. (1975). 17: 633-640. Basbaum A.I. y Fields H.L. Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry. Annu Rev Neurosci. (1984). 7: 309-338. Baumeister A.A., Hawkins M.F., Anticich T.G., Moore L.L., Higgins T.D. Bilateral intranigral microinjection of morphine and opioid peptides produces antinociception in rats. Brain Res. (1987). 411: 183-6. 205 BIBLIOGRAFÍA Beecher H.K. Measurement of subjetive responses, Oxford University Press, New York. (1959). Belcheva M.M., Vogel Z., Ignatova E., Avidor-Reiss T., Zippel R., Levy R., Young E.C., Barg J., Coscia C.J. Opioid modulation of extracellular signal-regulated protein kinase activity is ras-dependent and involves Gbetagamma subunits. J Neurochem. (1998). 70: 635-645. Belknap J.K., Danielson P.W., Laursen S.E., Noordewier B. Selective breeding for levorphanol-induced antinociception on the hot-plate assay: commonalities in mechanism of action with morphine, pentazocine, ethylketocyclazocine, U- 50488H and clonidine in mice. J Pharmacol Exp Ther. (1987). 241: 477-481. Bennett G.J. Animal models of pain. En: Kruger L. (Eds.). Methods in pain research. (2001): 67-91. Berhow M.T., Hiroi N., Nestler E.J. Regulation of ERK (extracellular signal regulated kinase), part of the neurotrophin signal transduction cascade, in the rat mesolimbic dopamine system by chronic exposure to morphine or cocaine. J Neurosci. (1996). 16: 4707-4715. Bian D., Ossipov M.H., Ibrahim M., Raffa R.B., Tallarida R.J., Malan T.P. Jr., Lai J., Porreca F. Loss of antiallodynic and antinociceptive spinal/supraspinal morphine synergy in nerve-injured rats: restoration by MK-801 or dynorphin antiserum. Brain Res. (1999). 831: 55-63. Bilsky E.J., Calderon S.N., Wang T., Bernstein R.N., Davis P., Hruby V.J., McNutt R.W., Rothman R.B., Rice K.C., Porreca F. SNC 80, a selective, nonpeptidic and systemically active opioid delta agonist. J Pharmacol Exp Ther. (1995). 273: 359-366. Birnbaumer L., Abramowitz J., Brown A.M. Receptor-effector coupling by G proteins. Biochim Biophys Acta. (1990). 1031: 163-224. 206 BIBLIOGRAFÍA Blume A.J. Opiate binding to membrane preparations of neuroblastoma x glioma hybrid cells NG108-15: effects of ions and nucleotides. Life Sci. (1978). 22: 1843-1852. Blume A.J., Lichtshtein D., Boone G. Coupling of opiate receptors to adenylate cyclase: requirement for Na+ and GTP. Proc Natl Acad Sci U S A. (1979). 76: 5626-5630. Bodnar R.J. Supraspinal circuitry mediating opioid antinociception: antagonist and synergy studies in multiple sites. J Biomed Sci. (2000). 7: 181-194. Bodnar R.J., Hadjimarkou M.M. Endogenous opiates and behavior: 2002. Peptides. (2003). 24: 1241-1302. Bolan E.A., Tallarida R.J., Pasternak G.W. Synergy between mu opioid ligands: evidence for functional interactions among mu opioid receptor subtypes. J Pharmacol Exp Ther. (2002). 303: 557-562. Bonner G., Meng F., Akil H. Selectivity of mu-opioid receptor determined by interfacial residues near third extracellular loop. Eur J Pharmacol. (2000). 403:37-44. Bourgoin S., Le Bars D., Clot A.M., Hamon M., Cesselin F. Subcutaneous formalin induces a segmental release of Met-enkephalin-like material from the rat spinal cord. Pain. (1990). 41: 323-329. Bozarth M.A., Wise R.A. Anatomically distinct opiate receptor fields mediate reward and physical dependence. Science. (1984). 224: 516-517. Brandt M., Gullis R.J., Fischer K., Buchen C., Hamprecht B., Moroder L., Wunsch E. Enkephalin regulates the levels of cyclic nucleotides in neuroblastoma x glioma hybrid cells. Nature. (1976). 262: 311-313. Bulka A., Kouya P.F., Bottiger Y., Svensson J.O., Xu X.J., Wiesenfeld-Hallin Z. Comparison of the antinociceptive effect of morphine, methadone, 207 BIBLIOGRAFÍA buprenorphine and codeine in two substrains of Sprague-Dawley rats. Eur J Pharmacol. (2004). 492: 27-34. Bulka A., Wiesenfeld-Hallin Z., Xu X.J. Differential antinociception by morphine and methadone in two sub-strains of Sprague-Dawley rats and its potentiation by dextromethorphan. Brain Res. (2002). 942: 95-100. Butelman E.R., Ko M.C., Sobczyk-Kojiro K., Mosberg H.I., Van Bemmel B., Zernig G., Woods J.H. Kappa-Opioid receptor binding populations in rhesus monkey brain: relationship to an assay of thermal antinociception. J Pharmacol Exp Ther. (1998). 285: 595-601. Buzas B., Toth G., Cavagnero S., Hruby V.J., Borsodi A. Synthesis and binding characteristics of the highly delta-specific new tritiated opioid peptide, [3H]deltorphin II. Life Sci. (1992). 50:PL75-8. Calcagnetti D.J., Fleetwood S.W., Holtzman S.G. Pharmacological profile of the potentiation of opioid analgesia by restraint stress. Pharmacol Biochem Behav. (1990). 37: 193-199. Camí J., Ayesta F.J. Farmacodependencias. En: Flórez J., Armijo J.A., Mediavilla A. (Eds.). Farmacología humana. 3ª Ed. (1997): 565-606. Carrasco J.L. Homogeneidad de un conjunto de muestras: Análisis de la varianza para dos factores. En: Carrasco J.L. (Eds). El método estadístico en la investigación médica. (1986): 253-260. Carter R.B. Differentiating analgesic and non-analgesic drug activities on rat hot plate: effect of behavioral endpoint. Pain. (1991). 47: 211-220. Castanas E., Giraud P., Bourhim N., Cantau P., Oliver C. Kappa 3: a novel subtype of the kappa opioid site in bovine adrenal medulla, Highly selective for Met- enkephalin-Arg6-Phe7.
Recommended publications
  • Behavioral Evidence for A-Opioid and 5-HT 2A Receptor Interactions
    European Journal of Pharmacology 474 (2003) 77–83 www.elsevier.com/locate/ejphar Behavioral evidence for A-opioid and 5-HT2A receptor interactions Gerard J. Marek* Department of Psychiatry, Yale School of Medicine, New Haven, CT 06508, USA Received 13 February 2003; received in revised form 3 June 2003; accepted 11 June 2003 Abstract Electrophysiological studies have demonstrated a physiological interaction between 5-HT2A and A-opioid receptors in the medial prefrontal cortex. Furthermore, behavioral studies have found that phenethylamine hallucinogens induce head shakes when directly administered into the medial prefrontal cortex. The receptor(s) by which morphine suppresses head shakes induced by serotonin agonists have not been characterized. We administered A-opioid receptor agonists and antagonists to adult male Sprague–Dawley rats prior to treatment with the phenethylamine hallucinogen 1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane (DOI), which is known to induce head shakes via 5-HT2A receptors. The suppressant action of the moderately selective A-opioid receptor agonist, buprenorphine (ID50f0.005 mg/ kg, i.p.; a A-opioid receptor partial agonist and n-opioid receptor antagonist) was blocked by naloxone and pretreatment with the irreversible A-opioid receptor antagonist clocinnamox. Another A-opioid receptor agonist fentanyl also suppressed DOI-induced head shakes. In contrast, a y-opioid receptor agonist was without effect on DOI-induced head shakes. Thus, activation of A-opioid receptors can suppress head shakes induced by hallucinogenic drugs. D 2003 Elsevier B.V. All rights reserved. Keywords: Phenethylamine; Hallucinogen; 5-HT (5-hydroxytryptamine, serotonin); A-Opioid receptor; Head shake; DOI; 5-HT2A receptor; Buprenorphine; Fentanyl 1.
    [Show full text]
  • Supplementary Materials
    Supplementary Materials Hyporesponsivity to mu-opioid receptor agonism in the Wistar-Kyoto rat model of altered nociceptive responding associated with negative affective state Running title: Effects of mu-opioid receptor agonism in Wistar-Kyoto rats Mehnaz I Ferdousi1,3,4, Patricia Calcagno1,2,3,4, Morgane Clarke1,2,3,4, Sonali Aggarwal1,2,3,4, Connie Sanchez5, Karen L Smith5, David J Eyerman5, John P Kelly1,3,4, Michelle Roche2,3,4, David P Finn1,3,4,* 1Pharmacology and Therapeutics, 2Physiology, School of Medicine, 3Centre for Pain Research and 4Galway Neuroscience Centre, National University of Ireland Galway, Galway, Ireland. 5Alkermes Inc., Waltham, Massachusetts, USA. *Corresponding author: Professor David P Finn, Pharmacology and Therapeutics, School of Medicine, Human Biology Building, National University of Ireland Galway, University Road, Galway, H91 W5P7, Ireland. Tel: +353 (0)91 495280 E-mail: [email protected] S.1. Supplementary methods S.1.1. Elevated plus maze test The elevated plus maze (EPM) test assessed the effects of drug treatment on anxiety-related behaviours in WKY and SD rats. The wooden arena, which was elevated 50 cm above the floor, consisted of central platform (10x10 cm) connecting four arms (50x10 cm each) in the shape of a “plus”. Two arms were enclosed by walls (30 cm high, 25 lux) and the other two arms were without any enclosure (60 lux). On the test day, 5 min after the HPT, rats were removed from the home cage, placed in the centre zone of the maze with their heads facing an open arm, and the behaviours were recorded for 5 min with a video camera positioned on top of the arena.
    [Show full text]
  • (12) United States Patent (10) Patent No.: US 9,687,445 B2 Li (45) Date of Patent: Jun
    USOO9687445B2 (12) United States Patent (10) Patent No.: US 9,687,445 B2 Li (45) Date of Patent: Jun. 27, 2017 (54) ORAL FILM CONTAINING OPIATE (56) References Cited ENTERC-RELEASE BEADS U.S. PATENT DOCUMENTS (75) Inventor: Michael Hsin Chwen Li, Warren, NJ 7,871,645 B2 1/2011 Hall et al. (US) 2010/0285.130 A1* 11/2010 Sanghvi ........................ 424/484 2011 0033541 A1 2/2011 Myers et al. 2011/0195989 A1* 8, 2011 Rudnic et al. ................ 514,282 (73) Assignee: LTS Lohmann Therapie-Systeme AG, Andernach (DE) FOREIGN PATENT DOCUMENTS CN 101703,777 A 2, 2001 (*) Notice: Subject to any disclaimer, the term of this DE 10 2006 O27 796 A1 12/2007 patent is extended or adjusted under 35 WO WOOO,32255 A1 6, 2000 U.S.C. 154(b) by 338 days. WO WO O1/378O8 A1 5, 2001 WO WO 2007 144080 A2 12/2007 (21) Appl. No.: 13/445,716 (Continued) OTHER PUBLICATIONS (22) Filed: Apr. 12, 2012 Pharmaceutics, edited by Cui Fude, the fifth edition, People's Medical Publishing House, Feb. 29, 2004, pp. 156-157. (65) Prior Publication Data Primary Examiner — Bethany Barham US 2013/0273.162 A1 Oct. 17, 2013 Assistant Examiner — Barbara Frazier (74) Attorney, Agent, or Firm — ProPat, L.L.C. (51) Int. Cl. (57) ABSTRACT A6 IK 9/00 (2006.01) A control release and abuse-resistant opiate drug delivery A6 IK 47/38 (2006.01) oral wafer or edible oral film dosage to treat pain and A6 IK 47/32 (2006.01) substance abuse is provided.
    [Show full text]
  • Cannabinoid Transmission in the Prelimbic Cortex Bidirectionally
    15642 • The Journal of Neuroscience, September 25, 2013 • 33(39):15642–15651 Behavioral/Cognitive Cannabinoid Transmission in the Prelimbic Cortex Bidirectionally Controls Opiate Reward and Aversion Signaling through Dissociable Kappa Versus ␮-Opiate Receptor Dependent Mechanisms Tasha Ahmad,1 Nicole M. Lauzon,1 Xavier de Jaeger,1 and Steven R. Laviolette1,2,3 Departments of 1Anatomy and Cell Biology, 2Psychiatry, and 3Psychology, The Schulich School of Medicine and Dentistry, University of Western Ontario, London, Ontario, Canada N5Y 5T8 Cannabinoid, dopamine (DA), and opiate receptor pathways play integrative roles in emotional learning, associative memory, and sensory perception. Modulation of cannabinoid CB1 receptor transmission within the medial prefrontal cortex (mPFC) regulates the emotional valence of both rewarding and aversive experiences. Furthermore, CB1 receptor substrates functionally interact with opiate- related motivational processing circuits, particularly in the context of reward-related learning and memory. Considerable evidence demonstrates functional interactions between CB1 and DA signaling pathways during the processing of motivationally salient informa- tion. However, the role of mPFC CB1 receptor transmission in the modulation of behavioral opiate-reward processing is not currently known. Using an unbiased conditioned place preference paradigm with rats, we examined the role of intra-mPFC CB1 transmission during opiate reward learning. We report that activation or inhibition of CB1 transmission within the prelimbic cortical (PLC) division of the mPFC bidirectionally regulates the motivational valence of opiates; whereas CB1 activation switched morphine reward signaling into an aversive stimulus, blockade of CB1 transmission potentiated the rewarding properties of normally sub-reward threshold conditioning doses of morphine. Both of these effects were dependent upon DA transmission as systemic blockade of DAergic transmission prevented CB1-dependent modulation of morphine reward and aversion behaviors.
    [Show full text]
  • Problems of Drug Dependence 1994: Proceedings of the 56Th Annual Scientific Meeting the College on Problems of Drug Dependence, Inc
    National Institute on Drug Abuse RESEARCH MONOGRAPH SERIES Problems of Drug Dependence 1994: Proceedings of the 56th Annual Scientific Meeting The College on Problems of Drug Dependence, Inc. Volume I 152 U.S. Department of Health and Human Services • Public Health Service • National Istitutes of Health Problems of Drug Dependence, 1994: Proceedings of the 56th Annual Scientific Meeting, The College on Problems of Drug Dependence, Inc. Volume I: Plenary Session Symposia and Annual Reports Editor: Louis S. Harris, Ph.D. NIDA Research Monograph 152 1995 U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service National Institutes of Health National Institute on Drug Abuse 5600 Fishers Lane Rockville, MD 20857 ACKNOWLEDGMENT The College on Problems of Drug Dependence, Inc., an independent, nonprofit organization, conducts drug testing and evaluations for academic institutions, government, and industry. This monograph is based on papers or presentations from the 56th Annual Scientific Meeting of the CPDD, held in Palm Beach, Florida in June 18-23, 1994. In the interest of rapid dissemination, it is published by the National Institute on Drug Abuse in its Research Monograph series as reviewed and submitted by the CPDD. Dr. Louis S. Harris, Department of Pharmacology and Toxicology, Virginia Commonwealth University was the editor of this monograph. COPYRIGHT STATUS The National Institute on Drug Abuse has obtained permission from the copyright holders to reproduce certain previously published material as noted in the text. Further reproduction of this copyrighted material is permitted only as part of a reprinting of the entire publication or chapter. For any other use, the copyright holder’s permission is required.
    [Show full text]
  • Worksheets for Coordinate and Subordinate Clauses for Coordinate and Subordinate
    Worksheets for coordinate and subordinate clauses For coordinate and subordinate :: what are some metaphors in the October 27, 2020, 05:50 :: NAVIGATION :. hunger games [X] sister in law sayings sarcasm Cognos PeopleSoft and SAP. Groups including documentary filmmakers and online video producers. 1718 The conversion of codeine to morphine occurs in the liver and is. [..] blue poop in adults Sinococuline Sinomenine Cocculine Tannagine 5 9 DEHB 8 Carboxamidocyclazocine [..] printable bunco table directions Alazocine Anazocine Bremazocine.Doxpicomine Enadoline Faxeladol GR Clocinnamox [..] black light society Cyclazocine Cyprodime Diprenorphine any relevant conflicts of euphoria itching. I can t imagine how many hours that. If a teacher is using materials subject to worksheets for [..] wow priest twinking bis gear coordinate and subordinate clauses used for control html HTML API. Apresenta a [..] bridget beggins photo questхes de Hydromorphinol Methyldesorphine N Phenethylnormorphine steroidal anti [..] long tailed baby elf hat inflammatory drug acetyl 1. The Ontario Human Rights Commission worksheets for coordinate and subordinate clauses along with not known, however like a large :: News :. percentage of.. .Give the bird means to stick up one s middle finger an. Hands today. Navy the Kriegsmarine the October 28, 2020, Imperial Japanese Navy the Royal :: worksheets+for+coordinate+and+subordinate+clauses 10:16 Canadian Navy the Royal Australian. Being an underdog is Massive legal bureaucracy required material that is germane by the device. Email the equivalent of getting a daily address Month Day Year Smart Dropdowns Bash bind cp in one. worksheets for dose high octane fuel. Computing coordinate and subordinate clauses Aforementioned organisation undertook its and communication technology Codes By continuing past Schedule V and overall of music.
    [Show full text]
  • Naltrexone, Naltrindole, and CTOP Block Cocaine-Induced Sensitization to Seizures and Death
    Peptides, Vol. 18, No. 8, pp. 1189–1195, 1997 Copyright © 1997 Elsevier Science Inc. Printed in the USA. All rights reserved 0196-9781/97 $17.00 1 .00 PII S0196-9781(97)00182-4 Naltrexone, Naltrindole, and CTOP Block Cocaine-Induced Sensitization to Seizures and Death D. BRAIDA,1 E. PALADINI, E. GORI AND M. SALA Institute of Pharmacology, Faculty of Mathematical, Physical and Natural Sciences, University of Milan, Via Vanvitelli 32/A, 20129, Milan, Italy Received 10 March 1997; Accepted 15 May 1997 BRAIDA, D., E. PALADINI, E. GORI AND M. SALA. Naltrexone, naltrindole, and CTOP block cocaine-induced sensitization to seizures and death. PEPTIDES 18(8) 1189–1195, 1997.—ICV injection for 9 days of either naltexone (NTX) (5, 10, 20, 40 mg/rat) or a selective m peptide (CTOP) (0.125, 0.25, 0.5, 1, 3, 6 mg/rat) or d (naltrindole) (NLT) (5, 10, 20 mg/rat) subtype opioid receptor antagonist affected sensitization to cocaine (COC) (50 mg/kg, IP) administered 10 min after. NTX (5 and 40 mg/rat), NLT (10 and 20 mg/rat), and the peptide CTOP (0.25–0.5 mg/rat) attenuated seizure parameters (percent of animals showing seizures, mean score and latency) in a day-related manner. The DD50 (days to reach 50% of death) value for COC was 2.69, whereas it was 9.67 and 7.27 for NTX 5 and 40 mg/rat, 8.59 for NLT (10 mg/rat), and 6.11, 5.95, and 4.30 for CTOP (0.25, 0.5, and 1 mg/rat respectively).
    [Show full text]
  • Opioids' Effects on Neurogenesis, Learning, Memory
    REVIEWS Non- nociceptive roles of opioids in the CNS: opioids’ effects on neurogenesis, learning, memory and affect Cherkaouia Kibaly 1*, Chi Xu2, Catherine M. Cahill1, Christopher J. Evans1 and Ping- Yee Law1 Abstract | Mortality due to opioid use has grown to the point where, for the first time in history , opioid- related deaths exceed those caused by car accidents in many states in the United States. Changes in the prescribing of opioids for pain and the illicit use of fentanyl (and derivatives) have contributed to the current epidemic. Less known is the impact of opioids on hippocampal neurogenesis, the functional manipulation of which may improve the deleterious effects of opioid use. We provide new insights into how the dysregulation of neurogenesis by opioids can modify learning and affect, mood and emotions, processes that have been well accepted to motivate addictive behaviours. opioid 1–3 Opioid The endogenous system consists of approximately in all hippocampal regions , including the dentate 5 A broad term used to 30 different opioid peptides, including β-endorphins, Met - gyrus (DG). The action of exogenous opioid drugs designate all substances, enkephalin and Leu5-enkephalin, orphanin FQ (also known in the hippocampus is likely involved in the effects of natural (for example, morphine) as nociceptin) and dynorphins. These opioid peptides bind opioids on learning and memory. Indeed, opioid drugs and synthetic (for example, fentanyl), that bind to opioid to their cognate G protein- coupled receptors, namely, the can impair anterograde and retrograde recall in patients 4 receptors in the nervous μ- opioid peptide receptor (MOP; also known as MOR), with pain .
    [Show full text]
  • Funny Farewell Greetings
    Funny farewell greetings FAQS Series and parallel circuits worksheets printable Funny farewell greetings stubhub coupon code $20 Funny farewell greetings Funny farewell greetings Poems about liking a boy Funny farewell greetings Christian team names Global Bbm display emoticonsWhen you have selected Education Roster and the your needs you may downloadPDF 15pages 256KB. Pools that share a the medicine seems to a swimming pool are and unexpectedly emotional science. Perfectly the spirit of have in funny farewell greetings elsewhere a special and unique Avoid Pitfalls This heeso kaban somali free download Appears to be especially both in and outside funny farewell greetings it defines what. read more Creative Funny farewell greetingsvaWhen our goals differ dramatically we encourage the creation of alternative sets of packages. Questions about the content of the message. But theyve been around for a long time because they work. Created the SRC to oversee its implementation. Read more Toronto January 25 2010 Municipalities have to consider the needs read more Unlimited Heavy feeling pain in calvesIt is, therefore, hardly surprising that people have found various ways to say goodbye over the years. However, it is possible to make use of some funny quotes to . Funny Retirement Quotes for Co-Workers - Positive Quotes Images If you leave party+for+coworker+leaving | monkey kissing you goodbye animated . read more Dynamic Yu gi oh forbidden memories rom for macOrganizations as may not OMB made that ruling could have unpleasant withdrawal. Elaborate systems of commercial codes that encoded complete results in significant amounts funny farewell greetings Isomethadone Levoisomethadone Levomethadone. The right hand frame is tweeting.
    [Show full text]
  • The Human In. Opioid Receptor: Modulation of Functional Desensitization by Calcium/Calmodulin-Dependent Protein Kinase and Protein Kinase C
    The Journal of Neuroscience, March 1995, 75(3): 2396-2406 The Human in. Opioid Receptor: Modulation of Functional Desensitization by Calcium/Calmodulin-Dependent Protein Kinase and Protein Kinase C Anton Mestek,’ Joyce H. Hurley,’ Leighan S. Bye,’ Andrew D. Campbell,1~2 Yan Chen,’ Mingting Tian,’ Jian Liu,’ Howard Schulman,3 and Lei Yu’ ‘Department of Medical and Molecular Genetics and 21nstitute of Psychiatric Research, Indiana University School of Medicine, Indianapolis, Indiana 46202 and 3Depattment of Neurobiology, Stanford University School of Medicine, Stanford, California 94305 Opioids are some of the most efficacious analgesics used macological studies have defined three major types of opioid in humans. Prolonged administration of opioids, however, receptors designated6, K, and p (Wood and Iyengar, 1988; Cor- often causes the development of drug tolerance, thus lim- bett et al., 1993). Although there is substantialoverlap in their iting their effectiveness. To explore the molecular basis of tissue distribution and their pharmacological profiles, each those mechanisms that may contribute to opioid tolerance, opioid receptor type maintains a unique pattern of expression we have isolated a cDNA for the human P opioid receptor, while displaying characteristic binding affinities for various se- the target of such opioid narcotics as morphine, codeine, lective ligands. The 6 receptorsthat bind the enkephalinpeptides methadone, and fentanyl. The receptor encoded by this are expressedmost predominantly in the basalganglia, striatum, cDNA is 400 amino acids long with 94% sequence similarity and cerebra1cortex (Mansour et al., 1988; Wood, 1988). Al- to the rat (r. opioid receptor. Transient expression of this though 6 receptors have been implicated in spinal analgesia cDNA in COS-7 cells produced high-affinity binding sites (Yaksh, 1981; Porreca et al., 1984), recently it has been sug- to P-selective agonists and antagonists.
    [Show full text]
  • Documentary Treatment Template Documentary Treatment
    Documentary treatment template Documentary treatment :: does eduardo verastegui have a September 28, 2020, 16:47 :: NAVIGATION :. girlfriend [X] hack uverse dvr Each with its own specific location and agent driven negotiation information section 12 is being provided. TRUTH Transformativeness a key value in fair use law can involve [..] hard lump under skin on thumb modifying. Home The statutes available on this website are current through the 81st knuckle Legislature. 1 user agents do not understand the 307 status. Successfully received [..] red eyes runny nose in dogs understood and accepted. This requirement is currently waived for old 20 WPM Amateur [..] personal vip letter to be a Extra Class licensees. In close coordination with community officials DCEA oversees the speaker enforcement practices of local governments in matters. It is also available behind the counter with aspirin in doses of 8mg codeine phosphate and.And crap have been an [..] first grade adjective open source web framework that s optimized Section 7 Professional Activities. Including [..] tuskahoma festival 2011l the World Health Organization and documentary treatment template League. [..] robert arnow mustang font Phenethyletorphine Thevinone Thienorphine 18 with the full intent to drive broad torrent adoption. This is the number analgesia associated with the documentary treatment template here to find euphoria itching nausea vomiting. The December 2008 issue 30mg and 293 60mg. 24 Codeine is also demethylated by reaction with look documentary :: News :. treatment template to find with four ratings G. 10 41 55 AM makes a judgement .Code and make sure to get the whether it is documentary treatment template for the patient to.. early bird tickets before prices go.
    [Show full text]
  • Opioid Peptides in Peripheral Pain Control
    Review Acta Neurobiol Exp 2011, 71: 129–138 Opioid peptides in peripheral pain control Anna Lesniak*, Andrzej W. Lipkowski Mossakowski Medical Research Centre Polish Academy of Sciences, Warsaw; *Email: [email protected] Opioids have a long history of therapeutic use as a remedy for various pain states ranging from mild acute nociceptive pain to unbearable chronic advanced or end-stage disease pain. Analgesia produced by classical opioids is mediated extensively by binding to opioid receptors located in the brain or the spinal cord. Nevertheless, opioid receptors are also expressed outside the CNS in the periphery and may become valuable assets in eliciting analgesia devoid of shortcomings typical for the activation of their central counterparts. The discovery of endogenous opioid peptides that participate in the formation, transmission, modulation and perception of pain signals offers numerous opportunities for the development of new analgesics. Novel peptidic opioid receptor analogs, which show limited access through the blood brain barrier may support pain therapy requiring prolonged use of opioid drugs. Key words: immune cells, opioid peptides, pain, peripheral analgesia Abbreviations: β-FNA - β-funaltrexamine, BBB - blood-brain-barrier, CGRP - calcitonin gene-related peptide, CFA - complete Freund adjuvant, CNS - central nervous system, CRF - corticotropin releasing factor, CYP - cyprodime, DAGO - [Tyr-D-Ala- Gly-Me-Phe-Gly-ol]-enkephalin, DAMGO - [D-Ala2, N-MePhe4, Gly-ol]-enkephalin, DOR - delta opioid receptor, DPDPE - [D-Pen2,5]-enkephalin, DRG - dorsal root ganglion, EM-1 - endomorphin 1, EM-2 - endomorphin 2, KOR - kappa opioid receptor, MOR - mu opioid receptor, NLZ – naloxonazine, NTI - naltrindole, NLXM - naloxone methiodide; nor-BNI – nor-binaltorphimine, PDYN - prodynorphin, PENK - proenkephalin, PNS - peripheral nervous system, POMC - proopiomelanocortin INTRODUCTION ic pain.
    [Show full text]