Eruptive spectroscopy Cataclysmics, Symbiotics, Novae

ARAS Eruptive Stars Information Letter n° 34 #2017-04 06-05-2017 Observations of April 2017 Contents

Symbiotics

Ongoing campaign CH Cygni AG Dra campaign AX Per in eclipse New burst of BF Cyg SU Lyn: monitoring of the newly discovered symbiotic

V694 Mon: new results Call for spectroscopic monitoring in AAVSO Alert Notice by Adrian Lucy and Jeno Sokolovski: p. 53

AG Dra campaign, Rudolf Galis p. 7 and p. 55

Steve’s notes: Common envelope, mergers, and booms p. 56-60

New publications about Symbiotics and Novae

Authors : F. Teyssier, S. Shore, R. Gàlis, J. Guarro, D. Boyd, P. Somogyi, O. Garde, W. Sims, T. Lester, C. Buil, P. Berardi, U. Sollecchia, F. Campos, J. Foster, JP Masviel, JP Nougayrede, J. Montier, T. Rodda, F. Boubault, J. Edlin, M. Verlinden, S. Cuthbert, Y. Buchet, G. Martineau, JP. Godard, C. Boussin

“We acknowledge with thanks the variable observations from the AAVSO International Database contributed by observers worldwide and used in this letter.” Kafka, S., 2015, Observations from the AAVSO International Database, http://www.aavso.org S Symbiotics in April Y M AG Dra: new campaign See p. 4 B I AX Per : eclipse O CH Cygni : ongoing campaign T upon the request of Augustin Skopal and Margarita Karovska I SU Lyn: observations requested by Katarzyna Drozd (Nicolaus Copernicus Astronomical Centre) C S V694 Mon: still in ‘quiescent’ stage

Observing : main targets During spring have a look on classical symbiotics V443 Her, YY Her and recurrent nova RS Oph

Name AD (2000) DE (2000) AG Dra 16 1 40.5 +66 48 9.5 AG Peg 21 51 1.9 +12 37 29.4 AX Per 01 36 22.7 +54 15 2.5 BF Cyg 19 23 53.4 +29 40 25.1 BX Mon 07 25 24 -03 36 00 CH Cyg 19 24 33 +50 14 29.1 CI Cyg 19 50 11.8 +35 41 03.2 EG And 00 44 37.1 +40 40 45.7 R Aqr 23 43 49.4 -15 17 04.2 RS Oph 17 50 13.2 -06 42 28.4 SU Lyn 06 42 55.1 +55 28 27.2 T CrB 15 59 30.1 +25 55 12.6 V443 Her 18 22 8.4 +23 27 20 V694 Mon 07 25 51.2 -07 44 08 Z And 23 33 39.5 +48 49 5.4

ARAS Eruptive Stars Information Letter 2017-03 - p. 2 S Symbiotics in ARAS Data Base Update : 02-05-2017 Y 48 stars M 2424 spectra B I # Name AD (2000) DE (2000) Nb. of spectra First spectrum Last spectrum Days Since Last O 1 EG And 0 44 37.1 40 40 45.7 70 12/08/2010 14/02/2017 77 2 AX Per 1 36 22.7 54 15 2.5 159 04/10/2011 02/04/2017 30 T 3 V471 Per 1 58 49.7 52 53 48.4 7 06/08/2013 20/02/2017 71 4 Omi Cet 2 19 20.7 -2 58 39.5 12 28/11/2015 09/02/2017 82 I 5 BD Cam 3 42 9.3 63 13 0.5 27 08/11/2011 09/02/2017 82 C 6 UV Aur 5 21 48.8 32 30 43.1 57 24/02/2011 18/04/2017 14 7 V1261 Ori 5 22 18.6 -8 39 58 11 22/10/2011 26/03/2017 37 S 8 StHA 55 5 46 42 6 43 48 2 17/01/2016 25/01/2016 463 9 SU Lyn 06 42 55.1 +55 28 27.2 50 02/05/2016 25/04/2017 7 10 ZZ CMi 7 24 13.9 8 53 51.7 45 29/09/2011 18/04/2017 14 11 BX Mon 7 25 24 -3 36 0 45 04/04/2011 11/04/2017 21 12 V694 Mon 7 25 51.2 -7 44 8 206 03/03/2011 21/04/2017 11 13 NQ Gem 7 31 54.5 24 30 12.5 59 01/04/2013 18/04/2017 14 14 GH Gem 7 4 4.9 12 2 12 5 10/03/2016 20/02/2017 71 15 CQ Dra 12 30 06 69 12 04 17 11/06/2015 21/04/2017 11 16 TX CVn 12 44 42 36 45 50.6 41 10/04/2011 18/04/2017 14 17 IV Vir 14 16 34.3 -21 45 50 3 28/02/2015 20/06/2016 316 18 T CrB 15 59 30.1 25 55 12.6 182 01/04/2012 01/05/2017 1 19 AG Dra 16 1 40.5 66 48 9.5 223 03/04/2013 01/05/2017 1 20 V503 Her 17 36 46 23 18 18 2 05/06/2013 13/08/2016 262 21 RS Oph 17 50 13.2 -6 42 28.4 33 23/03/2011 01/09/2016 243 22 V934 Her 17 6 34.5 23 58 18.5 20 09/08/2013 08/04/2017 24 23 AS 270 18 05 33.7 -20 20 38 2 01/08/2013 02/08/2013 1369 24 YY Her 18 14 34.3 20 59 20 19 25/05/2011 15/07/2016 291 25 FG Ser 18 15 6.2 0 18 57.6 3 26/06/2012 24/07/2014 1013 26 StHa 149 18 18 55.9 27 26 12 3 05/08/2013 14/10/2015 566 27 V443 Her 18 22 8.4 23 27 20 34 18/05/2011 08/04/2017 24 28 FN Sgr 18 53 52.9 -18 59 42 4 10/08/2013 02/07/2014 1035 29 BF Cyg 19 23 53.4 29 40 25.1 111 01/05/2011 23/04/2017 9 30 CH Cyg 19 24 33 50 14 29.1 440 21/04/2011 25/04/2017 7 31 V919 Sgr 19 3 46 -16 59 53.9 2 10/08/2013 10/08/2013 1361 32 V1413 Aql 19 3 51.6 16 28 31.7 6 10/08/2013 31/10/2016 183 33 V335 Vul 19 23 14 +24 27 39.7 7 14/08/2016 31/10/2016 183 34 HM Sge 19 41 57.1 16 44 39.9 9 20/07/2013 26/08/2016 249 35 QW Sge 19 45 49.6 18 36 50 7 14/08/2016 31/10/2016 183 36 CI Cyg 19 50 11.8 35 41 3.2 133 25/08/2010 23/04/2017 9 37 StHa 169 19 51 28.9 46 23 6 2 12/05/2016 14/05/2016 353 38 V1016 Cyg 19 57 4.9 39 49 33.9 12 15/04/2015 01/12/2016 152 39 PU Vul 20 21 12 21 34 41.9 12 20/07/2013 06/10/2016 208 40 LT Del 20 35 57.3 20 11 34 1 28/11/2015 28/11/2015 521 41 ER Del 20 42 46.4 8 40 56.4 5 02/09/2011 31/08/2016 244 42 V1329 Cyg 20 51 1.1 35 34 51.2 8 08/08/2015 26/12/2016 127 43 V407 Cyg 21 2 13 45 46 30 12 14/03/2010 18/04/2010 0 44 StHa 190 21 41 44.8 2 43 54.4 17 31/08/2011 30/10/2016 184 45 AG Peg 21 51 1.9 12 37 29.4 201 06/12/2009 25/01/2017 97 46 V627 Cas 22 57 41.2 58 49 14.9 20 06/08/2013 24/03/2017 39 47 Z And 23 33 39.5 48 49 5.4 78 30/10/2010 18/02/2017 73

ARAS Data Base Symbiotics : http://www.astrosurf.com/aras/Aras_DataBase/Symbiotics.htm

ARAS Eruptive Stars Information Letter 2017-03 - p. 3 S Symbiotics observed in April, 2017 1/3 Y M B I Name Observer Date l min l max Resolution AG Dra F. Campos 02/04/2017 3716 7258 818 O AG Dra W. Sims 02/04/2017 3864 7450 818 AG Dra J. Guarro 02/04/2017 3980 7498 11000 T AG Dra F. Teyssier 02/04/2017 4208 7397 11000 AG Dra O. Garde 05/04/2017 4186 7314 11000 I AG Dra D. Boyd 06/04/2017 3901 7379 763 AG Dra F. Teyssier 06/04/2017 4210 7150 11000 C AG Dra J. Montier 07/04/2017 3809 7398 660 AG Dra F. Campos 07/04/2017 3728 7263 833 S AG Dra J. Guarro 07/04/2017 3980 7498 11000 AG Dra T. Rodda 08/04/2017 3801 7381 587 AG Dra U. Sollecchia 08/04/2017 3750 7360 911 AG Dra T. Lester 09/04/2017 6023 7122 9000 AG Dra W. Sims 10/04/2017 3866 7452 790 AG Dra C. Buil 10/04/2017 6819 6865 48000 AG Dra C. Buil 10/04/2017 6546 6590 48000 AG Dra C. Buil 10/04/2017 5844 5884 48000 AG Dra C. Buil 10/04/2017 4674 4706 48000 AG Dra F. Teyssier 11/04/2017 4300 7150 11000 AG Dra T. Rodda 12/04/2017 3801 7381 586 AG Dra F. Campos 12/04/2017 6431 7198 6327 AG Dra O. Garde 12/04/2017 4186 7314 11000 AG Dra W. Sims 13/04/2017 3866 7452 741 AG Dra J. Edlin 13/04/2017 3813 7301 807 AG Dra U. Sollecchia 13/04/2017 3730 7360 957 AG Dra C. Buil 14/04/2017 6819 6865 48000 AG Dra C. Buil 14/04/2017 6546 6590 48000 AG Dra C. Buil 14/04/2017 5844 5884 48000 AG Dra C. Buil 14/04/2017 4674 4706 48000 AG Dra D. Boyd 15/04/2017 3901 7380 721 AG Dra F. Campos 17/04/2017 3735 7275 865 AG Dra P. Berardi 17/04/2017 7566 8577 2742 AG Dra F. Teyssier 18/04/2017 4207 7397 11000 AG Dra J.P. Nougayrede 19/04/2017 3701 7301 524 AG Dra F. Teyssier 19/04/2017 4210 7150 11000 AG Dra W. Sims 20/04/2017 3866 7452 814 AG Dra F. Campos 21/04/2017 6430 7199 6213 AG Dra U. Sollecchia 22/04/2017 3769 7377 620 AG Dra U. Sollecchia 22/04/2017 3769 7377 620 AG Dra F. Teyssier 23/04/2017 4208 7395 11000 AG Dra J. Guarro 23/04/2017 4053 7498 11000 AG Dra F. Teyssier 23/04/2017 4208 7395 11000 AG Dra U. Sollecchia 25/04/2017 3801 7370 620 AG Dra F. Teyssier 26/04/2017 4215 7350 11000 AG Dra J. Guarro 28/04/2017 4053 7498 11000 AG Dra P. Somogyi 29/04/2017 4481 5198 1856 AG Dra P. Somogyi 29/04/2017 6472 7181 2487 AG Dra U. Sollecchia 30/04/2017 3770 7370 634 AG Dra P. Somogyi 30/04/2017 5325 6042 1869 AG Dra P. Somogyi 30/04/2017 4492 5211 2384 AG Dra P. Somogyi 30/04/2017 6443 7152 3458 AXPer D. Boyd 02/04/2017 3901 7379 760 BF Cyg P. Somogyi 02/04/2017 4819 4964 8392 BF Cyg T. Lester 03/04/2017 4292 5446 6300 BF Cyg P. Somogyi 10/04/2017 4812 4957 13085 BF Cyg F. Teyssier 22/04/2017 4208 7397 11000 BF Cyg F. Teyssier 23/04/2017 4207 7397 11000 BX Mon F. Boubault 08/04/2017 4002 7003 1000 BX Mon D. Boyd 11/04/2017 3900 7380 728

ARAS Eruptive Stars Information Letter 2017-03 - p. 4 S Symbiotics observed in April, 2017 2/3 Y M B I Name Observer Date l min l max Resolution CH Cyg J. Guarro 02/04/2017 3980 7498 11000 O CH Cyg P. Somogyi 02/04/2017 4816 4961 6956 CH Cyg T. Lester 03/04/2017 4292 5446 6200 T CH Cyg O. Garde 05/04/2017 4186 7314 11000 CH Cyg P. Somogyi 09/04/2017 6501 6611 20110 I CH Cyg F. Campos 10/04/2017 3736 7271 870 CH Cyg J. Guarro 10/04/2017 3980 7498 11000 C CH Cyg F. Teyssier 11/04/2017 4208 7397 11000 CH Cyg J. Guarro 16/04/2017 3980 7498 11000 S CH Cyg J. Guarro 18/04/2017 3980 7498 11000 CH Cyg F. Teyssier 22/04/2017 4208 7397 11000 CH Cyg J. Guarro 22/04/2017 3980 7498 11000 CH Cyg J. Montier 22/04/2017 3602 8254 656 CH Cyg 25/04/2017 6199 6883 3318 CI Cyg F. Teyssier 23/04/2017 4207 7397 11000 CI Cyg T. Lester 23/04/2017 6022 7123 9000 CQ Dra W. Sims 05/04/2017 3871 7456 803 CQ Dra P. Berardi 09/04/2017 6482 6637 16138 CQ Dra F. Teyssier 10/04/2017 4208 7397 11000 CQ Dra C. Buil 10/04/2017 6546 6590 48000 CQ Dra F. Teyssier 10/04/2017 4208 7397 11000 CQ Dra W. Sims 11/04/2017 3867 7453 754 CQ Dra W. Sims 13/04/2017 3882 7400 671 CQ Dra W. Sims 21/04/2017 3869 7454 622 NQ Gem T. Rodda 24/03/2017 3801 7381 573 NQ Gem F. Boubault 08/04/2017 4000 7502 1000 NQ Gem J. Guarro 13/04/2017 3980 7498 11000 NQ Gem J. Montier 18/04/2017 3732 8246 647 SU lyn W. Sims 02/04/2017 3866 7450 813 SU lyn F. Teyssier 02/04/2017 4208 7397 11000 SU lyn D. Boyd 02/04/2017 3901 7379 747 SU lyn T. Lester 03/04/2017 4292 5446 6400 SU lyn W. Sims 03/04/2017 3869 7451 665 SU lyn J. Guarro 03/04/2017 3980 7498 11000 SU lyn W. Sims 05/04/2017 3869 7452 760 SU lyn J. Guarro 06/04/2017 3980 7498 11000 SU lyn U. Sollecchia 07/04/2017 3730 7360 835 SU lyn P. Berardi 08/04/2017 6482 6637 16223 SU lyn T. Rodda 08/04/2017 3651 7381 583 SU lyn Martineau Buchet 08/04/2017 3900 7500 1050 SU lyn T. Lester 09/04/2017 6023 7121 9000 SU lyn D. Boyd 11/04/2017 3901 7379 758 SU lyn F. Campos 12/04/2017 6432 7198 6036 SU lyn J. Guarro 12/04/2017 3980 7498 11000 SU lyn W. Sims 13/04/2017 3868 7452 650 SU lyn J. Edlin 13/04/2017 3723 7300 823 SU lyn U. Sollecchia 13/04/2017 3555 7401 845 SU lyn J.P. Nougayrede 20/04/2017 3701 7401 536 SU lyn F. Teyssier 20/04/2017 4210 7150 11000 SU lyn O. Garde 20/04/2017 4186 7314 11000 SU lyn F. Campos 21/04/2017 6432 7199 6261 SU lyn J.P. Masviel 21/04/2017 6191 6909 3318 SU lyn J.P. Masviel 21/04/2017 6191 6909 3318 SU lyn J. Montier 21/04/2017 3603 7404 657 SU lyn F. Campos 22/04/2017 3738 7271 881 SU lyn U. Sollecchia 25/04/2017 3730 7370 622

ARAS Eruptive Stars Information Letter 2017-03 - p. 5 S Symbiotics observed in April, 2017 3/3 Y M Name Observer Date l min l max Resolution B T CrB P. Somogyi 02/04/2017 4815 4961 7733 T CrB P. Somogyi 02/04/2017 6502 6611 20068 I T CrB T. Lester 03/04/2017 4292 5446 6200 T CrB J. Montier 08/04/2017 3843 7389 662 O T CrB F. Campos 09/04/2017 3734 7274 873 T CrB P. Somogyi 09/04/2017 6501 6611 19809 T T CrB F. Teyssier 11/04/2017 4208 7397 11000 T CrB F. Teyssier 11/04/2017 4208 7397 11000 I T CrB T. Rodda 12/04/2017 3801 7381 562 T CrB C. Buil 13/04/2017 6546 6590 48000 C T CrB C. Buil 13/04/2017 5844 5884 48000 T CrB C. Buil 13/04/2017 4674 4706 48000 S T CrB D. Boyd 15/04/2017 3901 7380 726 T CrB W. Sims 21/04/2017 3867 7452 742 T CrB F. Teyssier 22/04/2017 4208 7397 11000 T CrB F. Campos 22/04/2017 3728 7273 983 T CrB F. Teyssier 22/04/2017 4208 7397 11000 T CrB F. Teyssier 22/04/2017 4215 7350 11000 T CrB P. Somogyi 29/04/2017 4481 5200 1808 T CrB J.P. Masviel 24/04/2017 6197 6916 3318 TX CVn P. Berardi 09/04/2017 6489 6637 16084 TX CVn F. Campos 09/04/2017 3736 7275 771 TX CVn C. Buil 10/04/2017 6546 6590 48000 TX CVn C. Buil 13/04/2017 6546 6590 48000 TX CVn J. Montier 18/04/2017 3735 7394 666 UV Aur J. Montier 18/04/2017 3800 7398 658 V443 Her J. Montier 08/04/2017 3807 7396 698 V694 Mon T. Lester 03/04/2017 4291 5445 6450 V694 Mon J. Edlin 06/04/2017 3793 7301 785 V694 Mon D. Boyd 06/04/2017 3901 7400 740 V694 Mon J. Guarro 07/04/2017 3980 7498 11000 V694 Mon J. Guarro 13/04/2017 3980 7498 11000 V694 Mon J. Montier 21/04/2017 4089 7388 652 V934 Her J. Montier 08/04/2017 3819 7391 684 ZZ CMi P. Somogyi 01/04/2017 6258 6970 3116 ZZ CMi J. Montier 18/04/2017 3832 7394 646 ZZ CMi P. Somogyi 30/04/2017 6250 6961 3320

AG Dra 2017-04-11 04:37:56 R = 565 J.P.Godard Michel Verlinden Christophe Boussin 8

6

4

relative intensity 2

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A) AG Dra spectrum obtained by JP Godard, M Verlinden, C. Boussin with an Alpy on T60 Pic du Midi

ARAS Eruptive Stars Information Letter 2017-03 - p. 6 S AG Dra

Y 9 2 Coordinates (2000.0) AG Dra (V) M 1.5 B R.A. 16 01 41.0 Dec +66 48 10.1 9.5 1 I Mag V 9.8 O 0.5 10 0 T 2457390 2457480 2457570 2457660 2457750 2457840 2457930 I AAVSO lightcurve (V: right scale and B-V: left scale) since 2016 Spectra obtained in April, 2017: blue dots on the top of the panel C S Ongoing campaign upon the request of R. Gális, J. Merc & L. Leedjärv A weekly coverage until the next outburst at resolution > 1800 Low resolution (R = 1000), with a correct atmospheric response, can be useful for the campaign especially if flux calibrated

First of all, thank you very much for effort of you and all ARAS members. We are monitoring the ARAS database for new AG Dra observations daily and we are really delighted by the enthusiasm and passion of the ARAS observers. Thanks this huge effort, for the first time in the history of spectroscopic observations of AG Dra, this symbiotic binary is monitored with around one-day resolution. The observational data of such amount (43 spectra from the begin- ning of the campaign to this day) and quality will give us an unique opportunity to study the spectroscopic behaviour of this interesting interacting binary in the details, which have not parallel in an investigation of symbiotic stars.

Up to now, we are very satisfied with quality of the obtained spectra, especially with Echelle ones. Probably, not all low-resolution spectra will be suitable for our detailed analysis of the spectral behaviour of AG Dra. On the oth- er hand, we would like to encourage even observers with low-resolution spectrographs. Their observations would play crucial role for determination of the beginning of a potential outburst of AG Dra since we have certain hints that some spectroscopic behaviour of the outburst activity of AG Dra would foreshadow the photometric one.

As we mentioned in previous, according to our detailed statistical analysis of photometric observations, we know that the the time interval between outbursts of AG Dra vary from 300–400 days, with median around 360 days. If we assume, that the last outburst occurred around JD 2 457 517, we can expect the next outburst in the interval from JD 2 457 877 (today!) to JD 2 457 917 (June 12, 2017). Of course, please take this prediction without warranty, since it is based on typical photometric behaviour of this search-less system. There is also some probability that AG Dra will return to quiescence stage as we have already detected such behaviour during the weak activity stage 1963–66.

On the other hand, we have some hints that the symbiotic system AG Dra is still active. Even though the photo- metric behaviour of AG Dra indicates the typical quiescence low-amplitude variability, some spectroscopic charac- teristics clearly demonstrate that the system is awakened state. Indeed, the equivalent widths of strong emission lines are almost stable in this period. In contrast, their profiles are typical for the active stages of AG Dra, when the blue-wing absorption component observed only during the quiescence stages is almost completely smoothed away.

So, what can we expect from AG Dra? We will see in next days. In the case of this interesting object everything is possible and as I know this object (already some 20 years) it will be certainly the less expected possibility :) Once again thank you very much for your effort and we are look forward to new exciting spectra ofAGDra!

On behalf of the scientific team,

Rudolf Gális

ARAS Eruptive Stars Information Letter 2017-03 - p. 7 S AG Dra Journal of observations in April, 2017 Y Name Observer Date l min l max Resolution AG Dra J. Guarro 02/04/2017 3980 7498 11000 M AG Dra F. Teyssier 02/04/2017 4208 7397 11000 AG Dra F. Campos 02/04/2017 3716 7258 818 B AG Dra W. Sims 02/04/2017 3864 7450 818 AG Dra O. Garde 05/04/2017 4186 7314 11000 I AG Dra F. Teyssier 06/04/2017 4210 7150 11000 AG Dra D. Boyd 06/04/2017 3901 7379 763 O AG Dra J. Guarro 07/04/2017 3980 7498 11000 AG Dra F. Campos 07/04/2017 3728 7263 833 T AG Dra J. Montier 07/04/2017 3809 7398 660 AG Dra U. Sollecchia 08/04/2017 3750 7360 911 I AG Dra T. Rodda 08/04/2017 3801 7381 587 AG Dra T. Lester 09/04/2017 6023 7122 9000 C AG Dra C. Buil 10/04/2017 6819 6865 48000 AG Dra C. Buil 10/04/2017 6546 6590 48000 S AG Dra C. Buil 10/04/2017 5844 5884 48000 AG Dra C. Buil 10/04/2017 4674 4706 48000 AG Dra W. Sims 10/04/2017 3866 7452 790 AG Dra F. Teyssier 11/04/2017 4300 7150 11000 AG Dra O. Garde 12/04/2017 4186 7314 11000 AG Dra F. Campos 12/04/2017 6431 7198 6327 AG Dra T. Rodda 12/04/2017 3801 7381 586 AG Dra U. Sollecchia 13/04/2017 3730 7360 957 AG Dra J. Edlin 13/04/2017 3813 7301 807 AG Dra W. Sims 13/04/2017 3866 7452 741 AG Dra C. Buil 14/04/2017 6819 6865 48000 AG Dra C. Buil 14/04/2017 6546 6590 48000 AG Dra C. Buil 14/04/2017 5844 5884 48000 AG Dra C. Buil 14/04/2017 4674 4706 48000 AG Dra D. Boyd 15/04/2017 3901 7380 721 AG Dra P. Berardi 17/04/2017 7566 8577 2742 AG Dra F. Campos 17/04/2017 3735 7275 865 AG Dra F. Teyssier 18/04/2017 4207 7397 11000 AG Dra F. Teyssier 19/04/2017 4210 7150 11000 AG Dra J.P. Nougayrede 19/04/2017 3701 7301 524 AG Dra W. Sims 20/04/2017 3866 7452 814 AG Dra F. Campos 21/04/2017 6430 7199 6213 AG Dra U. Sollecchia 22/04/2017 3769 7377 620 AG Dra U. Sollecchia 22/04/2017 3769 7377 620 AG Dra F. Teyssier 23/04/2017 4208 7395 11000 AG Dra J. Guarro 23/04/2017 4053 7498 11000 AG Dra F. Teyssier 23/04/2017 4208 7395 11000 AG Dra U. Sollecchia 25/04/2017 3801 7370 620 AG Dra F. Teyssier 26/04/2017 4215 7350 11000 AG Dra J. Guarro 28/04/2017 4053 7498 11000 AG Dra P. Somogyi 29/04/2017 6472 7181 2487 AG Dra P. Somogyi 29/04/2017 4481 5198 1856 AG Dra P. Somogyi 30/04/2017 6443 7152 3458 AG Dra P. Somogyi 30/04/2017 4492 5211 2384 AG Dra P. Somogyi 30/04/2017 5325 6042 1869 AG Dra U. Sollecchia 30/04/2017 3770 7370 634 AG Dra 2017-04-13 07:21:07 R = 741 Woody Sims 12

10

8

6

4 relative intensity

2

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A) ARAS Eruptive Stars Information Letter 2017-03 - p. 8 S AG Dra Y Lines evolution in April, 2017 M from Echelle spectra B Verdict : stable Raman OIV - AG Dra I Observer Date O. Garde 29/03/2017 2.2 O 2017-03-29.864 J. Guarro 02/04/2017 2 2017-04-02.044 T 2017-04-02.890 F. Teyssier 02/04/2017 2017-04-05.833 O. Garde 05/04/2017 1.8 2017-04-06.823 I 2017-04-07.937 F. Teyssier 06/04/2017 2017-04-09.148 1.6 C 2017-04-11.822 J. Guarro 07/04/2017 2017-04-18.878 S F. Teyssier 11/04/2017 1.4 2017-04-19.829 2017-04-23.839

O. Garde 12/04/2017 intensity Relative 2017-04-26.847 F. Teyssier 18/04/2017 1.2

F. Teyssier 19/04/2017 1 F. Teyssier 23/04/2017 0.8 J. Guarro 23/04/2017 6790 6800 6810 6820 6830 6840 6850 6860 F. Teyssier 23/04/2017 Wavelength (Angstrom) F. Teyssier 26/04/2017 J. Guarro 28/04/2017

Halpha - AG Dra Hbeta - AG Dra

25 4.5 2017-03-29.864 2017-03-29.864 2017-04-02.044 4 2017-04-02.044 2017-04-02.890 2017-04-02.890 20 2017-04-05.833 3.5 2017-04-05.833 2017-04-06.823 2017-04-06.823 2017-04-07.937 2017-04-07.937 2017-04-09.148 3 2017-04-09.148 15 2017-04-11.822 2017-04-11.822 2017-04-18.878 2.5 2017-04-18.878 2017-04-19.829 2017-04-19.829 2017-04-23.839 2 2017-04-23.839 10 2017-04-26.847 2017-04-26.847

Relative intensity Relative intensity Relative 1.5

1 5

0.5

0 0 -1500 -1000 -500 500 1000 1500 -1000 -500 500 1000 Velocity (Km/sec) Velocity (Km/sec)

AG Dra He II - AG Dra

2.6 6 2017-03-29.864 2017-03-29.864 2.4 2017-04-02.044 2017-04-02.044 2.2 2017-04-02.890 5 2017-04-02.890 2017-04-05.833 2017-04-05.833 2 2017-04-06.823 2017-04-06.823 2017-04-07.937 2017-04-07.937 4 1.8 2017-04-09.148 2017-04-09.148 2017-04-11.822 2017-04-11.822 1.6 2017-04-18.878 2017-04-18.878 2017-04-19.829 3 2017-04-19.829 1.4 2017-04-23.839 2017-04-23.839 2017-04-26.847 2017-04-26.847

Relative intensity Relative 1.2 intensity Relative 2 1

0.8 1 0.6

0.4 0 -500 500 -1000 -500 500 1000 Velocity (Km/sec) Velocity (Km/sec)

ARAS Eruptive Stars Information Letter 2017-03 - p. 9 S AG Dra: Equivalent widths from Echelle Spectra Y

M AG Dra - Equivalent widths and lines ratios B EW Ha EW Hb I 75 25

O 70 T 20 I 65 C 60 15 S 7840 7845 7850 7855 7860 7865 7870 7875 7840 7845 7850 7855 7860 7865 7870 7875 EW He I 5876 EW He I 6678 5 5

0 0 7840 7845 7850 7855 7860 7865 7870 7875 7840 7845 7850 7855 7860 7865 7870 7875

EW He II HeII/Hb 25 1.0

20

15 0.5 7840 7845 7850 7855 7860 7865 7870 7875 7840 7845 7850 7855 7860 7865 7870 7875

Raman OVI 6830 Raman OVI 7085 15 10

10 5 5

0 0 7840 7845 7850 7855 7860 7865 7870 7875 7840 7845 7850 7855 7860 7865 7870 7875

HeI 6678/7065 7085/6830 1.0 1.0

0.5 0.5

0.0 0.0 7840 7845 7850 7855 7860 7865 7870 7875 7840 7845 7850 7855 7860 7865 7870 7875

JD - 2450000

ARAS Eruptive Stars Information Letter 2017-03 - p. 10 S AG Dra at medium resolution Y M B AG Dra 2017-04-30 20:40:07 R = 3458 P. Somogyi I 14

O 12 T 10 I C 8 S 6

relative intensity 4

2

0 6500 6600 6700 6800 6900 7000 7100 Wavelength (A) AG Dra 2017-04-30 21:18:28 R = 2384 P. Somogyi 10

8

6

4 relative intensity 2

0 4500 4600 4700 4800 4900 5000 5100 5200 Wavelength (A)

ARAS Eruptive Stars Information Letter 2017-03 - p. 11 S AG Dra at medium resolution Y M B Spectra obtained by Fran Campos with a DADOS equiped with a 1200 l/mm gratings I O AG Dra 2017-04-12 22:58:15 R = 6327 F. Campos

T 15 I C S 10

relative intensity 5

0 6500 6600 6700 6800 6900 7000 7100 7200 Wavelength (A)

AG Dra 2017-04-21 22:52:30 R = 6213 F. Campos

15

10

5 relative intensity

0 6500 6600 6700 6800 6900 7000 7100 7200 Wavelength (A)

ARAS Eruptive Stars Information Letter 2017-03 - p. 12 S AG Dra Y M The near IR range, showing OI 8446, faint,obtained by Paolo Berardi with a Lhires III 600 l/mm B I AG Dra 2017-04-17 19:31:01 R = 2742 Paolo Berardi O 1.5 T I 1 C S

0.5 relative intensity

0 7600 7700 7800 7900 8000 8100 8200 8300 8400 8500 Wavelength (A)

AG Dra 2017-04-09 03:33:28 R = 9000 T Lester 20

15

10 relative intensity 5

0 6000 6100 6200 6300 6400 6500 6600 6700 6800 6900 7000 7100 Wavelength (A)

ARAS Eruptive Stars Information Letter 2017-03 - p. 13 S AG Dra at high resolution Y M Halpha, He I 5876, He II 4686 and Raman OVI 6830 obtained by Christian Buil B with his VHIRES at R = 48000 I O T I Halpha - AG Dra 2017-04-14.031 C. Buil He I - AG Dra 2017-04-14.031 C. Buil C 25 S 4.5 4 20 3.5

3 15 2.5

2 10 Relative intensity Relative Relative intensity Relative 1.5

5 1

0.5

0 -600 -400 -200 200 400 600 0 -400 -200 200 400 Velocity (Km/sec) Velocity (Km/sec)

He II - AG Dra 2017-04-14.031 C. Buil Raman OIV - AG Dra 2017-04-14.031 C Buil 25 2.2

2 20 1.8

1.6 15 1.4

1.2 10

Relative intensity Relative 1 Relative intensity Relative 0.8 5 0.6

0.4 0 -400 -200 200 400 0.2 6800 6805 6810 6815 6820 6825 6830 6835 6840 6845 6850 6855 Velocity (Km/sec) Wavelength (Angstrom)

ARAS Eruptive Stars Information Letter 2017-03 - p. 14 S AG Dra: flux calibrated spectra Y 10-12 AG Dra 2017-04-06 21:47:01 R = 763 D. Boyd M 6 B 5 I ] -1 .Å

O -1 4 .s

T -2 3 I C 2 Flux [erg.cm S 1

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A)

Flux calibrated spectra obtained by David Boyd with LISA R = 1000

10-12 AG Dra 2017-04-15 20:18:41 R = 721 D. Boyd 6

5 ] -1 .Å

-1 4 .s -2 Raman OIV - AG Dra 2017-04-14.031 C Buil 3 2.2

2 2

1.8 Flux [erg.cm 1 1.6

1.4 0 1.2 4000 4500 5000 5500 6000 6500 7000

1 Wavelength (A) Relative intensity Relative 0.8

0.6 10-12 AG Dra 2017-04-19 20:04:09 R = 524 JP Nougayrede 0.4 4

0.2 6800 6805 6810 6815 6820 6825 6830 6835 6840 6845 6850 6855

Wavelength (Angstrom) ]

-1 3 .Å -1 .s -2 2

1 Flux [erg.cm

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A) ARAS Eruptive Stars Information Letter 2017-03 - p. 15 S AG Dra: low res spectra in April Y M

B AG Dra 2017-04-07 20:36:57 R = 660 Jacques Montier I O 8 T 6 I

C 4 S relative intensity 2

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A) AG Dra 2017-04-12 20:25:26 R = 586 T. Rodda 8

6

4 relative intensity 2

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A) AG Dra 2017-04-30 20:23:03 R = 634 Umberto Sollecchia 8

6

4 relative intensity 2

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A)

ARAS Eruptive Stars Information Letter 2017-03 - p. 16 S AX Per Y 10.5 M Coordinates (2000.0) AX Per (V) B R.A. 01 36 22.7 11 Dec +54 15 02.4 I 11.5 O The classical symbiotic AX Per is re- brightening during its current eclipse. 12 T 12.5 I Observation of AX Per until the end 2457600 2457650 2457700 2457750 2457800 of the eclipse is strongly re com- C manded Top: AAVSO Blue and Green Lightcurve S ARAS Spectra duing the current eclipse: blue dots David Boyd obtained the last spec- trum of the season

10 AX Per (V) 10.5

11

11.5

12

12.5

13 2456600 2456965 2457330 2457695 AAVSO V band and ARAS spectra (blue dots) since November, 2013

10 0.5 AX Per (V) 10.5

11

11.5 1

12

12.5

13 1.5 2456600 2456965 2457330 2457695 AAVSO V (green, left axis) and B-V (blue, right axis)

10-12 AXPer 2017-04-02 20:02:41 R = 1000 D. Boyd 2.5

] 2 -1 .Å -1

.s 1.5 -2

1

Flux [erg.cm 0.5

0 4000 4500 5000 5500 6000 6500 7000 Francisco Campos, with DADOS-200 (R = 900) Wavelength (A)

ARAS Eruptive Stars Information Letter 2017-03 - p. 17 S BF Cyg Y 9 M Coordinates (2000.0) BF Cygni (V) B R.A. 19 23 53.5 9.5 Dec +29 40 29.2 I 10 Mag 9.4 (2017-03) O 10.5 T 11 I 2457000 2457200 2457400 2457600 2457800 2458000 C S 9 10

11

12

13

14 2435000 2438650 2442300 2445950 2449600 2453250 2456900 2460550

AAVSO Visual lightcurve since 1955 - BF Cyg in high state since 2006

BF Cyg 2017-04-03 08:00:29 R = 6300 T Lester 6

5

4

3

2 relative intensity

1

0 4300 4400 4500 4600 4700 4800 4900 Wavelength (A)

ARAS Eruptive Stars Information Letter 2017-03 - p. 18 S BF Cyg Y M B I O H beta with a Lhires III 2400 l/mm T I BF Cyg 2017-04-02 03:30:16 R = 8392 P. Somogyi C 10

S 8

6

4 relative intensity 2

0 4820 4830 4840 4850 4860 4870 4880 4890 4900 Wavelength (A)

BF Cyg 2017-04-10 03:15:30 R = 13085 P. Somogyi 5

4

3

2 relative intensity 1

0 4820 4830 4840 4850 4860 4870 4880 4890 4900 Wavelength (A)

ARAS Eruptive Stars Information Letter 2017-03 - p. 19 S BF Cyg Y M Echelle spectrum R = 11000 B F. Teyssier I O T H alpha - BF Cyg 2017-04-23.090 F Teyssier H beta - BF Cyg 2017-04-23.090 F Teyssier 25 7 I 2017-04-23.090 2017-04-23.090 6 C 20 S 5 15 4

3 10 Relative intensity Relative intensity Relative 2 5 1

0 0 -2000 -1500 -1000 -500 500 1000 1500 2000 -2000 -1500 -1000 -500 500 1000 1500 2000 Velocity (Km/sec) Velocity (Km/sec)

BF Cyg 2017-04-23.090 F Teyssier

25 H beta 4861.33 H alpha 6562.82

20

15

10 Relative intensity Relative

5

0 -2000 -1500 -1000 -500 500 1000 1500 2000 Velocity (Km/sec)

Na I D - BF Cyg 2017-04-23.090 F. Teyssier

1.8 2017-04-23.090 1.6 Na I D in emission 1.4 He I 5876 absorption

1.2

1

0.8

Relative intensity Relative 0.6

0.4

0.2

0 5860 5870 5880 5890 5900 5910 5920 5930 Wavelength (Angstrom) ARAS Eruptive Stars Information Letter 2017-03 - p. 20 S BX Mon

Y 9 M Coordinates (2000.0) 9.5 BX Mon (V) R.A. 7 25 24 10 B 10.5 I Dec -3 36 0 11 Mag 9.8 (2017-04) 11.5 O 12 12.5 H beta - BF Cyg 2017-04-23.090 F Teyssier T 13 7 2451000 2454650 2458300 2017-04-23.090 I 6 C 5 S 4

3 -12 BX Mon 2017-04-11 20:18:11 R = 1000 D. Boyd Relative intensity Relative 10 2 2

1 ] -1 1.5 .Å 0 -2000 -1500 -1000 -500 500 1000 1500 2000 -1 .s

Velocity (Km/sec) -2 1

0.5 Flux [erg.cm

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A)

10-12 BX Mon 2017-04-11 20:18:11 R = 1000 D. Boyd 1

] 0.8 -1 .Å -1

.s 0.6 -2

0.4

Flux [erg.cm 0.2

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A)

ARAS Eruptive Stars Information Letter 2017-03 - p. 21 S CH Cyg

Y 7 M Coordinates (2000.0) CH Cygni (V) 7.5 B R.A. 19 24 33.1 I Dec +50 14 29.1 8 Mag ~ 8.1 8.5 O Ongoing campaign upon the T request of Augustin Skopal 9 2457600 2457690 2457780 2457870 2457960 I At least one spectrum a month (high resolution and 6 2.5 low resolution, with a -cor CH Cygni (V) C 6.5 rect atmospheric response) 2 7 S 1.5 7.5 1 8

8.5 0.5

9 0 2457000 2457400 2457800 2458200

Top : AAVSO V lightcurve since August,2016 ARAS Spectra in April,2017 : blue dots Bottom : AAVSO V band: green B-V index: blue

CH Cyg 2017-04-10 00:36:48 R = 870 F. Campos

12

10

8

6

relative intensity 4

2

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A)

ARAS Eruptive Stars Information Letter 2017-03 - p. 22 S CH Cyg Y M CH Cyg 2017-04-25 00:21:06 R = 3318 J.P. Masviel B I 20 O T 15 I C 10

S relative intensity 5

0 6200 6300 6400 6500 6600 6700 6800 Wavelength (A) H alpha range by J.P. Masviel Lhires III 600 l/mm

CH Cyg 2017-04-03 06:22:15 R = 6200 T Lester

8

6

4 relative intensity 2

0 4300 4400 4500 4600 4700 4800 4900 5000 5100 5200 5300 5400 Wavelength (A) H alpha range by Tim Lester - Home-built spectrograph

Hbeta 2017-04-03 [OIII]5007 2017-04-03 FeII4924 2017-04-03 10 4 4

8 3 3 6 2 2 4 1 1 relative intensity 2 relative intensity relative intensity

0 0 0 -1000 -500 0 500 1000 -1000 -500 0 500 1000 -1000 -500 0 500 1000 velocity (km/s) velocity (km/s) velocity (km/s) ARAS Eruptive Stars Information Letter 2017-03 - p. 23 S CH Cyg Y M B CH Cyg 2017-04-02 02:38:20 R = 6956 P. Somogyi I 7 O 6 T I 5 C 4

S 3

relative intensity 2

1

0 4820 4830 4840 4850 4860 4870 4880 4890 4900 Wavelength (A)

CH Cyg 2017-04-09 23:35:34 R = 20110 P. Somogyi

15

10

relative intensity 5

0 6510 6520 6530 6540 6550 6560 6570 6580 6590 6600 Wavelength (A)

ARAS Eruptive Stars Information Letter 2017-03 - p. 24 S CH Cyg Y M

CHCyg | Ha 6563 CHCyg | Hb 4861 B 80 40 I Main lines evolution in 70 35 O April, 2017 from Echelle

2017-04-22 T spectra 2017-04-22 60 30 I Note the complex behav- 2017-04-18 C iour of [O III] 2017-04-18 S 50 25 2017-04-16 2017-04-16 Journal of observations 40 20 Observer Date arbitrary unit arbitrary unit 2017-04-11 J. Guarro 02/04/2017 2017-04-11 O. Garde 05/04/2017 30 15 J. Guarro 10/04/2017 F. Teyssier 11/04/2017 2017-04-10 2017-04-10 J. Guarro 16/04/2017 J. Guarro 18/04/2017 20 10

2017-04-05 2017-04-05 10 5

2017-04-02 2017-04-02 0 0 -500 -250 0 250 500 -500 -250 0 250 500 velocity (km/s) velocity (km/s)

CHCyg | [O III] 5007 CHCyg | [OI] 6300 CHCyg | He I 5876 25 25 15

2017-04-22

20 2017-04-22 20 2017-04-22

2017-04-18

2017-04-18 2017-04-18 10

15 15 2017-04-16 2017-04-16 2017-04-16

2017-04-11

2017-04-11 2017-04-11 arbitrary unit arbitrary unit arbitrary unit 10 10

2017-04-10 2017-04-10 2017-04-10 5

2017-04-05 5 2017-04-05 5 2017-04-05

2017-04-02 2017-04-02 2017-04-02

0 0 0 -500 -250 0 250 500 -500 -250 0 250 500 -500 -250 0 250 500 velocity (km/s) velocity (km/s) velocity (km/s) ARAS Eruptive Stars Information Letter 2017-03 - p. 25 S CI Cyg Y 10.5 M Coordinates (2000.0) CI Cyg R.A. 19 50 11.8 B 11 I Dec +35 41 03.0 Mag 10.8 (03-2017) O 11.5

T 12 I 2457200 2457565 2457930 C S

Spectra obtained the same day by Tim Lester with an home-made spectrograph (R = 9000) François Teyssier with an eShel (R = 11000)

CI Cyg

50 CI Cyg 2017-04-23.046 fteyssier CI Cyg 2017-04-23.278 tlester

40

30

20 Relative intensity

10

0 6000 6200 6400 6600 6800 7000 Wavelength (Angstrom)

CI Cyg

5 CI Cyg 2017-04-23.046 fteyssier CI Cyg 2017-04-23.278 tlester

4

3

2 Relative intensity

1

0 6000 6200 6400 6600 6800 7000 Wavelength (Angstrom)

ARAS Eruptive Stars Information Letter 2017-03 - p. 26 ARAS Eruptive Stars Information Letter 2017-03 - p. 27 S CI Cyg Y M B CI Cyg 2017-04-23 06:40:40 R = 9000 T Lester I O 50

T 40 I C 30 S 20 relative intensity

10

0 6000 6500 7000 Wavelength (A)

Halpha 2017-04-23 [FeVII]6087 2017-04-23 50 4

3.5 40 3

30 2.5

2 20 relative intensity relative intensity 1.5 10 1

0 0.5 -1000 -500 0 500 1000 -500 0 500 velocity (km/s) velocity (km/s)

HeI6678 2017-04-23 HeI7065 2017-04-23 Note the different 5 2 shape of He I 6678 and 7065 1.8 4 1.6 The FWHM are respec- tively 43.0 and 72 km/s 3 1.4 and the rv = 30.0 and 33.7 km/s 1.2 2 1 relative intensity relative intensity 0.8 1 0.6

0 0.4 -500 0 500 -500 0 500 velocity (km/s) velocity (km/s) ARAS Eruptive Stars Information Letter 2017-03 - p.27 S CI Cyg CICyg | Ha 6563 CICyg | Hb 4861 250 phase 500 phase Y

M 450 B Orbital variations of the 0.713 2017-04-23 0.713 2017-04-23 0.679 2017-03-25 main lines 200 400 0.679 2017-03-25 I 0.545 2016-11-30 from phase 0.0 to 0.7 0.545 2016-11-30 O 0.507 2016-10-29 0.507 2016-10-29 T Echelle spectra R = 11000 0.476 2016-10-02 350 0.476 2016-10-02 F. Teyssier 0.467 2016-09-25 0.467 2016-09-25 0.446 2016-09-07 I The spectra are corrected for 150 300 0.446 2016-09-07 C heliocentric velocity 0.428 2016-08-22 0.428 2016-08-22 0.408 2016-08-05 0.408 2016-08-05 S Ephemeris according to Fekel & 0.391 2016-07-22 250 0.391 2016-07-22 al. (2000) 0.376 2016-07-09 0.376 2016-07-09 arbitrary unit arbitrary unit

P = 853.8 days 0.340 2016-06-08 0.340 2016-06-08 100 200 Radial velocity of the system 0.295 2016-05-01 0.295 2016-05-01 -1 (g = 14.96 km.s ) = dotted line 0.279 2016-04-17 0.279 2016-04-17

0.209 2016-02-17 150 0.209 2016-02-17

0.147 2015-12-26 0.147 2015-12-26 0.130 2015-12-12 50 100 0.130 2015-12-12 0.111 2015-11-26 0.111 2015-11-26

0.075 2015-10-26 0.075 2015-10-26

0.041 2015-09-27 50 0.041 2015-09-27

0.029 2015-09-17 0.029 2015-09-17 0.012 2015-09-02 0 0 0.012 2015-09-02 -500 -250 0 250 500 -500 -250 0 250 500 velocity (km/s) velocity (km/s) CICyg | He I 5876 CICyg | He I 6678 CICyg | He II 4686 140 phase 150 phase phase 450

0.713 2017-04-23 0.713 2017-04-23

0.679 2017-03-25 0.679 2017-03-25 120 0.713 2017-04-23 400 0.545 2016-11-30 0.545 2016-11-30 0.679 2017-03-25 0.507 2016-10-29 0.507 2016-10-29 0.545 2016-11-30 0.476 2016-10-02 350 0.476 2016-10-02 0.507 2016-10-29 0.467 2016-09-25 100 0.467 2016-09-25 0.476 2016-10-02 0.446 2016-09-07 100 0.446 2016-09-07 0.467 2016-09-25 300 0.428 2016-08-22 0.446 2016-09-07 0.428 2016-08-22

80 0.408 2016-08-05 0.428 2016-08-22 0.408 2016-08-05 0.391 2016-07-22 0.408 2016-08-05 250 0.391 2016-07-22

0.391 2016-07-22 0.376 2016-07-09 0.376 2016-07-09 0.376 2016-07-09 0.340 2016-06-08 0.340 2016-06-08 arbitrary unit arbitrary unit arbitrary unit 200 60 0.340 2016-06-08 0.295 2016-05-01 0.295 2016-05-01 0.295 2016-05-01 0.279 2016-04-17 0.279 2016-04-17 50 0.279 2016-04-17 0.209 2016-02-17 150 0.209 2016-02-17 0.209 2016-02-17 40 0.147 2015-12-26 0.147 2015-12-26 0.147 2015-12-26 0.130 2015-12-12 0.130 2015-12-12 0.130 2015-12-12 100 0.111 2015-11-26 0.111 2015-11-26 0.111 2015-11-26 0.075 2015-10-26 20 0.075 2015-10-26 0.075 2015-10-26

0.041 2015-09-27 0.041 2015-09-27 50 0.041 2015-09-27

0.029 2015-09-17 0.029 2015-09-17 0.029 2015-09-17

0.012 2015-09-02 0.012 2015-09-02 0.012 2015-09-02 0 0 0 -500 -250 0 250 500 -500 -250 0 250 500 -500 -250 0 250 500 velocity (km/s) velocity (km/s) velocity (km/s) S CI Cyg Y M B I O CICyg | [Fe VII] 6087 CICyg | [O III] 5007 CICyg | [OI] 6300 T 50 120 phase 25 phase I phase 45 0.713 2017-04-23 0.713 2017-04-23 C 0.713 2017-04-23 0.679 2017-03-25 0.679 2017-03-25 0.679 2017-03-25 100 S 0.545 2016-11-30 0.545 2016-11-30 40 0.545 2016-11-30 20 0.507 2016-10-29 0.507 2016-10-29 0.507 2016-10-29 0.476 2016-10-02 0.476 2016-10-02 0.476 2016-10-02 0.467 2016-09-25 35 0.467 2016-09-25 0.467 2016-09-25 80 0.446 2016-09-07 0.446 2016-09-07 0.446 2016-09-07 0.428 2016-08-22 0.428 2016-08-22 30 0.428 2016-08-22 15 0.408 2016-08-05 0.408 2016-08-05 0.408 2016-08-05 0.391 2016-07-22 0.391 2016-07-22 0.391 2016-07-22 25 60 0.376 2016-07-09 0.376 2016-07-09 0.376 2016-07-09 0.340 2016-06-08

arbitrary unit 0.340 2016-06-08 arbitrary unit 0.340 2016-06-08 arbitrary unit 0.295 2016-05-01 20 0.295 2016-05-01 0.295 2016-05-01 10 0.279 2016-04-17 0.279 2016-04-17 0.279 2016-04-17 40 0.209 2016-02-17 0.209 2016-02-17 0.209 2016-02-17 15 0.147 2015-12-26 0.147 2015-12-26 0.147 2015-12-26 0.130 2015-12-12 0.130 2015-12-12 0.130 2015-12-12 0.111 2015-11-26 0.111 2015-11-26 10 0.111 2015-11-26 5 0.075 2015-10-26 0.075 2015-10-26 20 0.075 2015-10-26 0.041 2015-09-27 0.041 2015-09-27 0.041 2015-09-27 5 0.029 2015-09-17 0.029 2015-09-17 0.029 2015-09-17 0.012 2015-09-02 0.012 2015-09-02 0.012 2015-09-02 0 0 0 -500 -250 0 250 500 -500 -250 0 250 500 -500 -250 0 250 500 velocity (km/s) velocity (km/s) velocity (km/s)

ARAS Eruptive Stars Information Letter 2017-03 - p. 29 S CQ Dra Y M Coordinates (2000.0) B R.A. 12 30 06.6 I Dec +69 12 04.0 Mag V ~ 5 O T I C S

CQ Dra 2017-04-21 03:41:51 R = 622 Woody Sims 2

1.5

1

relative intensity 0.5

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A)

CQ Dra 2017-04-10 19:47:37 R = 11000 F Teyssier 2

1.5

1

relative intensity 0.5

0 4500 5000 5500 6000 6500 7000 Wavelength (A)

ARAS Eruptive Stars Information Letter 2017-03 - p. 30 S CQ Dra Y M B CQ Dra 2017-04-09 19:03:26 R = 16138 Paolo Berardi 1.5 I O

T 1 I C 0.5

S relative intensity

0 6480 6500 6520 6540 6560 6580 6600 6620 Wavelength (A)

CQ Dra 2017-04-10 22:05:08 R = 48000 C. Buil 1.2

1

0.8

0.6

0.4 Relative Intensity 0.2

0 6550 6560 6570 6580 6590 Wavelength (A)

ARAS Eruptive Stars Information Letter 2017-03 - p. 31 S CQ Dra Y M B Comparison of the spectra in H alpha range at various resolutions - F. Teyssier: eshel R = 11000 I - P. Berardi: Lhires III 2400 l/mm - R = 16000 O - C. Buil: VHIRES - R = 48000 T - CQ Dra I 1.8 2017-04-10.825 fteyssier C 1.6 2017-04-09.794 Paolo Berardi 2017-04-10.920 cbuil S 1.4

1.2

1

0.8

Relative intensity 0.6

0.4

0.2

0 6450 6500 6550 6600 6650 Wavelength (Angstrom)

Halpha - CQ Dra

2 2017-04-10.825 fteyssier 1.8 2017-04-09.794 Paolo Berardi 2017-04-10.920 cbuil 1.6

1.4

1.2

1

0.8 Relativeintensity

0.6

0.4

0.2

0 -800 -600 -400 -200 200 400 600 800 Velocity (Km/sec)

ARAS Eruptive Stars Information Letter 2017-03 - p. 32 S NQ Gem Y M Coordinates (2000.0) B R.A. 07 31 54.5 I Dec +24 30 12.5 Mag 8.1 (04-2017) O T I C S

NQ Gem 2017-03-24 21:58:39 R = 573 T. Rodda 2

1.5

1

relative intensity 0.5

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A)

NQ Gem 2017-04-08 21:58:22 R = 1000 F Boubault 2

1.5

1

relative intensity 0.5

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A)

ARAS Eruptive Stars Information Letter 2017-03 - p. 33 S NQ Gem Y M B I O T NQ Gem 2017-04-13 21:10:56 R = 11000 J. Guarro 2 I C 1.5 S

1

relative intensity 0.5

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A)

Halpha 2017-04-13 Hbeta 2017-04-13 3 1.4

2.5 1.2

2 1 Flux 1.5 0.8 relative intensity

1 0.6

0.5 0.4 -1000 -500 0 500 1000 -1000 -500 0 500 1000 velocity (km/s) velocity (km/s)

ARAS Eruptive Stars Information Letter 2017-03 - p. 34 S SU Lyn Y M Coordinates (2000.0) B R.A. 06 42 55.1 Dec +55 28 27.2 I Mag 8.50 (2017-01) O T SU Lyn is newly discovered bright symbiotic (K. Mukai & al., 2016) I The emission lines remain very faint C at this phase S Katarzyna Drozd (Nicolaus Coperni- cus Astronomical Centre) is strongly interested by further observations (spectroscopy and BVR photometry). She also suggest working on short time variability, especially in B Band

SU Lyn 2017-04-08 23:02:13 R = 1050 Martineau Buchet 3

2.5

2

1.5

1 relative intensity

0.5

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A)

ARAS Eruptive Stars Information Letter 2017-03 - p. 35 S SU Lyn Y M B I O T SU Lyn 2017-04-03 02:25: R = 6400 T Lester I 4 C S 3

2 relative intensity 1

0 4300 4400 4500 4600 4700 4800 4900 5000 5100 5200 5300 5400 5500 Wavelength (A)

Hbeta 2017-04-03 [OIII]5007 2017-04-03 2.5 1

2 0.8

1.5 0.6

1 0.4 relative intensity relative intensity

0.5 0.2 -1000 -500 0 500 1000 -1000 -500 0 500 1000 velocity (km/s) velocity (km/s)

ARAS Eruptive Stars Information Letter 2017-03 - p. 36 S SU Lyn Y

M SU Lyn 2017-04-08 18:59:40 R = 16223 Paolo Berardi B 2 I O 1.5 T I 1 C relative intensity S 0.5

0 6480 6490 6500 6510 6520 6530 6540 6550 6560 6570 6580 6590 6600 Wavelength (A)

Halpha 2017-04-08 Halpha 2017-04-21 2.5 1.6 H alpha range with Lhires 2 2400 l/mm : Paolo Berardi 1.4 600 l/mm : J.P. Masviel 1.5 1.2

1 1 relative intensity relative intensity

0.5 0.8 -500 0 500 -500 0 500 velocity (km/s) velocity (km/s)

SU Lyn 2017-04-21 21:48: R = 3318 JP MASVIEL 4

3

2 relative intensity 1

0 6200 6300 6400 6500 6600 6700 6800 6900 Wavelength (A)

ARAS Eruptive Stars Information Letter 2017-03 - p. 37 S SU Lyn Y M B SU Lyn 2017-04-12 20:36:36 R = 6036 F. Campos I 4 O T 3 I

C 2 S relative intensity 1

0 6500 6600 6700 6800 6900 7000 7100 7200 Wavelength (A)

Halpha 2017-04-12 Halpha 2017-04-21 1.6 Fran Campos obtained 1.6 spectra of H alpha range 1.4 and near IR with a DA- DOS equipped with 1.4 1.2 a 1200 l/mm grating

1.2 1 relative intensity relative intensity

0.8 1 -500 0 500 -500 0 500 velocity (km/s) velocity (km/s)

SU Lyn 2017-04-21 20:43: R = 6261 F. Campos 5

4

3

2 relative intensity 1

0 6500 6600 6700 6800 6900 7000 7100 Wavelength (A)

ARAS Eruptive Stars Information Letter 2017-03 - p. 38 S SU Lyn Y M B I O T I C 10-11 SU Lyn 2017-04-02 21:30:00 R = 747 D. Boyd S 1

] 0.8 -1 .Å -1

.s 0.6 -2

0.4

Flux [erg.cm 0.2

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A)

10-12 SU Lyn 2017-04-11 21:44:20 R = 758 D. Boyd 8 ]

-1 6 .Å -1 .s -2 4

2 Flux [erg.cm

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A)

ARAS Eruptive Stars Information Letter 2017-03 - p. 39 S SU Lyn Y M Echelle spectra of SU Lyn 2017 B 2016 spectrum when the lines was brighter in reference The minimum intensity of the lines occurred mid-february I The radial velocity of [O III] is - 27 km.s-1 (+/-1) and its O FWHM varies from 42 to 27 km.s-1 Note the appearance of a broad absorption (100 km.s-1) T in the blue part of the line which occurred between mid- I february and late march C

S SULyn | Ha 6563 SULyn | Hb 4861 SULyn | [O III] 5007 25 25 25

2017-04-20 2017-04-20 2017-04-20

2017-04-12 20 2017-04-12 20 2017-04-12 20

2017-04-06 2017-04-06 2017-04-06

2017-04-03 2017-04-03 2017-04-03 15 15 15 2017-04-02 2017-04-02 2017-04-02

2017-03-29 2017-03-29 2017-03-29

arbitrary unit arbitrary unit arbitrary unit 2017-03-28 10 2017-03-28 10 2017-03-28 10

2017-03-27 2017-03-27 2017-03-27

2017-02-16 2017-02-16 2017-02-16 5 5 5 2017-01-21 2017-01-21 2017-01-21

2016-05-04 2016-05-04 2016-05-04 0 0 0 -400 -200 0 200 400 -400 -200 0 200 400 -400 -200 0 200 400 velocity (km/s) velocity (km/s) velocity (km/s)

Halpha - SU Lyn Halpha - SU Lyn

3.5 3 2017-04-02.814 2016-05-04.868 2017-01-21.754 2017-01-21.754 3 2016-05-04.868 2.5 2017-02-16.773 2017-03-27.832 2017-03-28.885 2017-03-29.789 2.5 2 -70 km.s-1 2017-04-02.814 2017-04-03.920 2017-04-06.911 -1 2 -170 km.s 1.5 2017-04-12.892 2017-04-20.856

Relative intensity Relative 1.5 intensity Relative 1

1 0.5

-40 km.s-1 0.5 0 -500 -400 -300 -200 -100 100 200 300 400 500 -500 -400 -300 -200 -100 100 200 300 400 500 Velocity (Km/sec) Velocity (Km/sec)

ARAS Eruptive Stars Information Letter 2017-03 - p. 40 S T CrB Y 9 M Coordinates (2000.0) T CrB R.A. 15 59 30.1 B 9.5 Dec 25 55 12.6 I Mag 9.8 (2017-01) O 10 T CrB in the morning sky T 10.5 I The symbiotic recurrent nova 2457300 2457400 2457500 2457600 2457700 2457800 2457900 is a main target in our ob- AAVSO V light curve 2016-2017 C serving program for the next S years until the next nova event.

10-12 T CrB 2017-04-15 21:41:14 R = 1000 D. Boyd 5

] 4 -1 .Å -1

.s 3 -2

2

Flux [erg.cm 1

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A)

Flux calibrated spectrum by David Boyd with a LISA ( R = 1000)

T CrB 2017-04-21 06:07:39 R = 742 Woody Sims 10

8

6

4 relative intensity 2

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A) Spectrum obtained by Woody Sims with a LISA ( R = 1000)

ARAS Eruptive Stars Information Letter 2017-03 - p. 41 S T CrB Y M B I Comparison of spectra obtained at low resolution: match well O T I C S

T CrB 8 2017-04-08.006 7 2017-04-09.966 2017-04-12.955 2017-04-15.904 6 2017-04-21.255 2017-04-22.906 5

4

3 Relative intensity

2

1

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (Angstrom)

ARAS Eruptive Stars Information Letter 2017-03 - p. 42 S T CrB Y

M T CrB 2017.04.24 21:11:31 R = 3318 JP Masviel

B 10 I O 8 T 6 I 4 relative intensity C 2

S 0 6200 6300 6400 6500 6600 6700 6800 6900 Wavelength (A)

T CrB 2017-04-02 01:29:38 R = 7733 P. Somogyi T CrB 2017-04-02 23:19:27 R = 20068 P. Somogyi 7 12

6 10

5 8 4 6 3 4 relative intensity 2 relative intensity

1 2

0 0 4820 4840 4860 4880 4900 6500 6520 6540 6560 6580 6600 Wavelength (A) Wavelength (A) T CrB 2017-04-09 22:57:50 R = 19809 P. Somogyi

10

8

6

4 relative intensity

2

0 6500 6520 6540 6560 6580 6600 Wavelength (A)

ARAS Eruptive Stars Information Letter 2017-03 - p. 43 S T CrB Y M B T CrB 2017-04-13 22:50:41 R = 48000 C Buil H alpha, He I 5875 and He 10 I II 4686 at R = 48000 with VHIRES (Christian Buil) O 8 T I 6 C S 4 relative intensity 2

0 6550 6560 6570 6580 6590 Wavelength (A)

T CrB 2017-04-13 22:50:41 R = 48000 C Buil 4

3

2 relative intensity 1

0 5850 5860 5870 5880 Wavelength (A)

T CrB 2017-04-13 22:50:41 R = 48000 C Buil 7

6

5

4

3

relative intensity 2

1

0 4680 4690 4700 Wavelength (A)

ARAS Eruptive Stars Information Letter 2017-03 - p. 44 S T CrB Y M B I T CrB 2017-04-03 04:42:43 R = 6200 T Lester 7 O T 6 I 5 C 4

S 3

relative intensity 2

1

0 4300 4400 4500 4600 4700 4800 4900 5000 5100 5200 5300 5400 Wavelength (A)

Hbeta 2017-04-03 HeII4686 2017-04-03 [OIII]5007 2017-04-03 10 4 2

8 3 1.5 6 2 4 1 1 relative intensity 2 relative intensity relative intensity

0 0 0.5 -1000 -500 0 500 1000 -1000 -500 0 500 1000 -1000 -500 0 500 1000 velocity (km/s) velocity (km/s) velocity (km/s)

ARAS Eruptive Stars Information Letter 2017-03 - p. 45 S TX CVn Y M Coordinates (2000.0) B R.A. 12 44 42.06 I Dec +36 45 50.7 O Mag 10.3 (01-2017) T 9.5 TX CVn (V) I

C 10 S

10.5 2454990 2455355 2455720 2456085 2456450 2456815 2457180 2457545 2457910 2458275 AAVSO V band and ARAS spectra (blue dots)

TX CVn 2017-04-09 21:50:32 R = 771 F. Campos 1.5

1

0.5 relative intensity

Francisco Campos - DADOS -200

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A)

TX CVn 2017-04-18 22:58:04 R = 666 Jacques Montier 1.5

1

0.5 relative intensity Jacques Montier- ALPY 600

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A)

ARAS Eruptive Stars Information Letter 2017-03 - p. 46 S TX CVn Y M B H alpha range by Paolo Berardi with Lhires III 2400 l/mm R = 16000 I O TX CVn 2017-04-09 20:04:26 R = 16084 Paolo Berardi 1.5 Halpha 2017-04-09 T 1.6 I 1.4 C S 1.2 1

1 relative intensity relative intensity 0.8

0.5 0.6 6500 6520 6540 6560 6580 6600 6620 6640 -1000 -500 0 500 1000 Wavelength (A) velocity (km/s)

H alpha line at R = 48000 by Christian Buil

TX CVn 2017-04-10 19:21:30 R = 48000 C Buil TX CVn 2017-04-13 19:47:19 R = 48000 C. Buil 2 2.5 Francisco Campos - DADOS -200

2 1.5 y y it it 1.5 ens ens t t n n i 1 i ve ve

ti ti 1 a a l l

re 0.5 re 0.5

0 0 6550 6560 6570 6580 6590 6545 6555 6565 6575 6585 Wavelength (A) Wavelength (A)

Jacques Montier- ALPY 600

ARAS Eruptive Stars Information Letter 2017-03 - p. 47 S UV Aur

Y 8 UV Aur (V) M 8.5 Coordinates (2000.0) 9 B R.A. 5 21 48.8 9.5 I Dec 32 30 43.1 10 Mag 9.2 (2016-12) O 10.5 T Near the minimum of the pulsation cycle 11 2456900 2457265 2457630 2457995 I Next maximum expected: 2017, October C S

UV Aur 2017-04-18 20:18:14 R = 658 Jacques Montier 1.5

1

0.5 relative intensity

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A)

ARAS Eruptive Stars Information Letter 2017-03 - p. 48 S V443 Her Y M Coordinates (2000.0) B R.A. 18 22 07.849 Dec +23 27 19.96 I Mag 11,5 O T A classical symbiotic I Interesting target for the next months C S

V443 Her 2017-04-08 01:42:14 R = 698 Jacques Montier

15

10 relative intensity 5

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A)

ARAS Eruptive Stars Information Letter 2017-03 - p. 49 S V694 Mon Y 8.5 M Coordinates (2000.0) V694 Mon 9 B R.A. 7 25 51.2 9.5 I Dec -7 44 8 Mag 10

O 10.5 T V694 Mon remains at high (Mean mag ~9.5) 11 I 2457000 2457365 2457730 2458095 C End of the season S V694 Mon remains in “low” state with maxi- mal velocity of the absorption at ~ 2000 km/s

V694 Mon 2017-04-06 03:08:05 R = 785 J. Edlin

12

10

8

6

4 relative intensity

2

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A)

10-12 V694 Mon 2017-04-06 20:06:38 R = 1000 D. Boyd 6

] 5 -1 .Å

-1 4 .s -2 3

2

Flux [erg.cm 1

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A)

ARAS Eruptive Stars Information Letter 2017-03 - p. 50 S V694 Mon Y M B I V694 Mon 2017-04-03 00:27: R = 6450 T Lester O 10 T 8 I C 6 S 4 relative intensity 2

0 4300 4400 4500 4600 4700 4800 4900 5000 5100 5200 5300 5400 Wavelength (A) Hbeta 2017-04-03 9

8

7

6

5

4

3 relative intensity 2 H beta 1 Maximum velocity of the absorption ~ 1500 km/s

0 -2000 -1000 0 1000 2000 velocity (km/s) V694 Mon 2017-04-03.019 T. Lester

3 H beta 4861.33 Fe II 4923.92 2.5 Fe II 42 5018.43

2

1.5

Relative intensity Relative 1

0.5

0 -2500 -2000 -1500 -1000 -500 500 1000 1500 2000 2500 Velocity (Km/sec)

ARAS Eruptive Stars Information Letter 2017-03 - p. 51 S V694 Mon Y M B V694 Mon 2017-04-13 19:19:17 R = 11000 J. Guarro I 30

O 25 T I 20 C 15

S 10 relative intensity

5

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A)

H beta - V694 Mon 04-2017

3 2017-04-03.019 Note the changes in H beta absorption 2017-04-07.848 2.5 2017-04-13.805 while Fe II absorption remains almost con- stant (unless for -130-650 km/s range) 2 On April, 7 the shapes of H beta and Fe 4924 absorptions are similar. For April 3 and 1.5 April 13, the bluer part of the absorption of H beta (1600 - 2600 km/s) disappears Relative intensity Relative 1

0.5

0 -3000 -2000 -1000 1000 2000 3000 Velocity (Km/sec)

Fe II - V694 Mon 04-2017

3 2017-04-03.019 2017-04-07.848 2.5 2017-04-13.805

2

1.5

Relative intensity Relative 1

0.5

0 -3000 -2000 -1000 1000 2000 3000 Velocity (Km/sec)

ARAS Eruptive Stars Information Letter 2017-03 - p. 52 S V694 Mon: call for observations Y by Adrian Lucy and Jeno Sokolovski M (AAVSO Alert Notice #429) B Special Notice #429: V694 Mon (MWC 560) spectroscopy requested I May 2, 2017: Further to AAVSO Alert Notice 538, the campaign from 2016 on V694 Mon (MWC 560) has O been continued, but with different requirements. Photometry is no longer specifically requested on a T regular basis (although ongoing observations that do not interfere with other obligations are welcome). Spectroscopy on a cadence of a week or two is requested to monitor changes in the disk outflow. V694 I Mon is presently nearing opposition, but the request for spectroscopy continues until further notice. C Investigator Adrian Lucy writes: “Adrian Lucy and Dr. Jeno Sokoloski (Columbia- Univer S sity) have requested spectroscopic monitoring of the broad-absorption-line symbiotic star V694 Mon (MWC 560), as a follow-up to coordinated multi-wavelength observations- ob tained during its recent outburst (ATel #8653, #8832, #8957; #10281). This system is a per- fect place in which to study the relationship between an accretion disk and disk winds/jets, and a high-value target for which even low-resolution spectra can be extraordinarily useful.

“Broad, blue-shifted Balmer absorption lines in MWC 560 have signified a variable high-velocity -out flow for decades, sometimes extending up to 6000 km/s (e.g., Tomov et al. 1990, Nature, 346, 637). Optical brightening in MWC 560 tends to predict higher-velocity absorption, but sometimes jumps in absorption velocity also appear during optical quiescence (e.g., Iijima 2001, ASPCS, 242, 187). If such a velocity jump occurs during photometric quiescence, it may prompt radio observations to confirm and test the proposed outflow origin for recently-discovered flat-spectrum radio emission (Lucy et al. ATel #10281). We cannot know whether interesting changes in velocity will happen, but we can hope!

“Furthermore, volunteer spectroscopic monitoring of this system has proved useful in unpre- dictable ways. For example, ‘amateur’ spectra obtained by Somogyi Péter in 2015 Decem- ber demonstrated that the velocity of absorption was very low only a month before an opti- cal outburst peak prompted absorption troughs up to 3000 km/s, which constrains very well the timing of the changes to the outflow to a degree that would not have been otherwise possible.

“Spectroscopy may be uploaded to the ARAS database (http://www.astrosurf.com/aras/Aras_Data- Base/DataBase.htm), or sent to Adrian and Jeno directly at . Any resolution can be useful. A wavelength range that can accommodate a blueshift of at least 140 angstroms (6000 km/s) from the rest wavelengths of H-alpha at 6562 angstroms and/or H-beta at 4861 angstroms is ide- al, though spectra with a smaller range can still be useful. Photometry could potentially still be useful, but will be supplementary to medium-cadence photometry being collected by the ANS collaboration.”

Coordinates: R.A. 07 25 51.28 Dec. -07 44 08.2 (2000.0)

AAVSO finder charts for V694 Mon with comparison stars may be generated using the AAVSO Vari- able Star Plotter (VSP). Please submit variable star observations to the AAVSO International Database using the name V694 MON. This campaign is being followed on the AAVSO Observing Campaigns page. The thread that was cre- ated on the Campaigns forum for this campaign in 2016 (https://www.aavso.org/v694-mon-mwc- 560-campaign) should be used to continue the discussion for the current phase of the campaign.

This AAVSO Alert Notice was prepared by Elizabeth O. Waagen with text provided by Adrian Lucy.

Link to AAVSO Notice: https://www.aavso.org/aavso-special-notice-429

ARAS Eruptive Stars Information Letter 2017-03 - p. 53 S ZZ CMi Y M Coordinates (2000.0) B R.A. 07 24 14.0 I Dec +08 53 51.8 Mag 10.1 (2017-02) O ZZ Cmi 2017-04-18 20:55:40 R = 646 Jacques Montier T 3 I 2.5 C S 2

1.5

1 relative intensity

0.5

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A) ZZ Cmi 2017-04-01 19:24: R = 3116 P. Somogyi 5

4

3

2 relative intensity

1

0 6300 6400 6500 6600 6700 6800 6900 Wavelength (A) Halpha 2017-04-01 3.5

3

2.5

2

1.5 relative intensity 1

0.5 -1000 -500 0 500 1000 velocity (km/s) ARAS Eruptive Stars Information Letter 2017-03 - p. 54 S AG Dra: call for observations Y M Call for observation of the outburst activity of symbiotic binary AG Draconis B Rudolf Gális1, Jaroslav Merc1 & Laurits Leedjärv2 I (1) Department of Theoretical Physics and Astrophysics, Institute of Physics, Faculty of Science, P. J. Šafárik University, Park Angelinum 9, 040 01 Košice, Slovakia, [email protected] O (2) Tartu Observatory, Observatooriumi 1, Tõravere, 61602 Tartumaa, Estonia T AG Dra is one of the best studied symbiotic systems, thanks to its relatively high brightness and high Galactic latitude favorable for observations. The system undergoes characteristic symbiotic activity with alternating quiescent and active I stages. During quiescence, the mean magnitude of AG Dra is 11.4, 11.1 and 9.8 mag in U, B and V filter, respectively. The amplitude of the brightness variations decreasing with wavelength, from 1.3 mag in the filter U to 0.4 mag in the C filter V. The active stages consist of several outbursts of about 1–1.4 mag in the V/visual band and up to 2.3 and 3.6 mag S in the B and U bands, respectively. Major outbursts occur in intervals of 12–15 yr (in 1936, 1951, 1966, 1980, 1994 and 2006), and are usually followed by minor-scale outbursts in intervals of about 1 yr (Hric et al. 2014). Using UV and X-ray observations, González-Riestra et al. (1999) showed that there are two types of outbursts: cool and hot ones. In our recent paper (Leedjärv et al. 2016) we demonstrated that the outbursts of AG Dra can be clearly distinguished also according to behavior of the prominent emission lines in optical spectra. After seven years of flat quiescence following the 2006-08 major outbursts, in the late spring of 2015, AG Dra begun rising again in brightness toward what appeared to be a new minor outburst (Fig. 1). The recent outburst activity of AG Dra was definitely confirmed by a more prominent outburst in April 2016. The photometric observations suggest that these outbursts are of the hot type. Such behaviour is quite unusual, because the major outbursts in the beginning of active stages are usually cool. Moreover, the spectroscopic observations suggest that the minor outburst of AG Dra in April 2016 demonstrates the behaviour of both hot and cool outbursts. Is it a new type of outburst or some kind of transition between (or combination of) the hot and cool outbursts?

Figure 1: UBV LCs from the period 1963–2016 with marked active stages (C, D, E + F and G) and quiescent ones (Q4, Q5 and Q6). Particular outbursts are assigned as C1, C2, D1 – D5, E0 – E10, F1, F2 and G0, G1. The thin curves show spline fits to the data points. Another interesting question is the next evolution of activity of the symbiotic binary AG Dra. According to our detailed period analysis of photometric and spectroscopic observations we know that the median of the time interval between outbursts is around 365 days. It is worth noting that these time intervals vary from 300–400 d without an apparent long- term trend. Nevertheless, can we expect the major cool or minor hot outburst during the late spring of 2017? Or maybe none of them and AG Dra will return to quiescence as we have already detected such behavior during the weak activity stage 1963–66. In any case, AG Dra clearly demonstrates the importance of long-term monitoring of symbiotic stars in order to disentangle the nature and mechanisms of their active stages and outbursts. According the aforementioned, we kindly ask the ARAS observers for spectroscopic monitoring of AG Dra in the coming period. The spectroscopic observations with a cadence of 5-10 days will be sufficient to monitor AG Dra during ongoing quiescent stage. Daily monitoring is highly desirable during next potential outbursts, which will be announced by the special alert based on photometric observations of this interesting symbiotic binary. Thank you very much in advance. References: González-Riestra R., Viotti R., Iijima T., Greiner J., 1999, A&A 347, 478 Hric, L., Gális, R., Leedjärv, L., Burmeister, M., Kundra, E., 2014, MNRAS 443, 1103 Leedjärv, L., Gális, R., Hric, L., Merc, J., Burmeister, M., 2016, MNRAS 456, 2558 ARAS Eruptive Stars Information Letter 2017-03 - p. 55 Common envelope, mergers, and booms Steve Shore

The announcement last year of the first gravitational according to its mass while on the , wave detections, involving the merger of two stellar the internal thermonuclear processing of hydrogen mass black holes, highlighted one of the most dramat- (the definition of main sequence) depends only on ic events that happens in the universe. Two compact the mass when the stars are dynamically stable (in objects, collapsed stars, fused at their event horizon other words, gravitationally bound and in pressure and emitted a train of gravitational waves withno elec- balance). So the cores look like ordinary stars. But tromagnetic signature. A less spectacular, although the envelopes extend so far as to overlap, and the no less remarkable, event has been detected several outer layers must pass the flux each core is generat- times -- the merger of two ordinary stars to form a ing. If the two stars are the same mass there’s no single self-gravitating object that eventually becomes problem, the common photosphere looks like a pea- a regenerated star that’s more massive than either of nut and as the stars an observer sees a continu- the progenitors. This month, as background for the ously varying projected area. This produces a double new ARAS entry of the Galactic prototype an poster hump light curve and the radial velocity would vary child V838 Mon, I’ll start the discussion of what hap- with each having the same amplitude. But what if pens during these events an why anyone interested the two stars are not the same mass? They shouldn’t in novae or symbiotic stars will find them interesting. have the same luminosity, or even the same or inner structure, so if they share a common Symbiotics can be thought of as a sort of binary in blanket the temperature of the two portions of the which the two members share a common environ- common surface should be very different (depending ment. You know well that the stars are widely sepa- on how much flux has to pass for each). The more rated and one, the giant, emits a wind that surrounds massive should be more luminous and hotter. You’d its degenerate companion. The feedback of UV and still expect a continuous light curve but with unequal X-ray emission from the accretion of some portion of amplitudes and a continuous variation in the color the wind produces a radiative feedback whose effect and spectrum. There are, however, stars of jut this of to ionize the vicinity of the white dwarf. Other- sort, with mass ratios of about two or so, that show wise, the stars evolve normally, the giant may reach no variation in color despite having very different its critical radius and start stream transfer onto the brightnesses and surface areas. These are the W UMa WD but, otherwise, the stars are merely sharing stars, lower and middle main sequence stars (around the same ecosystem (hence symbiotic). Instead, in one or a few solar masses in general) that have been cases where the period is shorter, even before the known for about a century from photometry and at production of the WD by stripping of the companion, least 50 years based on spectroscopy. This has re- mained a problem for many decades. The flux at the W UMa stars and related systems base of the envelope is very different from the two imbedded stars. Yet they adjust their pressure and Common envelope is a general term for two stars temperature surfaces to reveal only a very distorted embedded in the same optically thick matter that photosphere. Somehow a wind must be flowing circulates around both stars (being bound to neither on the stars, redistributing energy throughout the and both at the same time). It’s as if you look at two common envelope. An alternate picture is that the lamps through a cloud that screens them both. As you contact is actually thermally unstable, breaking and walk around the cloud, you see a continuous varia- reforming on long (by human standards) timescales. tion of the light since the radiation from each lamp is scattered and, if it were sufficiently dense and the- ra Consider now what happens as mass is lost from the diation were actually absorbed instead of being scat- system. Should it reduce both the angular momen- tered, thermalized and re-emitted as if there were a tum and binding energy, the decreases common photosphere and overlying atmosphere. So and the stars slowly approach each other. This exac- now imagine two stars that are formed so close to erbates the envelope overlap and may increase the each other that both are larger than their respective mass loss rate. If continued, the two stellar cores will tidal limiting surface, their Roche lobes. Each emits eventually fuse. This is the beginning of the end. A Common envelope, mergers, and booms Steve Shore

merger is necessarily violent. We don’t really under- Outbursts: stand the W UMa systems so to say we have a handle red novae and supernova impostors on what a merger is might be a stretch. But a few things are clear. The approach in the last stages is Enter the red novae1 These were first identified in at essentially the co-orbital velocity but in near free extragalactic systems, in particular M31. With the fall. It doesn’t matter what the distance is, the veloc- siting of the event in another , the distance ity of approach will be supersonic. Thus, a piston is is known and there is no problem with determin- being driven, simultaneously, into the two stars. The ing the problem of luminosity of the event. In the heating from this compression, which produces an Galaxy this is, as you know from classical novae, overpressure depending on the square of the rela- much more difficult. Line of sight dust still has an tive Mach number (in other words, huge compared influence but its effects are drastically reduced rela- to the thermal pressure of the normal envelope) tive to looking through the muck of the Milky Way is the equivalent of the effect of the TNR in novae. disk. At peak these objects reach the same, or even There’s an input of energy roughly equal to the bind- higher, levels as classical novae but with two no- ing energy of the system, which is about the same table exceptions: they’re red with strong molecular as the internal thermal energy. So when that is sud- absorption at peak, and they fade very slowly. It’s denly released in the envelope of a star, there’s no as if you’d surrounded he WD in a nova by one hun- escape from the equivalent of a pressure driven ex- dred times or more mass so, at the peak of the Fe plosion. This is more like the dynamics of heated cyl- curtain stage, the pseudophotospheric tempera- inder than a thermonuclear reaction, which is why ture is that of a M supergiant instead of an A star. I used the TNR example. The merger may trigger some nuclear activity, the temperatures should be The first such objects identified in the Galaxy, V4332 sufficiently high and the densities are momentarily Sgr2 and V838 Mon, were seen only on their bright- enormous, but a relatively small amount of mass ening during which the evolution of a blue object can be retained. The TNR happens because the en- showed a rapid change in color and the appearance velope is degenerate and the nuclear processes turn of strong molecular bands (heavy metal oxides). The on in an environment that initially doesn’t expand V838 Mon event was interpreted as an intermediate when the temperature rises (it develops strong tur- mass main sequence star with a brown dwarf com- bulence and the envelope starts to expand but not panion that merged leaving the now binary of the as an explosion).\footnote{Recall that in a classical ``thing’’ and a B3 V star. While this remains a con- nova, the instigation of the explosion is the decay of jecture, it’s not implausible. A low mass companion the over-produced b-decaying isotopes of the CNO would have gone undetected in the optical but the group. The initial expansion fizzles when the TNR merger would have been as catastrophic as that for a shuts down. It’s only because there is a residual of relatively normal star. In addition, tidal interactions these highly energetic nuclei that the sudden heat- might cause the mixing of companion material into ing by their decay re-energizes the expansion. In the deeper layers of the unstable star (the one that mergers, there is nothing of this sort. The explo- went through the mass ejection) and enhanced the sion is from the piston’s overpressure and, in fact, nuclear burning (see below, born-again systems). it is unlikely that a nuclear reaction could be main- tained even briefly in the event. A merger of two The remnant star was interferometrically imaged3 relatively normal stars is, instead, a thermal bomb. showing that it appears to be relaxing to a normal state as a single star. Indeed, one outcome sug-

1 no, that isn’t something from an early season of ``Game of Thrones’’ 2 https://www.aanda.org/articles/aa/pdf/2015/06/aa25592-14.pdf 3 http://adsabs.harvard.edu/abs/2014A%26A...569L...3C) Common envelope, mergers, and booms Steve Shore

gested for such events is the formation of what are on the verge of forming dust, the molecules can ap- called FK Com stars, active rapidly rotating giants pear and that’s what is seen in the V838 Mon spec- with strong dynamo fields that seem to be single trum that’s now in the database. An important fea- stars. Other examples might be so-called ``blue ture of the Fe curtain is mimicked by the molecular stragglers’’, stars in intermediate and old clusters lines in these mergers. The extreme opacity from the that are situated above the main sequence termi- overlap is enough to drive a complete redistribution nation point in a color-magnitude diagram. The ex- of the light from the optical and UV into the infra- amples multiply, it’s enough to consider what we’ve red, where it is reprocessed by the dust. Otherwise repeatedly discussed: two stars can happily evolve the radiative processes involved in the spectrum for- as if single until and unless tidal interactions become mation -- not the agents but the process -- is identi- important. Since the mass ratio and initial separa- cal. The velocity gradient can have a greater effect, tions are governed by yet unclear mechanisms, the however, on the molecular bands: there are many variety of the physical effects will be enormous. You more lines and the chance of gaps and overlaps be- know that there are novae in symbiotic-like systems ing created by the velocity gradient is much greater as well as compact, cataclysmics similarly, and when than for the Fe curtain. In such cases, the coupling on or near the main sequence the common enve- between different vibrational and rotational states is lope is stable while for evolved systems it cannot be very dependent on the way the matter is expanding.} (see, e.g., https://arxiv.org/pdf/1702.07872.pdf for a very recent simulation). During the V838 Mon and V1309 Sco events, the initial rise was followed within a very short time, months, One of the most bizarre features of the V1309 Sco out- by a precipitous drop in brightness. For V1309 Sco, it burst was the appearance of oxide emission bands. dropped more than 10 (V) magnitudes. Dust forma- Remember that the depth of the molecular features, tion in these systems is far more extreme, and much like those of the curtain in nova spectra, derive from more easily understood, than for classical novae since the strong temperature and excitation variations in you have such extreme shielding of the central star the outer atmospheres of cool stars. The tempera- and high volume densities at large distances. The tures drop rapidly in main sequence (compact) stars best discussion of the evolution of the spectrum are: and the source function (the rate of excitation of the https://www.aanda.org/articles/aa/pdf/2010/08/aa13610-09.pdf upper states) is heavily weighted toward the ground and states by the low collision rates. So if you see emis- https://www.aanda.org/articles/aa/pdf/2015/08/aa26212-15.pdf . sion, it requires some exciting mechanism that isn’t normally present in a late-type giant or dwarf. It’s Another bizarre class related (?) to symbiotics: the same as any emission line, actually; anything that Born-again post-AGB stars overpopulates the upper state, or lowers the col- lision rates, can produce an emission line if there’s One famous case of a post-AGB brightening that seems enough absorption. In these extreme systems, the not directly related to red novae and mergers is V4334 absorption is guaranteed fro the optical and near UV, Sgr (also known as Sakurai’s object; IAUC 6322), dis- and the emission then occurs because the densities covered by Sakurai but not communicated by him). It are very low and the medium very extended. Think looked, for all of its photometry, like a symbiotic nova again of a nova except where the shielding is so mas- but spectroscopy (same circular) showed only an ab- sive that the equivalent temperature is low enough sorption spectrum of a G supergiant (not so designat- to form the oxides. You know molecular formation ed but if you read between the lines it seems to be can happen in classical novae, although we all unsuc- that). Emission finally appeared nearly a decade later cessfully searched for it in several of the novae you’ve http://adsabs.harvard.edu/abs/2015ASPC..493...95V all observed, remember? It was reported in DQ Her and have continued to increase. This may be a result before its dust forming event, and CO is sometimes of a thermal pulse in which hydrogen is again mixed seen in infrared, but in general you don’t see the TiO into the deeper layers (that are processing helium in or VO or ZrO bands. The temperatures are wrong, a shell, the instability of which is responsible for the the bond strengths are too low, and the temperature long term large amplitude light variations) and a new of the ejecta is, in general, too high. But when you’re ejection phase started with attendant dust formation ARAS Eruptive Stars Information Letter 2017-03 - p. 58 Common envelope, mergers, and booms Steve Shore

(the recurrent theme this month). The idea that this ing a far slower phase of the event, don’t require can happen during the last epochs of the thermal high cadence) reveal essential physics about the pulsing stage of a highly evolved, intermediate mass development of the events. Mergers may not be star was first suggested by Iben (who coined the term observable at the moment of the blow-off but the ``born again’’) in which a previously decaying plan- later expansion strips through the ejecta, exactly etary is again shocked by a fast wind from the like the nova sequence, and probes the innermost central star. Little is known about this object other ejecta that were closest to the site of the event. than the time series of relatively low dispersion spec- tra (alas, it’s about 10-17 erg.s-1.cm-2.A-1 so out of most Some references to red novae (along with the discov- of your reach and southern to top it off) but there ery papers), V838 Mon and related systems, V1309 Sco are northern examples among several planetary (the best candidate yet!), and supernova impostors.} nebulae. The possibility that this could be driven by a merger during one of the expansions, or bina- http://iopscience.iop.org/article/10.1088/0004-637X/697/1/L49/pdf http://adsabs.harvard.edu/doi/10.1086/185455 rity somehow affecting the evolution, has not been http://adsabs.harvard.edu/abs/1990ApJ...353L..35M discussed extensively (although it has been raised, http://adsabs.harvard.edu/abs/2011ApJ...730..134K http://adsabs.harvard.edu/abs/2007ASPC..363..249L, http://adsabs.harvard.edu/abs/2015ApJ...805L..18W http://adsabs.harvard.edu/abs/2016ApJ...817..143W and in the same context as V838 Mon) but it could http://adsabs.harvard.edu/abs/2007ASPC..363...13M be a possible accretion event without merger in an http://adsabs.harvard.edu/abs/2010A\%26A...516A.108M unstable system. http://adsabs.harvard.edu/abs/2011A\%26A...528A.114T

A comment on the V838 Mon spectrum Additional note A merger is something much more violent. We don’t really understand the W UMa systems so to say we have a handle on Comparing the new spectrum with the published what a merger is might be a stretch. Bu a few things are clear. results (especially Pavlenko et al. 2006: The approach in the last stages is at essentially the co-orbital https://www.aanda.org/articles/aa/pdf/2006/46/aa5503-06.pdf velocity but in near free fall. It doesn’t matter what the dis- also serves to identify the lines), the TiO band tance is, the velocity of approach will be supersonic. Thus, a heads, in particular, is now separated into distinct ab- piston is being driven, simultaneously, into the two stars. The heating from this compression, which produces an overpres- sorption features. Earlier, before about 2009, these sure depending on the square of the relative Mach number (in were blended. These are likely associated with indi- other words, huge compared to the thermal pressure of the vidual shells from the ejection but whether they are normal envelope) is the equivalent of the effect of the TNR in from the merger or a post merger will have to wait. novae. There’s an input of energy roughly equal to the binding One thing to note. An interesting test would be to energy of the system, which is about the same as the internal thermal energy. So when that is suddenly released in the see if there’s a change in the depolarization result- envelope of a star, there’s no escape from the equivalent of a ing from the absorption overlapping the stellar con- pressure driven explosion. This is more like the dynamics of tinuum. Scattered light, mainly from dust, leaves a heated cylinder than a thermonuclear reaction, which is why I polarized signature in the integrated light. Absorp- used the TBNR in novae. The merger may trigger some nuclear tion bands, because they are along the line of sight, activity, the temperatures should be sufficiently high and the are unpolarized or lower polarization than the con- densities are momentarily enormous, but a relatively small amount of mass can be retained. The TNR happens because tinuum. This effect has been noted in other classes the envelope is degenerate. A merger of two relatively normal of stars from shell stars to LBVs to Mira variables. stars is, instead, a thermal bomb.

The collection of weird objects and systems this month is to highlight the richness of the phenom- enology of late stages of binary evolution and that Steve Shore, 06/05/2017 all can be studied with your equipment. As the new V838 Mon spectrum shows, high quality spectra even of low resolution spectra in time series (and

these later stage observations, being taken - dur

ARAS Eruptive Stars Information Letter 2017-03 - p. 59 V838 Mon

Top and Left: published spectra (Loebman & al., 2015) Bottom: spectra obtained by James Foster and Jim Edlin with a LISA (R = 1000)

V838 Mon 2017-03-24 04:17:59 R = 951 James R. Foster 12

10

8

6

4 relative intensity

2

0 4000 4500 5000 5500 6000 6500 7000 Wavelength (A)

V838 Mon 2017-04-15 03:30:28 R = 727 J Edlin 2

1.5

1

relative intensity 0.5

0 4500 5000 5500 6000 6500 7000 Wavelength (A) ARAS Eruptive Stars Information Letter 2017-03 - p. 60 Recent publications

Symbiotics

New outburst of the symbiotic nova AG Peg after 165 years A. Skopal, S. Yu. Shugarov, M. Sekeráš, M. Wolf, T. N. Tarasova, F. Teyssier, M. Fujii, J. Guarro, O. Garde, K. Graham, T. Lester, V. Bouttard, T. Lemoult, U. Sollecchia, J. Montier, D. Boyd Accepted in Astronomy and Astrophysics https://arxiv.org/pdf/1705.00076.pdf

Three-dimensional hydrodynamical models of wind and outburst-related accretion in symbiotic systems M. de Val-Borro, M. Karovska, D. D. Sasselov, J. M. Stone https://arxiv.org/pdf/1704.03460.pdf

Dynamic Transition in Symbiotic Evolution Induced by Growth Rate Variation V.I. Yukalov, E.P. Yukalova, D. Sornetteharvard.edu/abs/2017arXiv170103094F https://arxiv.org/pdf/1704.03355.pdf

Novae

The nova V1369 Cen -- a short review L. Izzo, M. Della Valle, F. Matteucci, D. Romano, L. Pasquini, L. Vanzi, A. Jordan, J. M. Fernandez, P. Bluhm, R. Brahm, N. Espinoza, R. Williams https://arxiv.org/pdf/1704.07214.pdf

Prediction of a red nova outburst in KIC 9832227 Lawrence A. Molnar, Daniel M. Van Noord, Karen Kinemuchi, Jason P. Smolinski, Cara E. Alexander, Evan M. Cook, Byoungchan Jang, Henry A. Kobulnicky, Christopher J. Spedden, Steven D. Steenwyk https://arxiv.org/pdf/1704.05502.pdf

Nova Scorpius 1437 A.D. is now a dwarf nova, age-dated by its proper motion Michael M. Shara, Krystian Ilkiewicz, Joanna Mikolajewska, Ashley Pagnotta, Michael F. Bode, Lisa A. Crause, Katarzyna Drozd, Jacqueline K. Faherty, Irma Fuentes-Morales, Jonathan E. Grindlay, Anthony F. J. Moffat, Linda Schmidtobreick, F. Richard Stephenson, Claus Tappert, David Zurek https://arxiv.org/ftp/arxiv/papers/1704/1704.00086.pdf

Photometric evolution of seven recent novae and the double component characterizing the light- curve of those emitting in gamma rays U. Munari, F.-J. Hambsch, A. Frigo https://arxiv.org/ftp/arxiv/papers/1704/1704.00086.pdf

ARAS Eruptive Stars Information Letter 2017-03 - p. 61 About ARAS initiative

Astronomical Ring for Access to Spectroscopy (ARAS) is an infor- mal group of volunteers who aim to promote cooperation between professional and amateur astronomers in the field of spectroscopy. To this end, ARAS has prepared the following roadmap: • Identify centers of interest for spectroscopic observa- tion which could lead to useful, effective and motivating co- operation between professional and amateur astronomers. • Help develop the tools required to transform this cooperation into action (i.e. by publishing spectrograph building plans, organizing group purchasing to reduce costs, developing and validating observa- tion protocols, managing a data base, identifying available resourc- es in professional observatories (hardware, observation time), etc. •Develop an awareness and education policy for amateur astrono- mers through training sessions, the organization of pro/am semi- nars, by publishing documents (web pages), managing a forum, etc. • Encourage observers to use the spectrographs available in mission obser- vatories and promote collaboration between experts, particularly variable star experts. • Create a global observation network. By decoding what light says to us, spectroscopy is the most productive field in astronomy. It is now entering the amateur world, enabling amateurs to open the doors of astrophysics. Why not join us and be one of the pioneers!

Submit your spectra to Be Monthly report ARAS Eruptive Stars Data Base Previous issues : http://www.astrosurf.com/aras/surveys/beactu/ index.htm Please : - respect the procedure - check your spectra BEFORE sending them Resolution should be at least R = 500 For new transcients, supernovae and poorly observed objects, SA spectra at R = 100 are welcome Download previous issues of the 1/ reduce your data into BeSS file format Information Letter : 2/ name your file with: _ObjectName_yyyymmdd_hhh_Observer http://www.astrosurf.com/aras/ novae/InformationLetter/Informa- Exemple: _chcyg_20130802_886_toto.fit tionLetter.html

3/ send you spectra to ARAS Database : Novae, Symbiotics, Cataclysmics : François Teyssier http://www.astrosurf.com/aras/ Aras_DataBase/DataBase.htm to be included in the ARAS database

ARAS Eruptive Stars Information Letter 2017-03 - p. 62