Salzman Cycads 2020.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Salzman Cycads 2020.Pdf SCIENCE ADVANCES | RESEARCH ARTICLE ORGANISMAL BIOLOGY Copyright © 2020 The Authors, some rights reserved; An ancient push-pull pollination mechanism in cycads exclusive licensee Shayla Salzman1,2,3*†, Damon Crook4, James D. Crall1, Robin Hopkins1,2‡, Naomi E. Pierce1,3‡ American Association for the Advancement of Science. No claim to Most cycads engage in brood-site pollination mutualisms, yet the mechanism by which the Cycadales entice original U.S. Government pollination services from diverse insect mutualists remains unknown. Here, we characterize a push-pull pollina- Works. Distributed tion mechanism between a New World cycad and its weevil pollinators that mirrors the mechanism between a under a Creative distantly related Old World cycad and its thrips pollinators. The behavioral convergence between weevils and Commons Attribution thrips, combined with molecular phylogenetic dating and a meta-analysis of thermogenesis and coordinated patterns NonCommercial of volatile attraction and repulsion suggest that a push-pull pollination mutualism strategy is ancestral in this License 4.0 (CC BY-NC). ancient, dioecious plant group. Hence, it may represent one of the earliest insect/plant pollination mechanisms, arising long before the evolution of visual floral signaling commonly used by flowering plants. INTRODUCTION brood-site mutualist is repelled from its host pollen cone and en- Downloaded from Highly specialized coevolved systems are uncommon in nature and ticed into ovulate cones has been described in M. lucida (5), where are sometimes considered evolutionary dead ends (1). However, the Cycadothrips chadwickii thrips (order: Thysanoptera) are attracted plant order Cycadales is one of the oldest living lineages of seed (“pulled”) by lower concentrations of the dominant plant volatile plants (2), and most species form obligate brood-site pollination compound, b-myrcene, and repelled (“pushed”) by higher concen- mutualisms with insects (3, 4). Here, we investigate whether unre- trations of the same compound. The daily plant thermogenic and lated pollination mutualists exhibit matching behavioral responses volatile cycle induces pollinator movement between pollen and http://advances.sciencemag.org/ to conserved plant behaviors, representing a shared pollination ovulate cones, enabling pollination and seed set (5). This push-pull strategy. The push-pull pollination mechanism of the Australian pollination mechanism differs from most pollination syndromes cycad Macrozamia lucida is characterized by a daily peak in plant because it has a repulsive component that expels pollinators from thermogenesis and volatile production whereby thrips pollination pollen cones at a certain point in the cycle in addition to the attrac- mutualists are attracted to lower levels of a plant volatile and repelled tive mechanisms commonly seen in the visual and chemical cues of by high levels of the same compound (5). Across the Cycadales, flowers. Furthermore, the same chemical cue is used for attraction pollination-stage cones undergo a daily cycle of thermogenesis (6) and repulsion. and respiratory processes that similarly culminate in a peak of vola- The Mexican cycad Zamia furfuracea (Zamiacea), which is more tile production (7). By analyzing a distantly related New World than 150 million years (Ma) diverged from M. lucida, has an obligate cycad species that, like most cycads, is associated with a coleopteran pollination mutualism with Rhopalotria furfuracea (Coleoptera: pollination mutualist, we investigate whether this characteristic Belidae) weevils (formally R. mollis) (17). R. furfuracea complete on September 14, 2020 cycle of thermogenesis and coordinated volatile production is broadly their entire development within the plants’ disposable pollen cone indicative of an ancient and conserved pollination strategy. parenchyma tissue (10), and the plants do not set seed without Within the dioecious Cycadales, specialized insect pollinators, pollinators (17). Specialized coleopteran pollination is widespread mostly beetles and weevils, live and feed almost exclusively within in extant Cycadales (3, 4) and has existed in the lineage since at least the male pollen cone tissue (3, 4, 8–10), although one obligate ovule the mid-Mesozoic where fossilized Boganiidae beetle pollinators parasite may play a minor role in pollination of Encephalartos villosus have been found (18) well before the rise of flowering plants (19) or (9). Successful cycad reproduction requires these brood-site mutu- the earliest known direct evidence of thrips pollination (20). While alists to leave the host pollen cone and transfer pollen to a female push-pull pollination has also been hypothesized for Coleoptera- ovulate cone. Over the course of a day, pollination-stage cones pro- pollinated cycads (21, 22), the mechanism by which the plants duce a predictable thermogenic and volatile pattern (7). Both pollen manipulate their behavior to carry out pollination has not yet been and ovulate cones of an individual species produce similar thermo- explored. genic and volatile profiles (6, 11–14), yet across all species, pollen cones produce higher temperature peaks (6) and more concentrated volatile compounds (3, 11, 12, 14). Pollinator exit from pollen cones RESULTS has been observed to coincide with thermogenic and volatile peaks Plant volatile profile and weevil physiological response (5, 12, 15–17). The specific behavioral mechanism by which a We identify the chemical communication mechanism underlying the mutualism between R. furfuracea and Z. furfuracea. Using head- space collection methods, plant volatile compounds were collected 1 Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford from Z. furfuracea pollen (n = 8) and ovulate cones (n = 7) to deter- Street, Cambridge, MA 02138, USA. 2The Arnold Arboretum, Harvard University, Boston, MA 02131, USA. 3Museum of Comparative Zoology, Harvard University, 26 mine the plant volatile profile and the physiological response of Oxford Street, Cambridge, MA 02138, USA. 4USDA-APHIS-PPQ CPHST, Otis Laboratory, R. furfuracea to host plant volatiles. Z. furfuracea pollen and ovulate Building 1398, Otis ANGB, MA 02542, USA. cones produce two major compounds: the hydrocarbon 1,3-octadiene *Corresponding author. Email: [email protected] and the alcohol linalool (Fig. 1). Electroantenograph detection †Present address: School of Integrative Plant Sciences, Section of Plant Biology, Cornell University, 502 Mann Library, Ithaca, NY 14853, USA. (EAD) demonstrated that R. furfuracea male and female weevils are ‡These authors share senior authorship. physiologically capable of perceiving only 1,3-octadiene (n = 10; Salzman et al., Sci. Adv. 2020; 6 : eaay6169 12 June 2020 1 of 9 SCIENCE ADVANCES | RESEARCH ARTICLE A 0.6 0.4 vils in pits 1,3-Octadiene 1 mm tion of wee 0.2 HO Propor Linalool 0.0 010 100 1000 10,000 100,000 650,000 GC-FID B EAD 1 mV Downloaded from 5 Fig. 1. Z. furfuracea produce two main volatile components, 1,3-octadiene and linalool, yet R. furfuracea only physiologically respond to 1,3-octadiene. Gas chromatography–flame ionization detector (GC-FID) of Z. furfuracea plant cone volatiles is shown at the top with an example male R. furfuracea weevil electro- 0 antenograph detection (EAD) on the bottom. Scale bar, 1 mV for EAD channel. Red arrow denotes a positive physiological response of weevils to 1,3-octadiene that is http://advances.sciencemag.org/ n (mm) sample box ment toward not seen for linalool ( = 10). Weevil response to 1,3-octadiene and lack of response ve –5 to linalool were confirmed with standards (n = 6). Photo credit: Shayla Salzman, Cornell University. evil mo evil We –10 10,000 650,000 Fig. 1), explaining why previous attempts to elicit behavioral re- ng of 1,3-octadiene sponses in R. furfuracea using linalool were unsuccessful (11). Fig. 2. Weevil behavior follows push-pull pollination where they are attracted to lower concentrations of 1,3-octadiene and repelled by higher amounts. Weevil behavioral response to plant volatiles (A) Weevils are preferentially attracted to mid-level amounts of 1,3-octadiene in Because a physiological response does not equate with attraction pitfall tests (shown in fig. S2) and less attracted to more concentrated amounts. on September 14, 2020 and the production of 1,3-octadiene was found to vary over the The proportion of weevils in the bait pit is shown on the y axis. Sequential Bonferonni- course of the day (fig. S1), we analyzed the behavioral response of adjusted P values using an ordinary least squares model are found in table S2. R. furfuracea to different amounts of 1,3-octadiene, covering the (B) Weevils are attracted to and move toward 10,000 ng of 1,3-octadiene and are range of intrinsic plant production. Using pitfall tests where groups repelled and move away from that of 650,000 ng in behavioral arenas (shown in fig. S3). of 4 to 10 weevils are introduced for a period of 30 min to a dilution Significance is determined using an ordinary least squares model. Measurements of 1,3-octadiene in dichloromethane or a control (fig. S2), we show above the gray line show a change in average weevil position toward the that R. furfuracea are positively attracted to 1,3-octadiene and that 1,3- octadiene sample and below the line a shift away from the sample. Individual weevil attraction to increasing amounts of 1,3-octadiene is nonlinear points represent one trial of 4 to 10 weevils in (A) and one trial of ~80 weevils in (B). m (Fig. 2A). Weevils are
Recommended publications
  • Stangeria Eriopus (Stangeriaceae): Medicinal Uses, Phytochemistry and Biological Activities
    Alfred Maroyi /J. Pharm. Sci. & Res. Vol. 11(9), 2019, 3258-3263 Stangeria eriopus (Stangeriaceae): medicinal uses, phytochemistry and biological activities Alfred Maroyi Medicinal Plants and Economic Development (MPED) Research Centre, Department of Botany, University of Fort Hare, Private Bag X1314, Alice 5700, South Africa Abstract Stangeria eriopus is a perennial and evergreen cycad widely used as herbal medicine in South Africa. This study reviewed medicinal uses, phytochemistry and pharmacological properties of S. eriopus. Relevant information on the uses, phytochemistry and pharmacological properties of S. eriopus was collected from electronic scientific databases such as ScienceDirect, SciFinder, PubMed, Google Scholar, Medline, and SCOPUS. Pre-electronic literature search of conference papers, scientific articles, books, book chapters, dissertations and theses was carried out at the University library. Literature search revealed that S. eriopus is used as a protective charm against enemies, evil spirits, lightning, and bring good fortune or luck. The caudices, leaves, roots, seeds, stems and tubers of S. eriopus are used as emetics and purgatives, and as herbal medicine for body pains, congestion, headaches, high blood pressure and ethnoveterinary medicine. Phytochemical compounds identified from the species include alkaloids, amino acids, biflavones, fatty acids, glycosides, polyphenols, saponins and tannins. Pharmacological studies revealed that S. eriopus extracts have anti-hypertensive, anti-inflammatory and β-glycosidase
    [Show full text]
  • Chemical Element Concentrations of Cycad Leaves: Do We Know Enough?
    horticulturae Review Chemical Element Concentrations of Cycad Leaves: Do We Know Enough? Benjamin E. Deloso 1 , Murukesan V. Krishnapillai 2 , Ulysses F. Ferreras 3, Anders J. Lindström 4, Michael Calonje 5 and Thomas E. Marler 6,* 1 College of Natural and Applied Sciences, University of Guam, Mangilao, GU 96923, USA; [email protected] 2 Cooperative Research and Extension, Yap Campus, College of Micronesia-FSM, Colonia, Yap 96943, Micronesia; [email protected] 3 Philippine Native Plants Conservation Society Inc., Ninoy Aquino Parks and Wildlife Center, Quezon City 1101, Philippines; [email protected] 4 Plant Collections Department, Nong Nooch Tropical Botanical Garden, 34/1 Sukhumvit Highway, Najomtien, Sattahip, Chonburi 20250, Thailand; [email protected] 5 Montgomery Botanical Center, 11901 Old Cutler Road, Coral Gables, FL 33156, USA; [email protected] 6 Western Pacific Tropical Research Center, University of Guam, Mangilao, GU 96923, USA * Correspondence: [email protected] Received: 13 October 2020; Accepted: 16 November 2020; Published: 19 November 2020 Abstract: The literature containing which chemical elements are found in cycad leaves was reviewed to determine the range in values of concentrations reported for essential and beneficial elements. We found 46 of the 358 described cycad species had at least one element reported to date. The only genus that was missing from the data was Microcycas. Many of the species reports contained concentrations of one to several macronutrients and no other elements. The cycad leaves contained greater nitrogen and phosphorus concentrations than the reported means for plants throughout the world. Magnesium was identified as the macronutrient that has been least studied.
    [Show full text]
  • Botanical Journal of the Linnean Society0024-4074The Linnean Society of London, 2004? 2004 145? 499504 Original Article
    Blackwell Science, LtdOxford, UKBOJBotanical Journal of the Linnean Society0024-4074The Linnean Society of London, 2004? 2004 145? 499504 Original Article 5S rDNA SITES ON CYCAD CHROMOSOMES G. KOKUBUGATA ET AL. Botanical Journal of the Linnean Society, 2004, 145, 499–504. With 6 figures Mapping 5S ribosomal DNA on somatic chromosomes of four species of Ceratozamia and Stangeria eriopus (Cycadales) GORO KOKUBUGATA1*, ANDREW P. VOVIDES2 and KATSUHIKO KONDO3 1Tsukuba Botanical Garden, National Science Museum, Tokyo, Ibaraki 305-0005, Japan 2Instituto de Ecología, A. C., Apartado Postal 63, 91000, Xalapa, Mexico 3Laboratory of Plant Chromosome and Gene Stock, Graduate of Science, Hiroshima University, Higashi-Hiroshima 739-8526, Japan Received October 2003; accepted for publication February 2004 Somatic chromosomes of four species of Ceratozamia, C. hildae, C. kuesteriana, C. mexicana and C. norstogii, and Stangeria eriopus, were observed and compared by the fluorescence in situ hybridization method using 5S ribosomal (rDNA) probes. The four Ceratozamia species and S. eriopus showed the same chromosome number of 2n = 16, and had similar karyotypes, comprising 12 metacentric (m), two submetacentric (sm) chromosomes and two telocentric (t) chromosomes. The four Ceratozamia species exhibited a proximal 5S rDNA site in the interstitial region of two m chromosomes. Stangeria eriopus exhibited a distal 5S rDNA site in the interstitial region of two m chromosomes, which probably indicates that the two genera differ in chromosome structure by at least one paracentric inversion. © 2004 The Linnean Society of London, Botanical Journal of the Linnean Society, 2004, 145, 499–504. ADDITIONAL KEYWORDS: cycads – cytotaxonomy – fluorescence in situ hybridization. INTRODUCTION Recently, the molecular–cytological techniques of the fluorescence in situ hybridization (FISH) method The genus Ceratozamia (family Zamiaceae; Steven- have been applied to cytotaxonomic studies in some son, 1992) is endemic to Mega-Mexico 2, an extension cycad taxa.
    [Show full text]
  • Species Encephalartos Family Zamiaceae CITES Listing Appendix I Common Names Cycad Trade All South African Cycad Species (Encephalartos Spp
    SANBI IDentifyIt - Species Encephalartos Family Zamiaceae CITES Listing Appendix I Common names Cycad Trade All South African cycad species (Encephalartos spp. and Stangeria eriopus) are listed on CITES Appendix I. While no international trade is permitted in wild plants, trade is permitted in artificially propagated plants that meet certain requirements, for example, the stem diameter is less than 15 cm. The National Cycad Policy, when redrafted, will detail trade standards such as the types of shipping containers that may be used, how these containers should be sealed and when microchips are needed. Once completed, this information will be made available on the DEAT website (www.environment.gov.za). Identifying cycadsUnless complex botanical keys are used, specific cycad identification is very difficult. However, as all cycads are protected by CITES and national legislation, it is sufficient to recognise that a plant is a cycad. Become familiar with the terminology of cycad structure and the key to cycad genera, but always remember to call an expert for assistance (see Contacts). Note that there are three plant families containing cycads. Of the two genera found in South Africa, Stangeria has a single species, Stangeria eriopus. This plant, which occurs on the East coast of South Africa, has soft, fern-like pinnate leaves from 30cm to 2m long (see picture). Lateral veins arise at almost right angles to the midrib of the leaflets. Members of the genus Encephalartos can be recognized by the following basic characteristics: Leaves are pinnate, leaflets with sunken, parallel veins (no midrib). Leaflets are hard and prickly and DO NOT bend easily: they may be deep green, blue green, or grey.
    [Show full text]
  • An Evolutionary Clock
    Journal of Conservation Biology. 115 (2017) 155-157 https://sites.google.com/site/photonfoundationorganization/home/conservation-biology-journal Original Research Article. ISJN: 8423-2468: Impact Index: 4.87 Journal of Conservation Biology Ph ton Stangeria: An Evolutionary clock Dr. Teena Agrawal* a Banasthali University, India Article history: appearances of that evolutionary past. Cycadales are the Received: 09 August, 2017 living fossils and they are at the edge of the degradation, Accepted: 10 August, 2017 all of them totally 11 genera are existing, which have Available online: 18 September, 2017 very narrow distribution in some of the area of the world. Keywords: In this review articles we are trying to work on the one of Evolution, evolutionary clocks, conservation, extinction the Cycadales entitles as the Stangeria. This is well distributed n the some of the area of the South Africa and Corresponding Author: the some islands of the West Indies. Now this cycadales Dr. Agrawal T.* is at the junction of the disappearances due to the habitat Assistant Professor destruction and the other anthropogenic activity. (IUCN Email: tagrawal02 ( at ) gmail ( dot ) com endangered). Abstract Citation: Gymnosperms are the plants of the conservation of the Dr. Agrawal T.*, 2017. Stangeria: An Evolutionary clock. evolution in there all plant parts; they have the good Journal of Conservation Biology. Photon 115, 155-157 reservoirs of the metabolites and the other conserved sequences of the evolutionary values. These groups have All Rights Reserved with Photon. the very fantascting ecosystems in the Mesozoic era. The Photon Ignitor: ISJN84232468D874118092017 appropriate reconstruction of the Mesozoic era gives the 1.
    [Show full text]
  • Stangeria: an Endangered Cycades Teena Agarwal* University of Banasthali, Department of Plant Genecology, Niwai, 304022, India
    Research and Reviews: Journal of Pharmacognosy e-ISSN:2321-6182 p-ISSN:2347-2332 and Phytochemistry Stangeria: An Endangered Cycades Teena Agarwal* University of Banasthali, Department of Plant Genecology, Niwai, 304022, India Review Article Received date: 27/09/2017 ABSTRACT Accepted date: 02/11/2017 Gymnosperms are the plants of the conservation of the evolution Published date: 07/11/2017 in there all plant parts; they have the good reservoirs of the metabolites and the other conserved sequences of the evolutionary values. These *For Correspondence groups have the very fantascting ecosystems in the Mesozoic era. The appropriate reconstruction of the Mesozoic era gives the appearances University of Banasthali, Department of Plant of that evolutionary past. Cycadales are the living fossils and they are at Gencology, Niwai, 304022, India, the edge of the degradation, all of them totally 11 genera are existing, Tel: 9680724243. which have very narrow distribution in some of the area of the world. In this review articles we are trying to work on the one of the Cycadales entitles E-mail: [email protected] as the Stangeria. This is well distributed on the some of the area of the South Africa and some islands of the West Indies. Now this cycadales is at Keywords: Evolution, evolutionary clocks, the junction of the disappearances due to the habitat destruction and the conservation, extinction other anthropogenic activity. (IUCN endangered). INTRODUCTION Gymnosperms are the plants of the naked seeds with some anatomical differences form the angiosperms; they developed the large and the gigantism ecosystem in the Mesozoic era; however, one can see the declines in the fascinating line during the modern era.
    [Show full text]
  • Rhyzobius Lophanthae Introduced Against Asian
    ABSTRACT Too Little and Too Late???? Asian Cycad Scale (ACS) Chronology Asian cycad scale (ACS), Aulacaspis yasumatsui, was 1972 – Aulacaspis yasumatsui described in Thailand first detected in Tumon, Guam in December 2003 in front Rhyzobius lophanthae introduced against Asian 1996 – ACS detected in Florida of a hotel where Cycas revoluta, an introduced ornamental 1998 – ACS detected in Hawaii cycad and Cycas micronesica, an indigenous cycad were cycad scale, Aulacaspis yasumatsui, on Guam 2003 – ACS detected on cycads used for landscaping in Guam’s planted. The scale is believed to have been imported from Tumon Bay hotel district Hawaii in 1998 on ornamental cycads. The scale currently R.H. Miller1, A. Moore1, R.N. Muniappan1, A.P. Brooke2 and T.E. Marler1. 2004 – ACS spreads to Cycas revoluta and C. micronesica infests introduced and indigenous cycads on about two 1CNAS-AES, University of Guam, Mangilao, Guam (fadang) throughout Guam thirds of Guam’s 354 square kilometers. Severe 2Guam National Wildlife Refuge, Dededo, Guam 2005 – Ryzobius lophanthae and Coccobius fulvus released on infestations have been observed to kill both species within Guam; Plans made to preserve C. micronesica germplasm from a few months. We fear that C. micronesica may be Guam on the nearby island of Tinian threatened with extinction should the scale spread to the few other Micronesian islands that harbor it. Rhyzobius lophanthae, a coccinellid introduced to Asian Cycad Scale Management Hawaii in 1894 for other scale insects, was imported from Biological Control Agents on Guam Maui to Guam in November 2004 and released on C. Rhyzobius lophanthae micronesica at the Guam National Wildlife Refuge at • Introduced in Hawaii in 1894; Guam ??? 1930s Ritidian point in February 2005.
    [Show full text]
  • Evolutionary Signal of Leaflet Anatomy in the Zamiaceae
    Zurich Open Repository and Archive University of Zurich Main Library Strickhofstrasse 39 CH-8057 Zurich www.zora.uzh.ch Year: 2020 Evolutionary signal of leaflet anatomy in the Zamiaceae Coiro, Mario ; Jelmini, Nicola ; Neuenschwander, Hanna ; Calonje, Michael A ; Vovides, Andrew P ; Mickle, James E ; Barone Lumaga, Maria Rosaria Abstract: Premise of research: The morphology of leaves is shaped by both historical and current se- lection acting on constrained developmental systems. For this reason, the phylogenetic signal of these characters is usually overlooked. Methodology: We investigate morphology of the leaflets of all gen- era of the Zamiaceae using multiple microscopical techniques to test whether leaf characters present a phylogenetic signal and whether they are useful to define clades at a suprageneric level. Pivotal re- sults: Our investigation shows that most genera are quite uniform in their leaflet anatomy, with the largest genera (Zamia, Encephalartos) presenting the highest degree of variation. Using both Bayesian and parsimony methods on two different molecular scaffolds, we are able to show that leaflet anatomy has a strong phylogenetic signal in the Zamiaceae and that many clades retrieved by molecular analyses present potential synapomorphies in their leaflet anatomy. Particularly, the placement of Stangeria ina clade with Zamia and Microcycas is supported by the presence of both an adaxial and an abaxial girder sclerenchyma and the absence of sclerified hypodermis. The placement of Stangeria as sister to Bowenia, on the other hand, is not supported by our analysis. Instead, our results put into question the homology of the similar guard cell morphology in the two genera. Conclusions: We show that leaflet anatomy has a substantial amount of phylogenetic signal in the Zamiaceae, supporting relationships that are not supported by general morphology.
    [Show full text]
  • Gene Duplications and Genomic Conflict Underlie Major Pulses of Phenotypic 2 Evolution in Gymnosperms 3 4 Gregory W
    bioRxiv preprint doi: https://doi.org/10.1101/2021.03.13.435279; this version posted March 15, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. 1 1 Gene duplications and genomic conflict underlie major pulses of phenotypic 2 evolution in gymnosperms 3 4 Gregory W. Stull1,2,†, Xiao-Jian Qu3,†, Caroline Parins-Fukuchi4, Ying-Ying Yang1, Jun-Bo 5 Yang2, Zhi-Yun Yang2, Yi Hu5, Hong Ma5, Pamela S. Soltis6, Douglas E. Soltis6,7, De-Zhu Li1,2,*, 6 Stephen A. Smith8,*, Ting-Shuang Yi1,2,*. 7 8 1Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, 9 Kunming, Yunnan, China. 10 2CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of 11 Botany, Chinese Academy of Sciences, Kunming, China. 12 3Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Sciences, 13 Shandong Normal University, Jinan, Shandong, China. 14 4Department of Geophysical Sciences, University of Chicago, Chicago, IL, USA. 15 5Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, 16 University Park, PA, USA. 17 6Florida Museum of Natural History, University of Florida, Gainesville, FL, USA. 18 7Department of Biology, University of Florida, Gainesville, FL, USA. 19 8Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, 20 MI, USA. 21 †Co-first author. 22 *Correspondence to: [email protected]; [email protected]; [email protected].
    [Show full text]
  • NUMBERED TREE SPECIES LIST in SOUTH AFRICA CYATHEACEAE 1 Cyathea Dregei 2 Cyathea Capensis Var. Capensis ZAMIACEAE 3 Encephalart
    NUMBERED TREE SPECIES LIST IN SOUTH AFRICA 23 Hyphaene coriacea CYATHEACEAE 24 Hyphaene petersiana 1 Cyathea dregei 25 Borassus aethiopum 2 Cyathea capensis var. capensis 26 Raphia australis 27 Jubaeopsis caffra ZAMIACEAE 3 Encephalartos altensteinii ASPHODELACEAE 3.1 Encephalartos eugene-maraisii 28 Aloe barberae 3.2 Encephalartos arenarius 28.1 Aloe arborescens 3.3 Encephalartos brevifoliolatus 28.2 Aloe africana 3.4 Encephalartos ferox 28.3 Aloe alooides 4 Encephalartos friderici-guilielmi 28.4 Aloe angelica 5 Encephalartos ghellinckii 28.5 Aloe candelabrum 5.1 Encephalartos inopinus 28.6 Aloe castanea 5.2 Encephalartos lanatus 28.7 Aloe comosa 6 Encephalartos laevifolius 28.8 Aloe excelsa var. excelsa 7 Encephalartos latifrons 29 Aloe dichotoma 8 Encephalartos senticosus 29.1 Aloe dolomitica 8.1 Encephalartos lehmannii 29.2 Aloe ferox 9 Encephalartos longifolius 29.3 Aloe khamiesensis 10 Encephalartos natalensis 29.4 Aloe littoralis 11 Encephalartos paucidentatus 29.5 Aloe marlothii subsp. marlothii 12 Encephalartos princeps 29.6 Aloe plicatilis 12.5 Encephalartos relictus 29.7 Aloe marlothii subsp. orientalis 13 Encephalartos transvenosus 30 Aloe pillansii 14 Encephalartos woodii 30.1 Aloe pluridens 14.1 Encephalartos heenanii 30.2 Aloe ramosissima 14.2 Encephalartos dyerianus 30.3 Aloe rupestris 14.3 Encephalartos middelburgensis 30.4 Aloe spicata 14.4 Encephalartos dolomiticus 30.5 Aloe speciosa 14.5 Encephalartos aemulans 30.6 Aloe spectabilis 14.6 Encephalartos hirsutus 30.7 Aloe thraskii 14.7 Encephalartos msinganus 14.8 Encephalartos
    [Show full text]
  • Plant Science Bulletin Fall 2016 Volume 62 Number 3
    PLANT SCIENCE BULLETIN FALL 2016 VOLUME 62 NUMBER 3 A PUBLICATION OF THE BOTANICAL SOCIETY OF AMERICA PLANTS Grant Recipients and Mentors Gather at Botany 2015! Botany in Action Volunteers ready to go! IN THIS ISSUE... An interview with the new How BSA Can Inuence Sci- First place - Botany in a Box BSA Student Rep, James ence Education Reform...p. 61 Project!...p. 85 McDaniel........p. 101 From the Editor PLANT SCIENCE BULLETIN Editorial Committee Greetings! Volume 62 Two articles in this issue of Plant Science Bulletin focus on the role and responsibility of the Botanical L .K T u o inen Society of America in advocating for science educa- () tion. In this issue, BSA President Gordon Uno shares Department of Natural Science Metropolitan State University his essay, “Convergent Evolution of National Sci- St. Paul, MN 55106 ence Education Projects: How BSA Can Inuence [email protected] Reform,” the rst in a two-part series based on his address at Botany 2016. Look for the second part of this series to be published in Spring 2017. Also included in this issue is the fourth part in Marshall Sundberg’s series on Botanical Education in the D aniel ladis United States. is installment focuses on the role of () the Botanical Society in the late 20th and early 21st Department of Biology & centuries and showcases the society’s recent eorts e Conservatory Miami University on the educational front. As always, we dedicate the Hamilton, OH 45011 Education News and Notes section to the practical [email protected] eorts of the current BSA membership and sta to promote science education at all levels and to help lead the broader national conversation.
    [Show full text]
  • Zamiaceae, Cycadales) and Evolution in Cycadales
    The complete chloroplast genome of Microcycas calocoma (Miq.) A. DC. (Zamiaceae, Cycadales) and evolution in Cycadales Aimee Caye G. Chang1,2,3, Qiang Lai1, Tao Chen2, Tieyao Tu1, Yunhua Wang2, Esperanza Maribel G. Agoo4, Jun Duan1 and Nan Li2 1 South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China 2 Shenzhen Fairy Lake Botanical Garden, Chinese Academy of Sciences, Shenzhen, China 3 University of Chinese Academy of Sciences, Beijing, China 4 Department of Biology, De La Salle University, Manila, Philippines ABSTRACT Cycadales is an extant group of seed plants occurring in subtropical and tropical regions comprising putatively three families and 10 genera. At least one complete plastid genome sequence has been reported for all of the 10 genera except Microcycas, making it an ideal plant group to conduct comprehensive plastome comparisons at the genus level. This article reports for the first time the plastid genome of Microcycas calocoma. The plastid genome has a length of 165,688 bp with 134 annotated genes including 86 protein-coding genes, 47 non-coding RNA genes (39 tRNA and eight rRNA) and one pseudogene. Using global sequence variation analysis, the results showed that all cycad genomes share highly similar genomic profiles indicating significant slow evolution and little variation. However, identity matrices coinciding with the inverted repeat regions showed fewer similarities indicating that higher polymorphic events occur at those sites. Conserved non-coding regions also appear to be more divergent whereas variations in the exons were less discernible indicating that the latter comprises more conserved sequences. Submitted 5 September 2019 Phylogenetic analysis using 81 concatenated protein-coding genes of chloroplast (cp) Accepted 27 November 2019 genomes, obtained using maximum likelihood and Bayesian inference with high Published 13 January 2020 support values (>70% ML and = 1.0 BPP), confirms that Microcycas is closest to Corresponding authors Zamia and forms a monophyletic clade with Ceratozamia and Stangeria.
    [Show full text]