Roskilde University

Total Page:16

File Type:pdf, Size:1020Kb

Roskilde University Roskilde University Daphnia Halloween genes that encode cytochrome P450s mediating the synthesis of the arthropod molting hormone Evolutionary implications Rewitz, Kim; Gilbert, Lawrence I. Published in: BMC Evolutionary Biology DOI: 10.1186/1471-2148-8-60 Publication date: 2008 Document Version Publisher's PDF, also known as Version of record Citation for published version (APA): Rewitz, K., & Gilbert, L. I. (2008). Daphnia Halloween genes that encode cytochrome P450s mediating the synthesis of the arthropod molting hormone: Evolutionary implications. BMC Evolutionary Biology, 8. https://doi.org/10.1186/1471-2148-8-60 General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain. • You may freely distribute the URL identifying the publication in the public portal. Take down policy If you believe that this document breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 24. Sep. 2021 BMC Evolutionary Biology BioMed Central Research article Open Access Daphnia Halloween genes that encode cytochrome P450s mediating the synthesis of the arthropod molting hormone: Evolutionary implications Kim F Rewitz1 and Lawrence I Gilbert*2 Address: 1Department of Science, Systems and Models, Roskilde University, Postbox 260, DK-4000 Roskilde, Denmark and 2Department of Biology, University of North Carolina, Chapel Hill, NC 27599-3280 USA Email: Kim F Rewitz - [email protected]; Lawrence I Gilbert* - [email protected] * Corresponding author Published: 25 February 2008 Received: 15 November 2007 Accepted: 25 February 2008 BMC Evolutionary Biology 2008, 8:60 doi:10.1186/1471-2148-8-60 This article is available from: http://www.biomedcentral.com/1471-2148/8/60 © 2008 Rewitz and Gilbert; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract Background: In crustaceans and insects, development and reproduction are controlled by the steroid hormone, 20-hydroxyecdysone (20E). Like other steroids, 20E, is synthesized from cholesterol through reactions involving cytochrome P450s (CYPs). In insects, the CYP enzymes mediating 20E biosynthesis have been identified, but evidence of their probable presence in crustaceans is indirect, relying solely on the ability of crustaceans to synthesize 20E. Results: To investigate the presence of these genes in crustaceans, the genome of Daphnia pulex was examined for orthologs of these genes, the Halloween genes, encoding those biosynthetic CYP enzymes. Single homologs of spook-CYP307A1, phantom-CYP306A1, disembodied-CYP302A1, shadow- CYP315A1 and shade-CYP314A1 were identified in the Daphnia data base. Phylogenetic analysis indicates an orthologous relationship between the insect and Daphnia genes. Conserved intron/ exon structures and microsynteny further support the conclusion that these steroidogenic CYPs have been conserved in insects and crustaceans through some 400 million years of evolution. Conclusion: Although these arthropod steroidogenic CYPs are related to steroidogenic CYPs in Caenorhabditis elegans and vertebrates, the data suggest that the arthropod steroidogenic CYPs became functionally specialized in a common ancestor of arthropods and are unique to these animals. Background a specific biosynthetic pathway yielding 20-hydroxyecdys- Steroid hormones, regulate essential processes during one (20E), the arthropod molting hormone, evolved, development and reproduction, and are synthesized from whereas in the line leading to vertebrates, biosynthetic cholesterol under the control of steroidogenic enzymes in CYPs that produce the vertebrate-type steroids evolved the cytochrome P450 (CYP) family [1]. In Caenorhabditis [2]. Since there is some evidence of the presence of verte- elegans, insects and vertebrates, different steroids are pro- brate-type sex steroids in invertebrates such as echino- duced to control developmental processes, suggesting that derms and mollusks, although no unequivocal evidence steroidogenic CYPs evolved and became functionally spe- that they can synthesize these steroids [3], the possibility cialized in different lineages during evolution. In insects, remains that CYPs with the capacity to produce vertebrate- Page 1 of 8 (page number not for citation purposes) BMC Evolutionary Biology 2008, 8:60 http://www.biomedcentral.com/1471-2148/8/60 type sex steroids were present in the common ancestor Results and Discussion even before the protostome-deuterostome split. Thus, the By searching the Daphnia data bases [18,19] we obtained evolution of steroidogenic CYPs is still an open question. candidate sequences for orthologs of the insect Halloween genes in Daphnia. Single orthologs of phm, dib, sad and shd Crustaceans are believed to represent the ancestral arthro- were retrieved and only one sequence exhibited signifi- pods from which insects originated [4]. The evolutionary cant similarity to the spo-like genes in the CYP307 family. relationship between these two groups is evident from the We also searched the genomes of non-arthropod inverte- common growth strategy of insects and crustaceans that brates including the cnidarian Nematostella vectensis, the involves molting so that growth can occur. Molting is gov- nematodes C. elegans and Brugia malayi, the annelid erned by periodic increases in the levels of 20E that elicit Capitella capitata, the mollusk Lottia gigantea, the echino- the programs that coordinate the developmental and derm Strongylocentrotus purpuratus [19,20] for Halloween metamorphic transitions [5]. Although a great deal of evi- gene orthologs using TBLASTN. Analyses of these inverte- dence reveals that crustaceans, like insects, synthesize 20E brate genomes did not result in any significant hits indi- from cholesterol [6], the molecular details of steroidogen- cating the absence of Halloween orthologs and neither esis in crustaceans remain conjectural. In insects, ster- have we been able to identify orthologs of these genes in oidogenic CYPs are products of the Halloween genes any of several vertebrate species. phantom (phm: CYP306A1), disembodied (dib: CYP302A1), shadow (sad: CYP315A1) and shade (shd: CYP314A1) and The genes obtained from Daphnia encode approximately are responsible for the last four hydroxylations in the 500 amino acid open reading frames (ORFs) which is typ- pathway leading to 20E [7-14] that is biochemically simi- ically for proteins belonging to the CYP family [21]. Align- lar to one that yields 20E in crustaceans [6] (Fig. 1). In ment of Daphnia sequences with orthologs of the insect Drosophila melanogaster, mutations in these genes disrupt Halloween genes shows that the genes, in addition to 20E production and cause the arrest of embryonic devel- being conserved in areas that comprise canonical struc- opment and death. spook (spo: Cyp307a1) is another mem- tural CYP motifs, exhibit considerable conservation in ber of this CYP group which when mutated results in low regions that are believed to determine substrate specificity 20E mutants [15,16] and is believed to mediate a yet (Additional file 1). This indicates that the genes are func- uncharacterized step (the Black Box) in the biosynthesis tionally conserved in Daphnia as they are in insects [2]. of 20E preceding those of Phm, Dib, Sad and Shd. In con- The overall amino acid identity between deduced orthol- trast to phm, dib, sad and shd for which each insect genome ogous proteins from eight insects belonging to four differ- carries one ortholog, several paralogs of spo-like (CYP307) ent orders and the Daphnia orthologs ranges from an genes have been formed by duplications, which in turn average of 55.2% ± 6.8 SD (standard deviation) for Spo- have evolved lineage-specific complements of these genes like proteins to somewhat lower values for Sad proteins [2,16,17]. For example, Drosophila has two spo-like genes, (38.7% ± 8.8 SD). Thus, spo-like genes are the most highly spo and spookier (spok: Cyp307a2) [16]. These two genes are conserved of these genes and this appears to be true for close paralogs that are believed to mediate the same enzy- Daphnia like it is for insects. Conservation of these genes matic reaction, although at different stages of develop- from insect to crustaceans, which separated ~400 millions ment. years ago [4], shows that selection has preserved the genes because of their function. The reason that spo-like genes Although one would expect that orthologs of the insect are more conserved than the other arthropod steroidog- Halloween genes are present in crustaceans, there is no enic CYP enzymes is not known, although it may be molecular evidence for the existence of these genes in related to the possibility that Spo acts in the rate-limiting crustaceans. We have tried for several years to probe hexa- Black Box reaction(s) [5,22]. If Spo is involved in control
Recommended publications
  • Identification and Developmental Expression of the Full Complement Of
    Goldstone et al. BMC Genomics 2010, 11:643 http://www.biomedcentral.com/1471-2164/11/643 RESEARCH ARTICLE Open Access Identification and developmental expression of the full complement of Cytochrome P450 genes in Zebrafish Jared V Goldstone1, Andrew G McArthur2, Akira Kubota1, Juliano Zanette1,3, Thiago Parente1,4, Maria E Jönsson1,5, David R Nelson6, John J Stegeman1* Abstract Background: Increasing use of zebrafish in drug discovery and mechanistic toxicology demands knowledge of cytochrome P450 (CYP) gene regulation and function. CYP enzymes catalyze oxidative transformation leading to activation or inactivation of many endogenous and exogenous chemicals, with consequences for normal physiology and disease processes. Many CYPs potentially have roles in developmental specification, and many chemicals that cause developmental abnormalities are substrates for CYPs. Here we identify and annotate the full suite of CYP genes in zebrafish, compare these to the human CYP gene complement, and determine the expression of CYP genes during normal development. Results: Zebrafish have a total of 94 CYP genes, distributed among 18 gene families found also in mammals. There are 32 genes in CYP families 5 to 51, most of which are direct orthologs of human CYPs that are involved in endogenous functions including synthesis or inactivation of regulatory molecules. The high degree of sequence similarity suggests conservation of enzyme activities for these CYPs, confirmed in reports for some steroidogenic enzymes (e.g. CYP19, aromatase; CYP11A, P450scc; CYP17, steroid 17a-hydroxylase), and the CYP26 retinoic acid hydroxylases. Complexity is much greater in gene families 1, 2, and 3, which include CYPs prominent in metabolism of drugs and pollutants, as well as of endogenous substrates.
    [Show full text]
  • Synonymous Single Nucleotide Polymorphisms in Human Cytochrome
    DMD Fast Forward. Published on February 9, 2009 as doi:10.1124/dmd.108.026047 DMD #26047 TITLE PAGE: A BIOINFORMATICS APPROACH FOR THE PHENOTYPE PREDICTION OF NON- SYNONYMOUS SINGLE NUCLEOTIDE POLYMORPHISMS IN HUMAN CYTOCHROME P450S LIN-LIN WANG, YONG LI, SHU-FENG ZHOU Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing 100191, P. R. China (LL Wang & Y Li) Discipline of Chinese Medicine, School of Health Sciences, RMIT University, Bundoora, Victoria 3083, Australia (LL Wang & SF Zhou). 1 Copyright 2009 by the American Society for Pharmacology and Experimental Therapeutics. DMD #26047 RUNNING TITLE PAGE: a) Running title: Prediction of phenotype of human CYPs. b) Author for correspondence: A/Prof. Shu-Feng Zhou, MD, PhD Discipline of Chinese Medicine, School of Health Sciences, RMIT University, WHO Collaborating Center for Traditional Medicine, Bundoora, Victoria 3083, Australia. Tel: + 61 3 9925 7794; fax: +61 3 9925 7178. Email: [email protected] c) Number of text pages: 21 Number of tables: 10 Number of figures: 2 Number of references: 40 Number of words in Abstract: 249 Number of words in Introduction: 749 Number of words in Discussion: 1459 d) Non-standard abbreviations: CYP, cytochrome P450; nsSNP, non-synonymous single nucleotide polymorphism. 2 DMD #26047 ABSTRACT Non-synonymous single nucleotide polymorphisms (nsSNPs) in coding regions that can lead to amino acid changes may cause alteration of protein function and account for susceptivity to disease. Identification of deleterious nsSNPs from tolerant nsSNPs is important for characterizing the genetic basis of human disease, assessing individual susceptibility to disease, understanding the pathogenesis of disease, identifying molecular targets for drug treatment and conducting individualized pharmacotherapy.
    [Show full text]
  • Supplementary Material
    Supplementary Material Table S1: Significant downregulated KEGGs pathways identified by DAVID following exposure to five cinnamon- based phenylpropanoids (p < 0.05). p-value Term: Genes (Benjamini) Cytokine-cytokine receptor interaction: FASLG, TNFSF14, CXCL11, IL11, FLT3LG, CCL3L1, CCL3L3, CXCR6, XCR1, 2.43 × 105 RTEL1, CSF2RA, TNFRSF17, TNFRSF14, CCNL2, VEGFB, AMH, TNFRSF10B, INHBE, IFNB1, CCR3, VEGFA, CCR2, IL12A, CCL1, CCL3, CXCL5, TNFRSF25, CCR1, CSF1, CX3CL1, CCL7, CCL24, TNFRSF1B, IL12RB1, CCL21, FIGF, EPO, IL4, IL18R1, FLT1, TGFBR1, EDA2R, HGF, TNFSF8, KDR, LEP, GH2, CCL13, EPOR, XCL1, IFNA16, XCL2 Neuroactive ligand-receptor interaction: OPRM1, THRA, GRIK1, DRD2, GRIK2, TACR2, TACR1, GABRB1, LPAR4, 9.68 × 105 GRIK5, FPR1, PRSS1, GNRHR, FPR2, EDNRA, AGTR2, LTB4R, PRSS2, CNR1, S1PR4, CALCRL, TAAR5, GABRE, PTGER1, GABRG3, C5AR1, PTGER3, PTGER4, GABRA6, GABRA5, GRM1, PLG, LEP, CRHR1, GH2, GRM3, SSTR2, Chlorogenic acid Chlorogenic CHRM3, GRIA1, MC2R, P2RX2, TBXA2R, GHSR, HTR2C, TSHR, LHB, GLP1R, OPRD1 Hematopoietic cell lineage: IL4, CR1, CD8B, CSF1, FCER2, GYPA, ITGA2, IL11, GP9, FLT3LG, CD38, CD19, DNTT, 9.29 × 104 GP1BB, CD22, EPOR, CSF2RA, CD14, THPO, EPO, HLA-DRA, ITGA2B Cytokine-cytokine receptor interaction: IL6ST, IL21R, IL19, TNFSF15, CXCR3, IL15, CXCL11, TGFB1, IL11, FLT3LG, CXCL10, CCR10, XCR1, RTEL1, CSF2RA, IL21, CCNL2, VEGFB, CCR8, AMH, TNFRSF10C, IFNB1, PDGFRA, EDA, CXCL5, TNFRSF25, CSF1, IFNW1, CNTFR, CX3CL1, CCL5, TNFRSF4, CCL4, CCL27, CCL24, CCL25, CCL23, IFNA6, IFNA5, FIGF, EPO, AMHR2, IL2RA, FLT4, TGFBR2, EDA2R,
    [Show full text]
  • Clinical Implications of 20-Hydroxyeicosatetraenoic Acid in the Kidney, Liver, Lung and Brain
    1 Review 2 Clinical Implications of 20-Hydroxyeicosatetraenoic 3 Acid in the Kidney, Liver, Lung and Brain: An 4 Emerging Therapeutic Target 5 Osama H. Elshenawy 1, Sherif M. Shoieb 1, Anwar Mohamed 1,2 and Ayman O.S. El-Kadi 1,* 6 1 Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton T6G 2E1, AB, Canada; 7 [email protected] (O.H.E.); [email protected] (S.M.S.); [email protected] (A.M.) 8 2 Department of Basic Medical Sciences, College of Medicine, Mohammed Bin Rashid University of 9 Medicine and Health Sciences, Dubai, United Arab Emirates 10 * Correspondence: [email protected]; Tel.: 780-492-3071; Fax: 780-492-1217 11 Academic Editor: Kishor M. Wasan 12 Received: 12 January 2017; Accepted: 15 February 2017; Published: 20 February 2017 13 Abstract: Cytochrome P450-mediated metabolism of arachidonic acid (AA) is an important 14 pathway for the formation of eicosanoids. The ω-hydroxylation of AA generates significant levels 15 of 20-hydroxyeicosatetraenoic acid (20-HETE) in various tissues. In the current review, we discussed 16 the role of 20-HETE in the kidney, liver, lung, and brain during physiological and 17 pathophysiological states. Moreover, we discussed the role of 20-HETE in tumor formation, 18 metabolic syndrome and diabetes. In the kidney, 20-HETE is involved in modulation of 19 preglomerular vascular tone and tubular ion transport. Furthermore, 20-HETE is involved in renal 20 ischemia/reperfusion (I/R) injury and polycystic kidney diseases. The role of 20-HETE in the liver is 21 not clearly understood although it represents 50%–75% of liver CYP-dependent AA metabolism, 22 and it is associated with liver cirrhotic ascites.
    [Show full text]
  • Rare Novel CYP2U1 and ZFYVE26 Variants Identified in Two Pakistani Families with Spastic 2 Paraplegia
    1 Rare novel CYP2U1 and ZFYVE26 variants identified in two Pakistani families with spastic 2 paraplegia. 3 Farah Bibi1, Stephanie Efthymiou2, Thomas Bourinaris2, Ambreen Tariq2, SYNaPS Study Group, 4 Faisal Zafar3, Nouzhat Rana3, Vincenzo Salpietro2, Henry Houlden2, Ghazala Kaukab Raja1 5 6 1. University Institute of Biochemistry & Biotechnology, PMAS – Arid Agriculture University, 7 Rawalpindi, 43600, Pakistan 8 2. Department of Neuromuscular disorders, UCL Institute of Neurology, Queen Square, London 9 WC1N 3BG, UK 10 3. Department of Pediatrics, Multan Nishtar Hospital, Multan, 60000, Pakistan. 11 Corresponding author: Prof. Ghazala Kaukab Raja, University Institute of Biochemistry & 12 Biotechnology, PMAS-Arid Agriculture University, Rawalpindi, 43600, Pakistan, 13 [email protected] 14 Keywords: spastic paraplegia, SPG15, SPG56, next generation sequencing, consanguinity 15 Word count: 1894 16 17 Abstract 18 Bakground: Hereditary Spastic paraplegias (HSPs) are a clinically and genetically heterogeneous 19 group of degenerative disorders characterized by progressive spasticity and weakness of the 20 lower limbs. This study aimed to identify causative gene variants in two unrelated 21 consanguineous Pakistani families presented with 2 different forms of HSP. 22 Methods: Whole exome sequencing (WES) was performed in the two families and variants were 23 validated by Sanger sequencing and segregation analysis. 24 Analysis: In family A, a homozygous pathogenic variant in ZFYVE26 was identified in one family. 25 While in family B, a frameshift variant in CYP2U1 was identified in 4 affected individuals 26 presented with clinical features of SPG56. Our study is the first report of ZFYVE26 mutations 27 causing HSP in the Pakistani population and the second report of CYP2U1 in a Pakistani family.
    [Show full text]
  • Characterization of the Novel Defective Cyp2c9*24
    DMD Fast Forward. Published on March 1, 2007 as DOI: 10.1124/dmd.106.013722 DMD FastThis article Forward. has not been Published copyedited onand Marchformatted. 1, The 2007 final versionas doi:10.1124/dmd.106.013722 may differ from this version. DMD#13722 CHARACTERIZATION OF THE NOVEL DEFECTIVE CYP2C9*24 ALLELE Downloaded from Author’s names: Darja Herman, Vita Dolzan, Magnus Ingelman-Sundberg dmd.aspetjournals.org Institutions: Institute of Biochemistry, Faculty of Medicine, Ljubljana, Slovenia (D.H., V.D.) Section of Pharmacogenetics, Department of Physiology and Pharmacology, Karolinska at ASPET Journals on September 27, 2021 Institute, Stockholm, Sweden (D.H., M.I.-S.) 1 Copyright 2007 by the American Society for Pharmacology and Experimental Therapeutics. DMD Fast Forward. Published on March 1, 2007 as DOI: 10.1124/dmd.106.013722 This article has not been copyedited and formatted. The final version may differ from this version. DMD#13722 Running title: CHARACTERIZATION OF CYP2C9*24 ALLELE Corresponding author: Vita Dolzan, Institute of Biochemistry, Faculty of Medicine, Vrazov trg 2, SI-1000 Ljubljana, Slovenia; phone: +386 1 543 76 69; fax: + 386 1 543 76 41; e-mail: [email protected] Downloaded from No. of text pages: 8 (excluding Title page, Abstract and References) No. of Figures: 3 dmd.aspetjournals.org No. of references: 15 No. of words in the - Abstract: 242 - Introduction: 351 at ASPET Journals on September 27, 2021 - Results and Discussion: 755 Abbreviations: CYP – cytochrome P450, HEK293 – human embryonic kidney cell line 2 DMD Fast Forward. Published on March 1, 2007 as DOI: 10.1124/dmd.106.013722 This article has not been copyedited and formatted.
    [Show full text]
  • Metabolic Activation and Toxicological Evaluation of Polychlorinated Biphenyls in Drosophila Melanogaster T
    www.nature.com/scientificreports OPEN Metabolic activation and toxicological evaluation of polychlorinated biphenyls in Drosophila melanogaster T. Idda1,7, C. Bonas1,7, J. Hofmann1, J. Bertram1, N. Quinete1,2, T. Schettgen1, K. Fietkau3, A. Esser1, M. B. Stope4, M. M. Leijs3, J. M. Baron3, T. Kraus1, A. Voigt5,6 & P. Ziegler1* Degradation of polychlorinated biphenyls (PCBs) is initiated by cytochrome P450 (CYP) enzymes and includes PCB oxidation to OH-metabolites, which often display a higher toxicity than their parental compounds. In search of an animal model refecting PCB metabolism and toxicity, we tested Drosophila melanogaster, a well-known model system for genetics and human disease. Feeding Drosophila with lower chlorinated (LC) PCB congeners 28, 52 or 101 resulted in the detection of a human-like pattern of respective OH-metabolites in fy lysates. Feeding fies high PCB 28 concentrations caused lethality. Thus we silenced selected CYPs via RNA interference and analyzed the efect on PCB 28-derived metabolite formation by assaying 3-OH-2′,4,4′-trichlorobiphenyl (3-OHCB 28) and 3′-OH-4′,4,6′-trichlorobiphenyl (3′-OHCB 28) in fy lysates. We identifed several drosophila CYPs (dCYPs) whose knockdown reduced PCB 28-derived OH-metabolites and suppressed PCB 28 induced lethality including dCYP1A2. Following in vitro analysis using a liver-like CYP-cocktail, containing human orthologues of dCYP1A2, we confrm human CYP1A2 as a PCB 28 metabolizing enzyme. PCB 28-induced mortality in fies was accompanied by locomotor impairment, a common phenotype of neurodegenerative disorders. Along this line, we show PCB 28-initiated caspase activation in diferentiated fy neurons.
    [Show full text]
  • Is C-26 Hydroxylation an Evolutionarily Conserved Steroid Inactivation Mechanism?
    The FASEB Journal • Hypothesis Is C-26 hydroxylation an evolutionarily conserved steroid inactivation mechanism? Steve Meaney Division of Clinical Chemistry, Karolinska Institutet, Karolinska University Hospital, Huddinge, Sweden ABSTRACT Sterols are essential components of vir- steroid that can transduce an appropriate signal by tually all higher eukaryotic organisms, though the exact interacting with its cognate receptor, which may be a identity of the dominating sterol varies between spe- classical nuclear hormone receptor such as the estro- cies, from the C-27 of cholesterol in vertebrates to the gen receptor or a membrane receptor such as the C-28 and C-29 sterols of plants and invertebrates. In brassinosteroid receptor (6, 7). As a result of their addition to their role as structural components of cell potent biological activity, it is of paramount importance membranes these sterols are also converted into a for an organism to control the active levels of these variety of biologically active hormones. This conversion hormones, and sophisticated mechanisms have evolved generally involves modifications of the basic structure to deactivate and subsequently eliminate them (8). Due of the sterol by dealkylation, hydroxylation and/or to the presence of numerous hydroxyl and keto groups, isomerization. Recent studies have demonstrated that these hormones are suitable for such (phase II type) irreversible inactivation of both plant and insect hor- modifications as glucuronidation and sulfonation. This mones is achieved by a specific C-26 hydroxylation. The situation is exemplified by mammalian steroid hor- concept of sterol deactivation by 26-hydroxylation ap- mones such as estrogen and testosterone, which are pears to be an example of an evolutionarily conserved excreted as sulfate and/or glucuronide conjugates.
    [Show full text]
  • Dual Roles of Glutathione in Ecdysone Biosynthesis and Antioxidant Function During Larval Development in Drosophila
    | INVESTIGATION Dual Roles of Glutathione in Ecdysone Biosynthesis and Antioxidant Function During Larval Development in Drosophila Sora Enya,*,1,2 Chikana Yamamoto,*,2 Hajime Mizuno,†,3 Tsuyoshi Esaki,†,4 Hsin-Kuang Lin,* Masatoshi Iga,‡,5 Kana Morohashi,* Yota Hirano,* Hiroshi Kataoka,‡ Tsutomu Masujima,† Yuko Shimada-Niwa,§,6 and Ryusuke Niwa**,††,6 *Graduate School of Life and Environmental Sciences and **Faculty of Life and Environmental Sciences, University of Tsukuba, Ibaraki 305-8572, Japan, †Laboratory of Single-Cell Mass Spectrometry, The Institute of Physical and Chemical Research (RIKEN) Quantitative Biology Center, Suita, Osaka 565-0874, Japan, ‡Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8562, Japan, §Life Science Center of Tsukuba Advanced Research Alliance, University of Tsukuba, Ibaraki 305-8577, Japan, and ††Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Saitama 332-0012, Japan ORCID IDs: 0000-0001-5757-4329 (Y.S.-N.); 0000-0002-1716-455X (R.N.) ABSTRACT Ecdysteroids, including the biologically active hormone 20-hydroxyecdysone (20E), play essential roles in controlling many developmental and physiological events in insects. Ecdysteroid biosynthesis is achieved by a series of specialized enzymes encoded by the Halloween genes. Recently, a new class of Halloween gene, noppera-bo (nobo), encoding a glutathione S-transferase (GST) in dipteran and lepidopteran species, has been identified and characterized. GSTs are well known to conjugate substrates with the reduced form of glutathione (GSH), a bioactive tripeptide composed of glutamate, cysteine, and glycine. We hypothesized that GSH itself is required for ecdysteroid biosynthesis. However, the role of GSH in steroid hormone biosynthesis has not been examined in any organisms.
    [Show full text]
  • Mass Spectrometric Studies of Sterol Metabolites To
    MASS SPECTROMETRIC STUDIES OF STEROL METABOLITES TO ELUCIDATE THE BIOSYNTHETIC PATHWAY OF ECDYSONE IN THE DESERT LOCUST Schistocerca gregaria CHESETO XAVIER A thesis submitted in partial fulfillment for the degree of Master of Science in chemistry, Jomo Kenyatta University of Agriculture and Technology 2012 DECLARATION This thesis is my original work and has not been presented for a degree in any other University. Signature: Date: Cheseto Xavier This thesis has been presented for examination with our approval as the appointed supervisors. Signature: Date: Prof. Mary Ndung’u Department of Chemistry Jomo Kenyatta University of Agriculture and Technology (JKUAT), Kenya Signature: Date: Dr. Baldwyn Torto Behavioral and Chemical Ecology Department (BCED) International Center for Insect Physiology and Ecology (ICIPE), Kenya i DEDICATION To my family, who accord me encouragement, support and patience during my studies more so to Fiona, Valerie and Xeldwyn. ii ACKNOWLEDGEMENTS My gratitude goes to my research supervisors, Dr. Baldwyn Torto and Prof. Mary Ndung’u who leaves me with no horror stories to tell. Thank you for the insight, encouragement and scholarly suggestions that were vital from the start to the end of this project. I also feel greatly indebted to DRIP (Dissertation Research Internship Programme) through Behavioral and Chemical Ecology Department (BCED), International Center for Insect Physiology and Ecology (ICIPE) for funding the project and allowing me to use their facilities for this research work. The absence of such cooperation would have brought the entire process of developing this project into a quagmire. My thanks also go to the staff of Chemistry department, Jomo Kenyatta University of Agriculture and Technology (JKUAT) for their cooperation during this course.
    [Show full text]
  • Original Article Cytochrome P450 Family Proteins As Potential Biomarkers for Ovarian Granulosa Cell Damage in Mice with Premature Ovarian Failure
    Int J Clin Exp Pathol 2018;11(8):4236-4246 www.ijcep.com /ISSN:1936-2625/IJCEP0080020 Original Article Cytochrome P450 family proteins as potential biomarkers for ovarian granulosa cell damage in mice with premature ovarian failure Jiajia Lin1, Jiajia Zheng1, Hu Zhang1, Jiulin Chen1, Zhihua Yu1, Chuan Chen1, Ying Xiong3, Te Liu1,2 1Shanghai Geriatric Institute of Chinese Medicine, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China; 2Department of Pathology, Yale UniversitySchool of Medicine, New Haven, USA; 3Department of Gynaecology and Obestetrics, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China Received May 21, 2018; Accepted June 29, 2018; Epub August 1, 2018; Published August 15, 2018 Abstract: Premature ovarian failure (POF) is the pathological aging of ovarian tissue. We have previously established a cyclophosphamide-induced mouse POF model and found that cyclophosphamide caused significant damage and apoptosis of mouse ovarian granulosa cells (mOGCs). To systematically explore the molecular biologic evidence of cyclophosphamide-induced mOGC damage at the gene transcription level, RNA-Seqwas used to analyse the differ- ences in mOGC transcriptomes between POF and control (PBS) mice. The sequencing results showed that there were 18765 differential transcription genes between the two groups, of which 192 were significantly up-regulated (log2 [POF/PBS] > 2.0) and 116 were significantly down-regulated (log2 [POF/PBS] < -4.0). Kyoto Encyclopedia of Genes and Genomes analysis found that the neuroactive ligand-receptor interaction pathway was significantly up-regulated and metabolic pathways were significantly down-regulated in the POF group. Gene Ontology analy- sis showed that the expression of plasma membrane, regulation of transcription and ion binding functions were significantly up-regulated in the POF group, while the expression of cell and cell parts, catalytic activity and single- organism process functions were significantly down-regulated.
    [Show full text]
  • Screening 20-Hete Inhibitors in Microsomal Incubates
    SCREENING 20-HETE INHIBITORS IN MICROSOMAL INCUBATES USING UPLC-MS/MS by Chenxiao Tang Bachelor of Science, Capital Medical University, 2014 Submitted to the Graduate Faculty of School of Pharmacy in partial fulfillment of the requirements for the degree of Master of Science University of Pittsburgh 2016 Copyright © by Chenxiao Tang 2016 ii SCREENING 20-HETE INHIBITORS IN MICROSOMAL INCUBATES USING UPLC-MS/MS Chenxiao Tang, B.S. University of Pittsburgh, 2016 20-hydroxyeicosatetraenoic acid (20-HETE) is a metabolite of arachidonic acid (AA) formed by cytochrome P450 (CYP) 4A11 and CYP4F2 in humans, with potent microvascular constriction activity. Inhibition of 20-HETE formation is neuroprotective in subarachnoid hemorrhage, cardiac arrest and thromboembolic stroke preclinical models. These findings suggest that inhibition of 20-HETE formation is a potential therapeutic strategy for neuroprotection after brain injury. At this point, a clinically relevant 20-HETE inhibitor is not available to be evaluated as a therapeutic intervention. Our goal is to identify a selective, metabolically stable, and potent 20-HETE inhibitor. Test compounds were obtained either via virtual screening against a CYP4F2 homology model or from scaffold hopping from structures of known inhibitors. Four different types of microsomes including human liver microsome (HLM), recombinant CYP4F2 (rCYP4F2), rat liver microsome (RLM) and rat kidney microsome (RKM) were used. AA was incubated in microsomes with/without compound for 20 min. 20-HETE formation rate was quantified using a validated UPLC-MS/MS assay and normalized by vehicle control group. Other eicosanoids including 15-, 12-HETEs, epoxyeicosatrienoic acids (EETs), iii and dihydroxyeicosatrienoic acids (DiHETs) were monitored simultaneously.
    [Show full text]