Fermented Fish Products: Ancient and Modern

Total Page:16

File Type:pdf, Size:1020Kb

Fermented Fish Products: Ancient and Modern CHAPTER TWO FERMENTED FISH PRODUCTS: ANCIENT AND MODERN Ancient Processed Fish: The Literary Evidence for Production The principal commodity produced at Roman salting installations was salted fish, called salsamentum (Greek tdQtxoi;, or sometimes ttµaxoi;). 1 This was a general term, derived from the Latin sal (salt) and used to des­ ignate any meat, but particularly fish, preserved by various methods of salting. The details of these processes are not easily learned from literary sources. We must lament the loss of many works, such as those of Mnesi­ theus of Athens and Diodes of Carystus, both of the 4th cent. B.c., Diphi­ lus of Siphnos (fl. early 3rd cent. B.c.), Euthydemus of Athens (fl. ca. 2nd cent. B.c.), Hicesius of Smyrna (fl. ca. 100 B.c.), and Dorion (fl. 1st. cent. A.D.), extant only in excerpts from the works of later writers, for example the Deipnosophistae of Athenaeus (fl. 2nd cent. A.o.). Since the focus of these authors, physicians and writers on hygiene, food, and fish, was pri­ marily on fish as food, we cannot be sure that they described the produc­ tion process at all. Nevertheless, from fragments of their writings and those of others which record the diverse forms in which salted fish prod­ ucts were manufactured, we can gather some idea of these products and the various techniques of production. The end products received specific names dependent upon the shape or form in which they were processed, saltiness, type of fish, and so forth. TQ(ywvov, tEtQdywvov (Pl. la), and xu~tov designated salted fish of a par­ ticular shape; axQ6:rtaotoi; (lightly salted), ~µttdQtxoi; (half-salted), tEA.ELOi; (fully salted), tdQtxoi; tLA.t6v (salted with scales), and tdQtxoi; A.Embwt6v (salted without scales) imply particular methods of production used; {mo­ ydotQLU (stomach portion) and µEA.dvbQua (dorsal slice) denote the partic­ ular part of the fish used. The term WQa[ov may signify a young tunny or a 1 Salsamentum can, in general, refer to any salted food, but salted fish seems to have been the commodity produced in greatest quantity, and so the one most frequently referred to in the sources. Ttµaxoc; denoted specifically a slice of salted fish, whereas 'tOQIXO<; could refer to whole fish as well. The sources rarely distinguish between salted, dried, smoked, or pickled fish. All are subsumed under the terms salsamentum or 'tOQIXO<;. For this reason, I shall also use these terms unless a distinction is clear or a comment is necessary. In general, one can assume that salted, dried, or smoked fish is meant if the container in which the product is held is a basket; and pickled or salted, if the vessel is an amphora or similar container. For 'tOQl­ xoc; see Demetrius J. Georgacas, Ichthyological Terms for the Sturgeon and Etymology of the Inter­ national Terms Botargo, Caviar and Congeners (Athens 1978), pp. 154-61; and Kohler, TdQLXO<;, esp. pp. 26-37. Besnier ("Salsamentum," Dar.-Sag., pp. 1022-23), Eberl (Fischlronseroen, pp. 11- 30), and Corcoran ("Roman Fishing Industry," passim) draw heavily upon the discussion of Kohler. FERMENTED FISH PRODUCTS 7 fish prepared during a certain season. 2 Some salted fish products received specific names derived from the type of fish used: for example, j3wQ(bLa, from the j3WQE'U~; xoQax(bw, from the XOQax[vo~; and 'tU<j>ALv(bLa from the 't'IJ<j>Ari. Tunny cut into quarters were called 0uvvELa or 0uvv(bE~. 3 Latin did not distinguish the various kinds of salted fish to the same extent. Except for the occasional use of Latinized Greek terms, such as cybium, melan­ dryum, trigonum, and horaeum, all salted fish were included under the word salsamenta.4 Manufacturers did not waste any part of the fish, but used everything, such as the tail, stomach, neck or.head.5 The innards, gills, and any other parts normally considered refuse also had a use; these were made into fish sauce. 6 The Romans produced four different sauces: garum, liquamen, al­ lec, and muria. Garum was the primary product, while allec (Pl. lb), the sediment created in making garum, was of secondary importance. 7 The Ro­ man penchant for using the terms liquamen and muria imprecisely renders allusive a firm understanding of these products. The former term, which probably originally designated a sauce distinct from garum, acquired be­ fore the fifth century A.D. almost generic value for any fish sauce, while the latter was a word sometimes used to mean garum and at other times to signify the liquid used in making garum or in packing salted fish products in vessels for transport. 8 Greek expressions for fish sauce were not so var- 2 TQCywvov (Athen. 3.116c); 'tE'tQ(iywvov (ibid. 3.116b); xvfiLov (ibid. 3.116e, 118a-b); lxxQ6:rcaoi:oi; (Xenocrates ap. Orib. 2.58.150; for :rcaoi:oi; see esp. Georgacas, lchthyological Terms, pp. 161-63); T)µmiQLXoi; or T)µCVT]QOV (Athen. 3.117a; 118f; cf. Xenocrates ap. Orib. 2.58.151); 'tdQLXoi; 'tfAELoi; (Athen. 3.120d); 'tdQLXoi; 'tLA't6v and 'tdQLXoi; >..mLll001:6v (Pollux Onom. 6.49; Hesychius s.v. 'tLA't6v); u:rcoydoi:QLOV (Athen. 3.116b; 7.302d; 9.399c); µuavl>Qua (ibid. 3.121b; 7.315e); ci>QaCov (ibid. 3.116a,e; 120e-f; Pollux Onom. 6.48; cf. Pliny HN 11.36). 'Cµo"tdQLxoi; is a term which may refer either to a lightly salted fish (Eberl, Fischkonserven, p. 20) or to the shoul­ der portion of a tunny (Kohler, TdQLXoi;, p. 30). See Nicostratus fr. 1 Edmonds, Alexis fr. 15 Edmonds, and Xenocrates ap. Orib. 2.58.144. Other terms for salted fish products will be met as the discussion progresses. Xenocrates' work is preserved in Book II of Oribasius' Medical Collections ( = Oribasii Collectionum Medicarum Reliquiae. Johann Reader, ed. 4 vols. CMG VI,1,1 [Leipzig 1928-33], pp. 47-57). 3 Athen. 3.118d (0uvvCl>Ei;), 116e (0vvvELa), and Hesychius s.v. 0uvv(l>Ei;: 01Jvvwv 'tEµQX'J, and s.v. 0uvvdl>Ei;· TEµdX'J "taQCXOU. Cf. below, p. 133, and note 107. 4 Melandryum: Martial 3.77.7; Varro Ling. 5.77; and below note 16; cybium: Pliny HN 9.48, 32.151; Martial 5.78.5; Varro Ling. 5.77; horaeum: Plaut. Captivi 851; Varro Ling. 5.77; trigonum: Plaut. Captivi 851. 5 Tail: Persius Sat. 5.183 (cauda thynm); Pliny HN 9.48; Martial 11.31.14. Stomach, neck and head: Pliny HN 9.48. See also Manilius Astron. 5.656-81 (Appendix 1-3). 6 Pliny HN 31.93. For Roman fish sauces see Zahn, "Garum," RE, cols. 841-49; Thomas Corcoran, "Roman Fish Sauces," CJ 58 (1963): 204-10; Pierre Grima! and Thomas Monod, "Sur la veritable nature du 'Garum'," REA 54 (1952): 27-38; Jardin, "Garum," pp. 70-%; and Robert I. Curtis, "In Defense of Garum," CJ 78 (1983): 232-40. 7 Pliny HN 31.95. The dregs (faex) of garum was variously spelled allec (Hor. Sat. 2.8.9), hallec (Plaut. Aul. fr. 5), allex (Pliny HN 31. 95), and hallex (Plaut. Poen. 1310; Cato Agr. 58). The latter form is found most often in painted inscriptions on commercial amphorae. 8 Llquamen: Caelius Aurelianus On Chronic Diseases (Tardarum passionum) 2.1.40: garum, quod appellamus liquamen; idem. 2.3.70: ex garo . .. quod vulgo liquamen appellant. For Caelius Aureli-.
Recommended publications
  • Fermented and Ripened Fish Products in the Northern European Countries
    Accepted Manuscript Fermented and ripened fish products in the Northern European countries Torstein Skåra, Lars Axelsson, Gudmundur Stefánsson, Bo Ekstrand, Helge Hagen PII: S2352-6181(15)00005-0 DOI: 10.1016/j.jef.2015.02.004 Reference: JEF 12 To appear in: Journal of Ethnic Foods Received Date: 16 January 2015 Revised Date: 23 January 2015 Accepted Date: 2 February 2015 Please cite this article as: Skåra T, Axelsson L, Stefánsson G, Ekstrand B, Hagen H, Fermented and ripened fish products in the Northern European countries, Journal of Ethnic Foods (2015), doi: 10.1016/ j.jef.2015.02.004. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT 1 Fermented and ripened fish products in the Northern European countries 2 Torstein Skåra 1* , Lars Axelsson 2, Gudmundur Stefánsson 3, Bo Ekstrand 4 and Helge Hagen 5 3 1 Nofima - Norwegian Institute of Food, Fisheries, and Aquaculture Research, Postboks 8034, 4 NO-4068 Stavanger, Norway 5 2 Nofima - Norwegian Institute of Food, Fisheries, and Aquaculture Research, P.O.Box 210, 6 NO-1431 Ås, Norway 7 3 Matis, Vinlandsleid 12, 113 Reykjavik, Iceland 8 4 Bioconsult AB, Stora Vägen 49, SE-523 61 Gällstad, Sweden 5 MANUSCRIPT 9 Dælivegen 118, NO-2385 Brumunddal, Norway 10 *Author for correspondence: Tel: +47-51844600; Fax: +47-51844651 11 E-mail.
    [Show full text]
  • Assessment of Nutritional Quality of Shidal A
    Assessment of nutritional quality of 'Shidal' a fermented fish product of northeast India Item Type article Authors Majumdar, R.K.; Basu, S.; Nayak, B.B. Download date 06/10/2021 06:29:46 Link to Item http://hdl.handle.net/1834/33378 J. Indian Fish Assoc., 36: 25-34, 2009 25 ASSESSMENT OF NUTRITIONAL QUALITY OF 'SHIDAL' A FERMENTED FISH PRODUCT OF NORTHEAST INDIA Ranendra Kumar Majumdar\ S. Basu 2 and B. B. Nayak2 1Col/ege of Fisheries {Central Agricultural University), Lembucherra, Agartala, Tripura 799210. 2Centrallnstitute of Fisheries Education (Deemed University), Versova, Mumbai 400061. 1Corresponding author e-mail: [email protected]/[email protected] ABSTRACT 'Shidal' is a salt-free fermented fish product prepared from Puntius ss.caught in late monsoon period. Shidal is very popular amongst the inhabitants of Northeast India. The fermentation process of this product takes four to six months in anaerobic condition till the product gains a characteristic flavour and colour. Detailed studies on the biochemical and nutritive qualities of this product are very few. Therefore, in this paper we report the results of the proximate analysis, amino acid and fatty acid compositions. The results suggest that 'Shidal' is a rich source of amino acids as well as of essential fatty acids like linoleic and linolenic acids. The n- 3/n-6 ratio was found 0.51. Keywords: Shidal, fermented fish, Puntius sp., PUFAs. INTRODUCTION 'Shidal' is a fermented fish product indigenous to the Northeastern region of Fermentation of fish, apart from India. Assam and Tripura are the major 'Shidal' being a preservation method, helps in producing states.
    [Show full text]
  • Full-Text (PDF)
    African Journal of Food Science Vol. 6(14), pp. 381-385, 29 July, 2012 Available online http://www.academicjournals.org/AJFS DOI: 10.5897/AJFS12.039 ISSN 1996-0794 ©2012 Academic Journals Full Length Research Paper The influence of fermentation and salting on the bacterial, chemical and sensory characteristics of catfish (Clarias buthupogon) based marinate in Nigeria C. F. Ezeama* and E. J. Udoh Department of Food Science and Technology, Michael Okpara University of Agriculture Umudike, P. M. B. 7267 Umuahia, Nigeria. Accepted 13 June, 2012 Catfish (Clarias buthupogon) was treated with 10% w/w NaCl and 15% w/w NaCl with or without the addition of spices (1% w/w garlic powder and 1% w/w red pepper) and allowed to ferment naturally and at room temperature (28 ± 2°C) for two weeks. Bacte rial, chemical and sensory analyses were carried out on the unfermented non-salted and fermented salted samples of the fish species. Results obtained revealed that fermentation and salting caused a remarkable reduction in the total bacterial count from 2.29×10 6 to 3.80×10 5 cfu/g. There was also reduction in pH from 7.29 to 5.26. The predominant bacteria isolated from the samples were Lactobacillus sp , Staphylococcus spp for the unfermented non salted and fermented salted samples respectively while total titratable acidity increased from 0.63 to 1.44%. Chemical analysis result showed that fat and ash contents increased with fermentation and salting while moisture, protein and Nitrogen free Extracts (NFE) contents decreased with fermentation and salting of C. buthupogon .
    [Show full text]
  • Isolation and Identification of Lactic Acid Bacteria in Traditional Fermented Sushi, Funazushi, from Japan
    Food Sci. Technol. Res., 18 (1), 77–82, 2012 Isolation and Identification of Lactic Acid Bacteria in Traditional Fermented Sushi, Funazushi, from Japan 1 2 1 1* Harutoshi Tsuda , Kenzo kuboTa , Teruki MaTsuMoTo and Yoshiko ishiMi 1 National Institute of Health and Nutrition, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8063, Japan 2 Department of Biotechnology, Faculty of Life Sciences, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu, Shiga 525-8577, Japan Received June 21, 2011; Accepted September 8, 2011 The lactic acid bacterial flora in commercial and homemade Funazushi (fermented crucian carp and rice) were investigated. Funazushi is a fermented fish product that continues to be produced in the traditional style in Japan. Lactic acid bacteria in four commercial and five homemade Funazushi were enumerated. The viable counts of commercial samples ranged from 3.0 × 103 to 2.7 × 105 cfu/g, with an average of 2.4 × 104 cfu/g, while the viable counts of homemade samples ranged from 2.0 × 102 to 2.6 × 107 cfu/g, with an average of 1.3 × 105 cfu/g. Twenty-seven lactic acid bacteria isolates were obtained from the commercial samples, and identified as Streptococcus salivarius, Lactobacillus buchneri, and Lactobacillus parabuchneri. Forty-eight isolates were obtained from the homemade samples, and identified as Lactoba- cillus plantarum, Lb. buchneri, Lactobacillus alimentarius, Lactobacillus farciminis, Lactobacillus acidipis- cis, and Lactobacillus casei. Lb. buchneri was the predominant species in commercial Funazushi, while Lb. plantarum and Lb. buchneri were the predominant species in the homemade products. Keywords: lactic acid bacteria, microbial flora, fermented fish product, funazushi Introduction rel, and 8.
    [Show full text]
  • Putrid Meat and Fish in the Eurasian Middle and Upper Paleolithic: Are We Missing a Key Part of Neanderthal and Modern Human Diet?
    Putrid Meat and Fish in the Eurasian Middle and Upper Paleolithic: Are We Missing a Key Part of Neanderthal and Modern Human Diet? JOHN D. SPETH Department of Anthropology, 101 West Hall, 1085 South University Avenue, University of Michigan, Ann Arbor, MI 48109-1107, USA; [email protected] submitted: 21 February 2017; revised 2 April 2017; accepted 4 April 2017 ABSTRACT This paper begins by exploring the role of fermented and deliberately rotted (putrefied) meat, fish, and fat in the diet of modern hunters and gatherers throughout the arctic and subarctic. These practices partially ‘pre-digest’ the high protein and fat content typical of northern forager diets without the need for cooking, and hence without the need for fire or scarce fuel. Because of the peculiar properties of many bacteria, including various lactic acid bacteria (LAB) which rapidly colonize decomposing meat and fish, these foods can be preserved free of pathogens for weeks or even months and remain safe to eat. In addition, aerobic bacteria in the early stages of putrefaction deplete the supply of oxygen in the tissues, creating an anaerobic environment that retards the production of po- tentially toxic byproducts of lipid autoxidation (rancidity). Moreover, LAB produce B-vitamins, and the anaerobic environment favors the preservation of vitamin C, a critical but scarce micronutrient in heavily meat-based north- ern diets. If such foods are cooked, vitamin C may be depleted or lost entirely, increasing the threat of scurvy. Psy- chological studies indicate that the widespread revulsion shown by many Euroamericans to the sight and smell of putrefied meat is not a universal hard-wired response, but a culturally learned reaction that does not emerge in young children until the age of about five or later, too late to protect the infant from pathogens during the highly vulnerable immediate-post-weaning period.
    [Show full text]
  • Indigenous Technique for Preparation of Dry Fish and Products by Deori Community
    Journal of Experimental Biology and Agricultural Sciences, December - 2014; Volume – 2(6) Journal of Experimental Biology and Agricultural Sciences http://www.jebas.org ISSN No. 2320 – 8694 INDIGENOUS TECHNIQUE FOR PREPARATION OF DRY FISH AND PRODUCTS BY DEORI COMMUNITY Anamika Sarmah, Seemashri Bora, Dibya Jyoti Deori, Santosh kumar Abujam* and Shyama Prasad Biswas Department of Life Sciences, Dibrugarh University, Assam, India-786004 Received – October 17, 2014; Revision – November 01, 2014, Accepted – December 22, 2014 Available Online – December 26, 2014 KEYWORDS ABSTRACT Naduba-Siyan The tribes of north-east India are store houses of traditional knowledge about food, medicine, agriculture Chucha etc. Among them, Deori tribe is such a group having unique ethnic foods preparation from freshwater fishes. These are old practice and common among the Deori community of upper Assam. Usually, Deori womenfolk are involved in traditional dietary preparation from variety of dry fish. For the preparation of fermented fish product (chucha), medium and small fish species are commonly used. These fishes were Ethno-medicine washed and sun-dried for 2-3 days without salting. Later on dry fishes were ground in a wooden grinder and convert it in to a homogeneous powder. Again, it was mix up with either fresh or dry stem of Colocasia esculenta and grounded. Grinding continued until the mixture becomes a coarse paste. During the process, Capsicum chinense, ginger, garlic etc. were to be add for flavor and test and the products are served in bamboo cylinder. They are ready for consumption as well as used for to cure a variety of ailments and used as ethno-medicine.
    [Show full text]
  • Using of Fermented Soy Pulp As an Edible Coating Material on Fish Feed Pellet in African Catfish (Clarias Gariepinus) Production 1Abdul K
    Using of fermented soy pulp as an edible coating material on fish feed pellet in African catfish (Clarias gariepinus) production 1Abdul K. Zulhisyam, 1,2Muhammad A. Kabir, 3Mohammad B. Munir, 1Lee S. Wei 1 Faculty of Agro Based Industry, Universiti Malaysia Kelantan, Jeli campus, Kelantan, Malaysia; 2 Faculty of Fisheries, Sylhet Agricultural University, Sylhet 3100, Bangladesh; 3 Faculty of Resource Science and Technology, Universiti Malaysia Sarawak, Sarawak 94300, Malaysia. Corresponding author: M. A. Kabir [email protected] Abstract. The quality of fermented soy pulp (FSP) as a coating material on fish feed pellets is significant globally due to the increasing demand for aqua feed industry. Coating technique was employed in this study to assess the physical, biochemical and bacteriologic properties of FSP coated experimental diets additionally to evaluate the loading potency of probiotics on fish feed pellet and growth performance of African catfish Clarias gariepinus. FSP was designated as a model edible coating material on fish feed pellet (0%, 25%, 50%, 75% and 100% of FSP) to deliver the probiotic to the fish gut. Lactobacillus spp. were employed as a model probiotic and model bacteria for the demonstration of this study to African catfish production. The physical properties of FSP coated diets were evaluated by using different equipment and formulae. FSP coated diets were analyzed for amino acids and bacterial quantification by the High-Performance Liquid chromatography (HPLC) and bacterial plate culture techniques respectively. The growth performance of fish was determined by using various formulae. The physical properties of FSP coated on fish feed pellet diet characteristics in term of feed diameter, expansion rate, bulk density, pellet durability index, floatability and water stability were significantly different (p < 0.05) among the experimental diets.
    [Show full text]
  • Fatty Acids Composition of Traditional Salted-Fermented and Fresh Tiger-Fish in Sudan
    www.ijapbc.com IJAPBC – Vol. 4(1), Jan - Mar, 2015 ISSN: 2277 - 4688 INTERNATIONAL JOURNAL OF ADVANCES IN PHARMACY, BIOLOGY AND CHEMISTRY Research Article Fatty acids composition of traditional salted-fermented and fresh tiger-fish in Sudan Elagba H.A. Mohamed Natural History Museum, Faculty of Science, University of Khartoum, Sudan. Abstract The fatty acids composition of the salted-fermented fish product ‘Feseekh’ of the Nile tiger-fish (Hydrocynus spp.) was determined and compared with fresh fish. Fatty acids were analyzed as their methyl esters with gas chromatography-mass spectrometry (GC). Fermented fish contained significantly (p<0.05) lower amounts of total fatty acids (26.66 mg/g) compared to fresh fish (40.04mg/g). Palmitic acid (C16:0), Stearic acid (C18:0), palmitoleic acid (C16:1) and oleic acid (C18:1) were the most abundant fatty acids of both fermented and fresh fish. The most abundant polyunsaturated fatty acids were linoleic acid (C18:2n6), linolenic acid (C18:3n3). A significant decrease (p<0.05) in the content of Palmitic acid (C16:0) and oleic acid (C18:1) of the fermented fish compared to fresh fish was observed. The contents of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) were (1.73 and 2.77mg/g) in fermented fish, respectively, compared to (1.46 and 2.28mg/g), respectively, in fresh fish. The ratio of DHA/EPA was1.6 in both fermented and fresh fish. Saturated fatty acids (SFA) were the most dominant class of fatty acids followed by monounsaturated fatty acids (MUFA) and polyunsaturated fatty acids (PUFA). Saturated fatty acids formed higher percentage of total fatty acids (49.44%TFA) in fermented fish, compared to (46.04%TFA) in fresh fish.
    [Show full text]
  • The Indonesian Fermented Food Product Terasi: History and Potential Bioactivities
    Sys Rev Pharm 2021;12(2):378-384 A multifaceted review journal in the field of pharmacy The Indonesian Fermented Food Product Terasi: History and Potential Bioactivities *Asep A. Prihanto 1,2,3,4, and Hidayatun Muyasyaroh 2,3 1Department Fishery Product Technology, Faculty of Fisheries and Marine Science, Brawijaya University, Jl. Veteran, Malang, 65145, East Java, Indonesia 2BIO-SEAFOOD Research Unit, Brawijaya University, Jl. Veteran, Malang, 65145, East Java, Indonesia 3Halal Thoyib Science Center, Brawijaya University, Jl. Veteran, Malang, 65145, East Java, Indonesia 4Coastal and Marine Science Center, Brawijaya University, Jl. Veteran, Malang, 65145, East Java, Indonesia *Corresponding Author: Asep A. Prihanto Email: [email protected] ABSTRACT Terasi is a fish/shrimp fermentation product native to Indonesia and is produced Keywords: Bioactivity; fermentation; Indonesia; terasi. using bacteria generated from fish or shrimp. Also known as shrimp paste, it has a long history on the island of Java, as well as other regions that employ slightly Correspondence: varied processes and ascribe various names to this edible compound. The Asep A. Prihanto emergence, history, processing, and characterization of terasi are explained in Department Fishery Product Technology, Faculty of Fisheries and Marine this manuscript, following its extensive applications as a main seasoning in Science, Brawijaya University, JI. Veteran, Malang, 65145, East Java, Indonesia various dishes. Furthermore, potential bioactivity of this product and its derived Email: [email protected] microorganisms are discussed along with the possibility of their usage as bioactive remedies for human health. INTRODUCTION by the presence or absence of contaminants, such as Fermented seafood is a common condiment for foods in insects and other foreign materials [1].
    [Show full text]
  • A Tin of Surströmming Fermented Herring Is Considered the World's
    A tin of surströmming fermented herring is considered the world’s smelliest food, and is essentially illegal outside Sweden. We head to the Baltic coast to see how it’s produced Words⁄ Toby Skinner Photos⁄ Erik Olsson The world’s smelliest catch054\n n /055 N-054-064_Surströmming3.indd 054 17/07/2014 16:17 N-054-064_Surströmming3.indd 055 17/07/2014 16:17 f you look up surströmming on YouTube, three videos on the fi rst page contain “vomit alerts”. In one, the three frat boy hosts of American channel I Wreckless Eating all puke ostentatiously after simply sniffi ng an opened can of Sweden’s famous fermented herring. In a video for the UK’s more taciturn Daily Telegraph newspaper, the suited journalist dry retches as his cameraman looks on bemused, wearing a gas mask. “It smells of rotting dog faeces” is one of his more fl attering verdicts on the odour. A much-quoted 2002 study in Japan found that a newly opened can of surströmming is the most putrid food smell on the planet. The Baltic Sea herring, which has been a staple of Northern Swedish cuisine since the 16th century, keeps on fermenting once it’s tinned, so much so the tin bulges from all the pungent acids at work. It’s banned by most airlines as an explosion risk, and is eff ectively illegal outside Sweden. Yet more than 800,000 cans are sold every year in Sweden, especially around the Surströmmingspremiären (Surströmming Premiere) on the third Thursday of August, when the year’s new batch hits the shelves.
    [Show full text]
  • Influence of Salt on the Biochemical Characteristics of Fermented, Salty and Dried Catfish (Clarias Gariepinus ) in Benin
    Science Journal of Chemistry 2018; 6(6): 115-122 http://www.sciencepublishinggroup.com/j/sjc doi: 10.11648/j.sjc.20180606.13 ISSN: 2330-0981 (Print); ISSN: 2330-099X (Online) Influence of Salt on the Biochemical Characteristics of Fermented, Salty and Dried Catfish (Clarias gariepinus ) in Benin Chimène Agrippine Rodogune Yelouassi 1, *, Pierre Dossou-Yovo 1, Nicolas Jacquet 2, Aurore Richel 2 1Research Laboratory in Fishery Products Treatment and Conservation, Faculty of Science and Technology, University of Abomey-Calavi, Abomey-Calavi, Bénin 2Laboratory of Analytical Chemistry, Gembloux Agro-Bio Tech-University of Liège, Gembloux, Belgium Email address: *Corresponding author To cite this article: Chimène Agrippine Rodogune Yelouassi, Pierre Dossou-Yovo, Nicolas Jacquet, Aurore Richel. Influence of Salt on the Biochemical Characteristics of Fermented, Salty and Dried Catfish ( Clarias gariepinus ) in Benin. Science Journal of Chemistry . Vol. 6, No. 6, 2018, pp. 115-122. doi: 10.11648/j.sjc.20180606.13 Received : November 27, 2018; Accepted : December 11, 2018; Published : January 2, 2019 Abstrat: The aim of the current study is to assess the influence of salt on the chemical composition of fermented, salty and dry catfish (lanhouin ) in Benin. Different flours of fish were produced and their chemical composition was evaluated based on conventional methods of analysis. From the results obtained, the Catfish is rich in dry matter (76.640 ± 0.162 to 88.050 ± 0.085%), total ash (3.660 ± 0.064 to 23.000 ± 0.020%), total protein (5.425 ± 0.194 to 64.405 ± 1.785%) and total lipids (11.495 ± 0.009 to 1 7.875 ± 0.357%).
    [Show full text]
  • Physico-Chemical and Microbial Characteristics and Antibacterial
    cess Pro ing & od o T F e c f h o n l o a l o Journal of Food Processing and n r g u y o J ISSN: 2157-7110 Technology Research Article Characteristics of Physicochemistry, Microbiology and Antibacterial Activities from Fermentation of Viscera Fish Sauce Martha Loana Wattimena1, Johanna Louretha Thenu2, Max Robinson Wenno1*, Dessyre M. Nandissa dan1, Dwight Soukotta1 1Department of Fishery Product Technology, Pattimura University, Ambon, Indonesia; 2Fishery Training and Extension Center, Ambon, Indonesia ABSTRACT The fermentation process involved the hydrolysis of lactic acid bacteria, single amino acid and peptide were produced and were accounted for their antibacterial activity. This study aims to determine the physical and chemical characteristics, total lactic acid bacteria, total plate count, and antibacterial activity of tuna viscera sauce. The research results showed physicochemical characteristics including color (L* 8.3, a* 1.3 and b* 5.7), viscosity of 10.38 cP, pH 5.00, salt content of 13.21%, total acid 0.74% and TVBN 28.00 mgN/gr) Proximate analysis were also identified, resulting in moisture 62.87%, ash 1.37%, protein 23.18% and carbohydrate 0.42%. The total lactic acid bacteria and total plate count respectively were 2.3 log CFU/gr and 2.3 × 101 CFU/gr. The results of the antibacterial activity tested on three pathogenic bacteria, Vibrio pharahaemolyticus, Salmonella typhimurium, and Escherichia coli, showed inhibition with the presence of clear zones. Keywords: Tuna fish sauce; Viscera; Fermentation; Physicochemistry; Microbiology; Peptides; Antibacterial activity INTRODUCTION is one of the processed food products through a fermentation process made from fish meal and fish by-products in the form of Tuna is one of the favorite foods in Indonesia.
    [Show full text]