Intelligent Plastics, Naturally

Total Page:16

File Type:pdf, Size:1020Kb

Intelligent Plastics, Naturally Intelligent plastics, naturally Intelligent plastics, naturally Our mission is to produce bioplastics that can challenge the dominance of oil-based polymers, and ultimately replace them completely. Contents 02 Bioplastics 04 Applications 06 Products 08 R&D 10 Company 12 Contact Biome Bioplastics 01 Bioplastics The evolution of polymers From their inception over 100 years ago, plastics have become What is a bioplastic? Why bioplastics? indispensable to our daily lives. A more sustainable product In 1907 Leo Baekeland added phenol to formaldehyde to form Bakelite. Leo became a very wealthy man and the Bioplastics reduce the use of non-renewable, oil-based world became a very different place. Today, plastics are resources, which are increasingly scarce and unstable in price. indispensable at every stage of the supply chain, for every industry, product or service. Managed end-of-life However, whilst plastics are prized for their durability, Bioplastics can biodegrade or compost at the end of their light weight and long life, it is these very factors that useful life. Durable plant-based bioplastics can also be make them one of the larger environmental threats of recycled as well as their conventional equivalents. the modern world. Apart from the small amount that’s incinerated, every bit of plastic made over the last century is still present somewhere on our planet. The price of this Consumer engagement Consumers are increasingly seeking more environmentally ‘miracle material’ is being paid by the natural world: from A bioplastic is a plastic that is made the sea life that consumes it, to hormonal disruption in friendly products, and looking to brands to demonstrate their animals, to the area of ocean dominated by the Great partly or wholly from materials sustainability credentials. Products and packaging made from Pacific Garbage Patch. derived from biological sources, such bioplastics send a direct message to consumers. as sugarcane, potato starch or the Around 4% of the oil that the world uses every year goes cellulose from trees and straw. into producing plastics. Global resources have long been Intelligent benefits unable to sustain escalating consumption. As the cost Bioplastics are often designed so that Bioplastics can be engineered to have novel technical of oil rises and the effects of global warming intensify, they biodegrade or compost at the characteristics such as vapour control and tactile properties. governments and industries the world over are forced to Tailored to biodegrade after a determined period of time, take action. As giving up plastics would mean giving up end of their useful life, aided by fungi, modern life as we know it, attention is turning to a viable, bacteria and enzymes. they can also enrich the soil on decomposition. natural alternative. Bioplastics can generally be directly Improving carbon footprints Bioplastics are that alternative; they are made partly or substituted for their oil-based Biomass feedstock absorbs carbon dioxide as it grows. wholly from sustainable plant sources, and are often biodegradable, composting at the end of their useful equivalents. They can also be made In addition, bioplastic manufacture can use less energy in life. Challenging the dominance of oil-based products, to be chemically identical to standard production, reducing manufacturing costs and lowering the modern bioplastics are now suitable for an impressive industrial plastics. carbon footprint of the final product. range of applications without the need for new equipment or infrastructure. 02 Bioplastics Biome Bioplastics 03 Applications The range and capability of our products are The everyday made extraordinary continually expanding. They are already in more places than you might imagine. In the next decade we will see bioplastics become part of our everyday lives. Paul Law, Managing Director, Biome Bioplastics Modern bioplastics are now suitable Food service Cosmetics Automotive for an impressive range of applications Problem: UK pubs, restaurants, takeaway outlets and Problem: The cosmetics industry creates over 120 Problem: With transport representing one of the highest without the need for new equipment hotels produce over three million tonnes of waste every billion units of packaging a year. Much of this is short contributors to global carbon emissions, automotive year. The challenge is to create sustainable packaging lived and often ends up in landfill. Even the most basic manufacturers are addressing materials as part of the or infrastructure. Our biopolymers without impacting on food quality or safety, or daily personal care products, such as toothbrushes and drive to design more sustainable vehicles. In this industry, are suitable for both short-life and inconveniencing the customer. The desire for resources razors, pose a major environmental challenge. However, safety and performance are paramount and cannot be that are GM-free and non-food-derived is particularly consumers have come to expect high standards and don’t compromised. disposable products as well as long- important to this sector. want to compromise on quality in the drive for a more life, durable applications. sustainable solution. Solution: Bioplastics can be used in place of oil-derived Solution: Our biopolymers are suitable for a wide equivalents for the automotive industry. They can be range of catering and food-to-go products, from Solution: Our plant-based bioplastics ensure that brands injection moulded with characteristics similar to ABS, thermoformed coffee cup lids to injection-moulded in the cosmetics and personal care sector are caring for without any modifications required to existing machinery. cutlery and coatings for paper and board. Our both people and the environment. Our materials can be plant-based products perform as well as oil-derived extrusion blow moulded to form opaque, soft-feel bottles Industrial equivalents, and are 100% biodegradable and ready whilst accompanying bioplastic caps can be injection to compost along with food waste. moulded. Problem: As a highly carbon intensive sector, industry is increasingly focused on how best to process Packaging Electronics limited natural resources into products with minimal environmental impact and reduced greenhouse gas Problem: The development of sophisticated packaging Problem: The electronics industry has made considerable emissions. has vastly improved the shelf life of products whilst strides in addressing its environmental impact, primarily helping to define brands’ relationships with their through improving the energy efficiency of products and Solution: Bioplastics meet the demand for both customers. However, with vast amounts of packaging devices. It is equally important, however, that the industry long-life and cost-effective materials that underpin the ending up in landfill, unsustainable packaging is a highly addresses the sustainability of the materials it uses. sustainability of operations. Our product ranges are visible environmental issue. optimised for films, fibres, casting, moulded and roto- Solution: Bioplastics can be injection moulded with moulded items. Solution: Bioplastics provide an ideal solution, removing characteristics similar to ABS, without any modifications the environmental impact without removing the required to existing machinery. Bioplastics can be used packaging. Our plant-based polymers compost at the in place of oil-derived equivalents for plastic casings and end of their useful life. Our products can be used for parts. They are plant derived and typically process at a a wide range of packaging items, from primary and lower temperature than conventional plastics, contributing secondary packaging films, laminates and rigid sheets to the overall sustainability of electronic products. for thermoforming and vacuum forming, to point-of-sale displays, trays and merchandisers. 04 Applications Biome Bioplastics 05 Products Intelligent plastics, naturally Need a custom blend? We work with our customers on collaborative projects to deliver market-changing opportunities. Our specialist technical team can work with you to develop custom blends with properties to suit your exact requirements. Building on over 20 years of High temperature development activity, we produce an Our BiomeHT range for moulding and thermoforming shows unrivalled heat Key properties Processing impressive range of high-performance resistance whilst being from a GM-free, non-food, sustainable source. bioplastics that meet our customers’ High renewable content Existing machinery demands for both environmental and Coating We aim for the highest possible bio-based Our product ranges are developed to end-of-life performance. BiomeEasyFlow is perfect for extrusion content in all of our products, reducing the process on conventional machinery with coating to paper, board and film, use of non-renewable, oil-based resources. no modifications required to existing providing a GM-free, biodegradable and equipment. compostable alternative to oil-based LDPE. Enhanced performance We focus on the production of high Lower temperature Lamination performance biopolymers that offer a Bioplastics typically require lower BiomeBioLam is designed for lamination competitive alternative to conventional production temperatures, providing within complex multilayered film structures oil-based plastics. energy savings for the converter. with excellent barrier performance and interlayer adhesion. Range of feedstocks Recyclability Cords Our products use a range of natural Production waste can
Recommended publications
  • A Low Cost Vacuum-Forming System1
    A LOW COST VACUUM-FORMING SYSTEM1 James P. O'Leary, M.S.2, Edward A. Bianchi, B.S.2, and Richard A. Foulds, M.S.2 Vacuum-forming is an excellent method for molding sheets of plastic into complicated shapes. It is just beginning to be used in the field of re­ habilitation medicine where the need to make devices that fit the human form is great. This article describes a new, inexpensive apparatus which enables orthotists and prosthetists to use the vacuum-forming process in their work with a very small outlay of capital. Very little training is required to use the apparatus, and it is now being made available in limited quantities. In the vacuum-forming process a sheet of hot, pliable plastic is drawn either into or around a mold with the use of suction provided by a vac­ uum pump. When the plastic cools and hardens, it retains the shape caused by the mold. An example of the usefulness of a molded orthosis is Fig. 1. A molded ankle-foot orthosis (left) is contrasted shown in Figure 1. to the conventional metal and leather orthosis that it The process, though simple, when adapted to replaces. Besides being lighter in weight, the plastic the needs of mass-production, requires very ex­ orthosis requires no modification to the shoe. This pensive machinery. Until recently only industrial feature makes it possible for the patient to interchange shoes easily. vacuum-forming equipment was available, with prices ranging from $4,000 to over $125,000. Because of the large investment in money and space required to obtain and use the machines With these thoughts in mind we designed and designed for mass production, very few medical built a vacuum-forming apparatus called the facilities have made use of the vacuum-forming "Bracemaker" (Fig.
    [Show full text]
  • Thermoforming
    APPLICATION GUIDE: Thermoforming TIME REQUIRED COST SKILL LEVEL By Brian Sabart, Stratasys Inc. and Jeff Gangel, Formech International, Ltd. OVERVIEW Vacuum Forming Materials: Thermoforming is a relatively simple manufacturing process that is inexpensive when compared to other - ABS plastic molding and forming methods. Although thermoforming is often associated with manufacturing - Polyvinylchloride (PVC) of packaging items such as blister packs and disposable coffee cup lids, the cost and time advantages - Polycarbonate (PC) are realized in a broad spectrum of products in an equally broad range of industries. When using a Fortus - Polyethylene (PE) 3D Production System with FDM technology to construct thermoforming tooling, the process becomes - Low Density Polyethylene (LDPE) simpler, more efficient and increasingly cost-effective. - High Density Polyethylene (HDPE) - Polypropylene (PP) - Polystyrene (PS) PROCESS DESCRIPTION - Polyphenylene Oxide (PPO) Thermoforming is a collection of manufacturing methods that heat and form sheets of extruded plastic. - Polyphenylene Ether (PPE) Thermoforming processes include drape, vacuum and pressure forming. - Polymethyl-Methacrylate (PMMA) - Acrylic Drape forming relies on gravity to pull the sheet against the tool. Vacuum forming, as the name implies, - Closed Cell Foam Polyester (PBT, PET) draws the heated sheet against the tool with the assistance of a vacuum. Pressure forming combines - Polyester Copelymer (PETG) vacuum and pressure to simultaneously pull and push the plastic sheet to the contours of the tool. - Thermoplastic Olefin (TPO) - Thermoplastic Elastomer (TPE) This process guide documents the steps for vacuum forming since it is the most common thermoforming - Thermoplastic Rubber (TPR) method. However, many of the details presented may also be applied to drape and pressure forming.
    [Show full text]
  • Radel® PPSU, Udel® PSU, Veradel® PESU & Acudel® Modified PPSU
    Radel ® | Udel ® | Veradel ® | Acudel ® Radel® PPSU, Udel® PSU, Veradel® PESU & Acudel® modified PPSU Processing Guide SPECIALT Y POLYMERS 2 \ Sulfone Polymers Processing Guide Table of Contents Introduction ............................. 5 Part Ejection . 14 Draft . 14 Ejector pins and/or stripper plates . 14 Sulfone Polymers........................ 5 Udel® Polysulfone (PPSU) . 5 Injection Molding Equipment ............. 15 ® Veradel Polyethersulfone (PESU) . 5 Controls . 15 ® Radel Polyphenylsulfone (PPSU) . 5 Clamp . 15 ® Acudel modified PPSU . 5 Barrel Capacity . 15 Press Maintenance . 15 Resin Drying . .6 Screw Design . 15 Rheology................................ 8 Screw Tips and Check Valves . 15 Viscosity-Shear Rate ..................... 8 Nozzles . 16 Molding Process . 16 Resin Flow Characteristics . 9 Melt flow index . 9 Polymer Injection or Mold Filling . 16 Spiral flow . 9 Packing and Holding . 17 Injection Molding . .10 Cooling . 17 Molds and Mold Design .................. 10 Machine Settings ....................... 17 Tool Steels . 10 Barrel Temperatures . 17 Mold Dimensions . 10 Mold Temperature . 18 Mold Polishing . 10 Residence Time in the Barrel . 18 Mold Plating and Surface Treatments . 10 Injection Rate . 18 Tool Wear . 10 Back Pressure . 18 Mold Temperature Control . 10 Screw Speed . 18 Mold Types . 11 Shrinkage . 18 Two-plate molds . 11 Three-plate molds . 11 Regrind ............................... 19 Hot runner molds . 11 Cavity Layout . 12 Measuring Residual Stress ............... 19 Runner Systems . 12 Extrusion............................... 22 Gating . 12 Sprue gating . 12 Edge gates . 13 Predrying ............................. 22 Diaphragm gates . 13 Tunnel or submarine gates . 13 Extrusion Temperatures ................. 22 Pin gates . 13 Screw Design Recommendations . 22 Gate location . 13 Venting . 14 Sulfone Polymers Processing Guide / 3 Die Design ............................. 22 Extruded Product Types . 23 Wire . 23 Film . 23 Sheet . 23 Piping and tubing . 23 Start-Up, Shut-Down, and Purging .......
    [Show full text]
  • Statement on the Registration of Polymers Under REACH Authored by and Signed by Members of the Scientific Community, April 2021
    Statement on the registration of polymers under REACH Authored by and signed by members of the scientific community, April 2021 People and the environment are widely exposed to polymers, the main constituents of plastics, as these chemicals continue to build up in terrestrial and ocean ecosystems and production is predicted to continue increasing (Geyer et al., 2017), resulting in emissions to our waterways of up to 53 million metric tons (Mt) per year by 2030 (Borrelle et al., 2020). Apart from plastics, polymeric substances are present in many other materials, products and applications, including but not limited to silicones, coatings, paints, detergents, household and personal care products, agricultural fertilizers and wastewater treatment, often leading to direct releases into the environment. Although polymers are manufactured and used in Europe in extremely high quantities (e.g. plastic production in Europe has been around 60 million tonnes per year over the last years (PlasticsEurope, 2020)), not enough is known about their identity, uses, physical, chemical, and hazardous properties, particularly because polymers have so far been exempt from registration under the European chemicals regulations REACH. To finally initiate the polymer registration process, currently the European Commission (EC) is developing a proposal on how and which polymers to register (Wood and PFA-Brussels, 2020). As scientists working in the fields of polymer chemistry, ecotoxicology, environmental chemistry, conservation biology, environmental sciences,
    [Show full text]
  • High Temperature Resin Alwa Ht Resin
    PRODUCT ANNOUNCEMENT: HIGH TEMPERATURE RESIN ALWA HT RESIN ALWA HT RESIN is a resin-based on isocyanate and epoxy (EP), which reacts after adding a catalyst. ALWA HT RESIN offers a range of possibilities for producers of fibre-reinforced materials (e.g., glass fibre, kevlar and carbon), semi-finished and finished goods. The system is also suitable for prepreg and reaction compounds. ALWA HT RESIN is particularly interesting for the aerospace and aircraft industry as well for the rail transport, automotive and electronics industry. The application area of “epic” resins are electro casting resins, lamination and injection technology (RTM procedure), vacu- um infusion, casting and ramming compounds, impregnation resin, casting and injection moulding process as well as prepreg technologies, among others. ALWA HT RESIN is offered in two versions. 1) ALWA HT RESIN M100 with approx. 50 mPa s 2) ALWA HT RESIN M2200 with approx. 2200 mPa s The resins can be mixed with one another which enables a flexible adjustment of the viscosity. In addition, two catalysts are available: one catalyst with a fast and one with a low curing rate. These can also be mixed together which allows a flexible adjustment of the pot life. After adding the cata- lyst, the material cures at room temperature. In that intermediate B-condition the material is very brittle. Three-dimensional networks are formed, which are characterized by a high density. That tri- merisation is the prerequisite for the final mechanical values and consistencies. The tempering should be executed in stages up to 180 °C. After tempering a highly cross-linked duroplast is the re- sult.
    [Show full text]
  • Food Packaging Technology
    FOOD PACKAGING TECHNOLOGY Edited by RICHARD COLES Consultant in Food Packaging, London DEREK MCDOWELL Head of Supply and Packaging Division Loughry College, Northern Ireland and MARK J. KIRWAN Consultant in Packaging Technology London Blackwell Publishing © 2003 by Blackwell Publishing Ltd Trademark Notice: Product or corporate names may be trademarks or registered Editorial Offices: trademarks, and are used only for identification 9600 Garsington Road, Oxford OX4 2DQ and explanation, without intent to infringe. Tel: +44 (0) 1865 776868 108 Cowley Road, Oxford OX4 1JF, UK First published 2003 Tel: +44 (0) 1865 791100 Blackwell Munksgaard, 1 Rosenørns Allè, Library of Congress Cataloging in P.O. Box 227, DK-1502 Copenhagen V, Publication Data Denmark A catalog record for this title is available Tel: +45 77 33 33 33 from the Library of Congress Blackwell Publishing Asia Pty Ltd, 550 Swanston Street, Carlton South, British Library Cataloguing in Victoria 3053, Australia Publication Data Tel: +61 (0)3 9347 0300 A catalogue record for this title is available Blackwell Publishing, 10 rue Casimir from the British Library Delavigne, 75006 Paris, France ISBN 1–84127–221–3 Tel: +33 1 53 10 33 10 Originated as Sheffield Academic Press Published in the USA and Canada (only) by Set in 10.5/12pt Times CRC Press LLC by Integra Software Services Pvt Ltd, 2000 Corporate Blvd., N.W. Pondicherry, India Boca Raton, FL 33431, USA Printed and bound in Great Britain, Orders from the USA and Canada (only) to using acid-free paper by CRC Press LLC MPG Books Ltd, Bodmin, Cornwall USA and Canada only: For further information on ISBN 0–8493–9788–X Blackwell Publishing, visit our website: The right of the Author to be identified as the www.blackwellpublishing.com Author of this Work has been asserted in accordance with the Copyright, Designs and Patents Act 1988.
    [Show full text]
  • Peeling Back the Print Industry's Plastic Problem
    greenHAT | Lamination: Peeling back the print industry’s plastic problem LAMINATION Peeling back the print industry’s plastic problem A report by Sophie McDonald Peeling back the print industry’s plastic problem Contents The plastic problem 3 What about recycling? 5 Are there any green alternatives? 8 The verdict 12 What do the people in print have to say? 13 Where does Green Hat stand? 15 Summary • Vast amounts of printed materials are coated in plastic lamination. This is often unnecessary and purely used to improve appearance. • Plastic and paper can’t be recycled together. Laminates should be removed and disposed of separately before recycling the paper element. • It’s unclear whether eco-friendly laminates match up to their claims. They may not be properly identified and processed by waste management facilities and end up going to incineration or landfill. • Avoiding lamination altogether is the best solution. • Green Hat avoid lamination wherever possible and aim to spread further awareness of this issue in the print industry. Photo by Ron Dyar on Unsplash Cover by Bank Phrom on Unsplash 2 Peeling back the print industry’s plastic problem The Plastic problem 3 Peeling back the print industry’s plastic problem The Plastic Problem Plastic pollution is the conversation on everyone’s lips. Generally speaking, most of us can agree that single-use plastics spell bad news. As a society we’ve greatly increased our awareness of the negative environmental impacts of daily items like straws, takeaway coffee cups and plastic bottles. And we know it’s pointless to create a product that will last for hundreds of years, yet only be used for a matter of minutes.
    [Show full text]
  • Enhanced Bimodal PE Makes the Impossible Possible
    Enhanced Bimodal PE makes the impossible possible Steven Sheu Borouge Pte Ltd. Oct. 2006, Shanghai 1 Borouge reference line 2006 © 2006 Borouge Pte Ltd BorstarBorstar TechnologyTechnology Dual reactor, bimodal Fraction % 12345 process Processability Mechanical Broad molecular weight lubricant strength distribution tie molecules Taste, Odour, Smoke, Processability, Combines good Migration melt strength, swell, processability and good orientation development mechanical strength Tailored comonomer addition Low taste & odour Bimodal Improved low temperature properties Wide range of MFR and Conventional densities achievable Molecular weight 1. To be avoided 2 Necessary to bring down pro-cessing forces (extrusion) and to protect fraction (4) from being degraded. To avoid melt fracture (poor surface properties). This fraction is, however, mechani- cally weak and has to be rein-forced by (4). 4. Necessary to get high enough tie chain concentrations for toughness and strength. 5. Impact melt strength and modify rheological behaviour of the polymer melt. 2 Borouge reference line 2006 © 2006 Borouge Pte Ltd H:TAPPIConfChina WhatWhat isis Different?Different? Enhanced Bimodal PE LDPE LLDPE m-LLDPE 3 Borouge reference line 2006 © 2006 Borouge Pte Ltd H:TAPPIConfChina BimodalBimodal PEPE ProcessProcess TechnologiesTechnologies Loop - GP GP - GP Double slurry loop Dual/triple slurry tank Dual/triple solution * Borstar * Unipol II * Atofina * Hostalen * Dowlex * Evolue * Solvay * Mitsui CX * Adv. Sclairtech * Spherilene * Showa Denko * Equistar-
    [Show full text]
  • Optimizing Thermoforming of High Impact Polystyrene (HIPS) Trays by Design of Experiments (DOE) Methodologies
    Optimizing Thermoforming of High Impact Polystyrene (HIPS) Trays by Design of Experiments (DOE) Methodologies Vishal M. Dhagat Department of Electrical & Computer Engineering, UConn Storrs, CT 06269-4157 [email protected] Ravindra Thamma Manufacturing & Construction Management, CCSU 1615 Stanley Street, New Britain, CT 06050 [email protected] Abstract The process of heating and reshaping plastics sheet and film materials has been in use since the beginning of the plastics industry better known as thermoforming. Today this process is very ubiquitous for industrial products including signage, housings, and hot tubs. It also produces much of the packaging in use today including blister packs, cartons, and food storage containers. The process of thermoforming has many advantages over other methods for producing high quality plastic products, with some limitations, which can be resolved by implementing stringent quality control using scientific methods to improve process performance. Two areas of interest in today’s industry of great concerns are lean manufacturing operations and environment. Thermoforming of high impact polystyrene sheets using vacuum forming technique requires technical knowledge on material behavior, mold type, mold material, and process variables. Research on these various subjects is well documented but very limited research is done in process optimization of HIPS (High Impact Polystyrene). Design of Experiments (DOE) approaches like the face-centered cubic central composite design can be used to refine the process and to minimize rejects. In this paper, we present a case study on thermoforming of HIPS single use trays made on a semi automatic machine using three criteria solely based on the FCC Design method. The optimization of tray forming and wall thickness distribution is explored.
    [Show full text]
  • Design Guidelines for the Thermoforming Process 1
    Design guidelines for the thermoforming process 1 Design guidelines for product engineers on the thermoforming process U aangeboden door: Batelaan Kunststoffen BV ● Veerpolder 8 ● 2361KV Warmond T: 071-5613301 ● F: 071-5616701 ● www.batelaan.nl Zonder schriftelijke toestemming van de ProducentenVereniging Thermoplasten (PVT) mag niets uit deze informatiemap worden verveelvoudigd en/of openbaar gemaakt door middel van druk, fotokopie, microfilm of anderszins, hetgeen ook van toepassing is op de gehele of gedeeltelijke bewerking. Deze informatiemap is gebaseerd op de trainingmodules, gerealiseerd in het kader van T-ForM. Voor de eventuele aanwezigheid van (zet)fouten en onvolledigheden kan de PVT geen aansprakelijkheid aanvaarden. PVT, Postbus 420, 2260 AK Leidschendam, [email protected] www.t-form.eu July 2008 1 Design guidelines for the thermoforming process 2 Contents Contents ................................................................................................................................ 1 1. Executive Summary ........................................................................................................... 5 2. Introduction ........................................................................................................................ 9 2.1 Thin Sheet Thermoforming ........................................................................................... 9 2.2 Thick Sheet Thermoforming ....................................................................................... 10 2.3 Tooling ......................................................................................................................
    [Show full text]
  • Innovations in High Performance Polyaryletherketone Victrex Polymer Solutions – Product and Technology Overview
    Innovations in High Performance Polyaryletherketone Victrex Polymer Solutions – Product and Technology Overview With over 30 years of focus and experience Victrex Polymer Solutions, a division of Victrex plc, is the world’s leading manufacturer of high performance polyaryletherketones, including VICTREX ® PEEK polymer. Demands for higher performing and more efficient products combined with an increasing rate of change driven by shorter product life cycles and product development timeframes requires companies to provide cost effective solutions to meet these challenges. Victrex provides a wide range of polyaryletherketone products, technical service and support to our customers and end users on a global basis to help them deliver innovative cost effective solutions to the market. Working together we identify material and technical solutions that meet the most difficult design challenges. Using our high performance materials can help to achieve weight reduction, enhanced energy efficiency, the ability to produce smaller yet more powerful and functional devices, an increase in application lifetime, enhanced performance, compliance with legislation and environmental regulations, and overall lower cost. aving the most diversified product range of all suppliers • VICTREX ® PEEK High Flow Polymers — Designed for Hof polyaryletherketone allows us to offer different injection molding thin-walled intricate parts; they can viscosities and a wide range of product modifications to be used unfilled or with the capability for high filler meet customer requirements. Victrex materials are used loadings, offering ease of processing, shorter cycle times, successfully in a wide range of applications. When compared and outstanding performance. The excellent weld line with other polymers such as LCPs, PPS, PEI, and polyimides strength compared to LCP and PPS enables use for PI and PAI, or polysulfones like PES, fluoropolymers PTFE, design of thin wall moldings and micro parts.
    [Show full text]
  • The Dynisco Extrusion Processors Handbook 2Nd Edition
    The Dynisco Extrusion Processors Handbook 2nd edition Written by: John Goff and Tony Whelan Edited by: Don DeLaney Acknowledgements We would like to thank the following people for their contributions to this latest edition of the DYNISCO Extrusion Processors Handbook. First of all, we would like to thank John Goff and Tony Whelan who have contributed new material that has been included in this new addition of their original book. In addition, we would like to thank John Herrmann, Jim Reilly, and Joan DeCoste of the DYNISCO Companies and Christine Ronaghan and Gabor Nagy of Davis-Standard for their assistance in editing and publication. For the fig- ures included in this edition, we would like to acknowledge the contributions of Davis- Standard, Inc., Krupp Werner and Pfleiderer, Inc., The DYNISCO Companies, Dr. Harold Giles and Eileen Reilly. CONTENTS SECTION 1: INTRODUCTION TO EXTRUSION Single-Screw Extrusion . .1 Twin-Screw Extrusion . .3 Extrusion Processes . .6 Safety . .11 SECTION 2: MATERIALS AND THEIR FLOW PROPERTIES Polymers and Plastics . .15 Thermoplastic Materials . .19 Viscosity and Viscosity Terms . .25 Flow Properties Measurement . .28 Elastic Effects in Polymer Melts . .30 Die Swell . .30 Melt Fracture . .32 Sharkskin . .34 Frozen-In Orientation . .35 Draw Down . .36 SECTION 3: TESTING Testing and Standards . .37 Material Inspection . .40 Density and Dimensions . .42 Tensile Strength . .44 Flexural Properties . .46 Impact Strength . .47 Hardness and Softness . .48 Thermal Properties . .49 Flammability Testing . .57 Melt Flow Rate . .59 Melt Viscosity . .62 Measurement of Elastic Effects . .64 Chemical Resistance . .66 Electrical Properties . .66 Optical Properties . .68 Material Identification . .70 SECTION 4: THE SCREW AND BARREL SYSTEM Materials Handling .
    [Show full text]