Encyclopedia of Marine Biotechnology

Total Page:16

File Type:pdf, Size:1020Kb

Encyclopedia of Marine Biotechnology Encyclopedia of Marine Biotechnology Editor(s): Professor Se‐Kwon Kim First published:11 August 2020 Print ISBN:9781119143772 Online ISBN:9781119143802 DOI:10.1002/9781119143802 © 2020 John Wiley & Sons Ltd. Table of Contents Volume V : Encyclopedia of Marine Biotechnology Front Matter (Pages: i-xlv) Section IX : Pharmaceutical Development CHAPTER 120 Marine Algal‐derived Pharmaceuticals: Potential Anticancer Agents (Pages: 2691-2724) Sanith Cheriyamundath, V.L. Sirisha CHAPTER 121 Marine Source‐derived Anti‐HIV Therapeutics (Pages: 2725-2753) Amit G. Mirani, Tanvi K. Shah, Vandana B. Patravale CHAPTER 122 Marine Biopharmaceuticals – A Retrospective of Molecular Mechanisms (Pages: 2755-2772) Samiha Tabassum Ghori, Vishaalini Kamali Raja, Uthira Muralitharan, Aathira Maikkara, Ayyavu Mahesh CHAPTER 123 Chitosan and Trimethyl Chitosan (TMC) as Drug Absorption Enhancers: Moving Forward toward Clinical Acceptance (Pages: 2773-2795) Berglind Eva Benediktsdóttir Section X : Seafood Science CHAPTER 124 Application of Local Proteases to Produce Fish Protein Hydrolysate (FPH) in Indonesia (Pages: 2797-2812) Yusro Nuri Fawzya, Ekowati Chasanah CHAPTER 125 Allergic Risks Associated with Seafood (Pages: 2813-2843) Samanta S. Khora CHAPTER 126 Applications of Biotechnology in Seafood Production and Processing (Pages: 2845-2865) C.S. Ranadheera, P.H.P. Prasanna, J.K. Vidanarachchi CHAPTER 127 Dielectric Properties of Selected Seafood and their Products (Pages: 2867-2880) L.T. Nguyen, I. Ahmad, N.Y. Jayanath CHAPTER 128 Health Risk Assessment for Radionuclide Contamination in Seafood (Pages: 2881-2894) P. Sivaperumal, P. Kumar, K. Kamala, Ajit. A. Ambekar, K. Ponnusamy, R. Rajaram, A.K. Pal CHAPTER 129 Indonesian Traditional Fermented Fish Ikan Peda: Processing, Quality, and Utilization Improvements (Pages: 2895-2911) Giyatmi, Hari Eko Irianto CHAPTER 130 Improvements in Seafood Products through Recent Technological Advancements in Seafood Processing (Pages: 2913-2938) Upani Pinnaduwa, Eresha Mendis, Se‐Kwon Kim CHAPTER 131 Seafood in the Human Diet for Better Nutrition and Health (Pages: 2939-2959) Chathurika Jayasekara, Eresha Mendis, Se‐Kwon Kim CHAPTER 132 Seafood By‐products: A New Way from Waste to High Added Value in Pharmaceuticals and Cosmetics (Pages: 2961-2986) Ngo Dang Nghia CHAPTER 133 Seafood as Source of Protein‐based Functional Foods (Pages: 2987-2997) Rahmi Nurdiani, Asep Awaludin Prihanto, Muhamad Firdaus CHAPTER 134 Stress in Fish and Application of Carotenoid for Aquafeed as an Antistress Supplement (Pages: 2999-3019) Toshiki Nakano CHAPTER 135 Recovery of Bioactive Components from Seafood By‐products toward Zero‐waste Processing (Pages: 3021-3039) Trang Si Trung, Nguyen Van Hoa, Pham Thi Dan Phuong, Nguyen Cong Minh, Nguyen Thi Hong Mai, Hoang Ngoc Cuong, Phan Thanh Loc, Willem Frans Stevens CHAPTER 136 Traditional and Novel Seafood Processing Techniques Targeting Human Health Promotion (Pages: 3041-3084) Harshani Nadeeshani, Niranjan Rajapakse, Se‐Kwon Kim CHAPTER 137 The Potential of Developing Additives from Marine Bioresources for the Food Industry (Pages: 3085-3107) Shachini Karunarathne, Eresha Mendis, Se‐Kwon Kim CHAPTER 138 Applications of Flow Cytometry in Marine Biotechnology (Pages: 3109-3118) Teresa Lopes da Silva, Alberto Reis Section XI : Tools for Marine Biotechnology CHAPTER 139 Bioremediation of Marine Effluents and Environments (Pages: 3119-3137) J. Paniagua‐Michel CHAPTER 140 Bioremediation: A Promising Xenobiotics Cleanup Technique (Pages: 3139-3172) Thandapani Gomathi, M. Saranya, E. Radha, K. Vijayalakshmi, P. Supriya Prasad, P.N. Sudha CHAPTER 141 Future of Mariculture with the Advent of Modern Biotechnology Tools (Pages: 3173-3194) Dr. T. Charles John Bhaskar CHAPTER 142 In Silico Techniques Used in Marine Biology Research: An Overview (Pages: 3195-3211) Jitendra Narayan, Rahul Agarwal CHAPTER 143 Innovative Alternative Technology for Fucoxanthin Recovery (Pages: 3213-3227) Evi Amelia Siahaan, Byung Soo Chun CHAPTER 144 Marine Microorganisms: Tools for Radionuclide Bioremediation (Pages: 3229-3244) P. Sivaperumal, K. Kamala, S. Manjunath Kamath, P. Kumar, R. Rajaram, W. Richard Thilagaraj CHAPTER 145 Transgenic Fish Technology: Principle and Application (Pages: 3245-3282) Thomas T. Chen, Maria J. Chen CHAPTER 146 Reproductive Processes of Marine Animals as Biomarker for Environmental Stress Impact (Pages: 3283-3298) Alessandra Gallo, Elisabetta Tosti 2895 129 Indonesian Traditional Fermented Fish Ikan Peda Processing, Quality, and Utilization Improvements Giyatmi1 and Hari Eko Irianto1,2 1 Food Technology Department, Sahid University, Jakarta Selatan, 12870, Indonesia 2 Research and Development Center for Marine and Fisheries Product Processing and Biotechnology, Jakarta Pusat, 10260, Indonesia 129.1 ­Introduction process occurred during transportation or shipment and generates changes chemically As an archipelagic country, Indonesia is not and microbiologically to salted fish, transform- only abundant with fisheries resources, but ing the product into fermented fish which is also rich in various types of fish‐processing then called ikan peda. The product can be kept methods, including traditional processing for a few weeks or a couple of months at most, practices. One of the traditional fish process- depending on the quality. ing methods is fermentation, and there are Ikan peda is a very popular product in Java many kinds of fermented fish products which Island, especially in West Java. Physically and can be found in many parts of Indonesia. The in flavor, this product is quite different from most popular fermented fish products in other fermented fish products and even from Indonesia are ikan peda (moist salted fish), other traditional fish products such as ikan terasi (fermented fish or shrimp paste), kecap asin (dried salted fish), pindang (boiled salted ikan (fish sauce), and ikan jambal roti (moist fish) or ikan asap (smoked fish). For most salted split fish). Some other fermented fish Indonesians consuming rice, the flavor of ikan products are bekasang (fermented fish entrails) peda is able to raise their appetite. Due to the from North Sulawesi, bekasam (fermented high salt content, ikan peda is normally con- rice‐fish) from South Sumatera, cincalok (fer- sumed in limited portions. Consumers of this mented rice shrimp mixture) from West product come from almost all strata of society, Kalimantan and Riau, and wadi (fermented ranging from low to high income. freshwater fish) from South Kalimantan. These Ikan peda manufactured through the fer- products have special consumers in Indonesia, mentation process is a way to preserve the fish since they provide unique characteristics catch. Ikan peda is produced by processors including specific flavor and texture. which can be found along the coast of Sumatera Van Veen (1953) described the history of and Java islands with uncomplicated technol- ikan peda, in which the product was originally ogy and using simple equipment. Basically, the salted fish exported from Thailand to Malaysia method of ikan peda processing is a salting and Indonesia. That product arrived in process with two salting steps, in which each Indonesia in very large bamboo crates where it salting step is carried out for a certain period. could be held for months. The fermentation The first salting is normally performed for Encyclopedia of Marine Biotechnology: Five Volume Set, First Edition. Edited by Se-Kwon Kim. © 2020 John Wiley & Sons Ltd. Published 2020 by John Wiley & Sons Ltd. 2896 129 Indonesian Traditional Fermented Fish Ikan Peda several days and known as the first fermenta- which it undergoes a maturing or ripening tion. The second salting takes several weeks to process which takes a number of weeks or develop flavor and texture, and this step is months. Sjachri and Nur (1977) said that ikan called the second fermentation (Irianto, 1990). peda in Central Java and East Java is made to This type of salting process makes ikan peda preserve the fish during the peak season to pre- different from ordinary salted fish, particularly vent spoilage and to avoid the low price obtain- in terms of flavor and texture, making it more able at that time in the market. Processors suitable to be classified as a fermented fish make ikan peda by soaking the fish in satu- product than salted fish. rated brine in concrete tanks for an indefinite period until the price in the marketplace rises. In general, the processing method of ikan 129.2 Processing of Ikan Peda peda is divided into two stages: the first and the second fermentation (Winarno et al., 1973; So far there is no a standard prescribed method Hanafiah, 1987; and Irianto, 1990). The first of ikan peda processing, but some methods fermentation is to develop the characteristic which are employed by traditional processors flavor and texture of ikan peda, while the sec- have been described by Winarno et al. (1973), ond fermentation is principally a maturation Sjachri and Nur (1977, 1979), Hedrawan phase (Irianto and Irianto, 1998). The basic (1981), Irianto (1990), Huda (2012), and Hakim method of ikan peda processing is outlined in (2016). In fact, processing methods might be Figure 129.1. Firstly, the fish are cleaned by different from one place to another or even washing with fresh water and then drained. from one processor to another. Subsequently the fish are soaked for three days Van Veen (1965) noted that in ikan peda in salt (about 25% of the total fish weight) in a making, the fish are salted, kept for 12–24 salting tank.
Recommended publications
  • A Taxonomic Note on the Genus Lactobacillus
    Taxonomic Description template 1 A taxonomic note on the genus Lactobacillus: 2 Description of 23 novel genera, emended description 3 of the genus Lactobacillus Beijerinck 1901, and union 4 of Lactobacillaceae and Leuconostocaceae 5 Jinshui Zheng1, $, Stijn Wittouck2, $, Elisa Salvetti3, $, Charles M.A.P. Franz4, Hugh M.B. Harris5, Paola 6 Mattarelli6, Paul W. O’Toole5, Bruno Pot7, Peter Vandamme8, Jens Walter9, 10, Koichi Watanabe11, 12, 7 Sander Wuyts2, Giovanna E. Felis3, #*, Michael G. Gänzle9, 13#*, Sarah Lebeer2 # 8 '© [Jinshui Zheng, Stijn Wittouck, Elisa Salvetti, Charles M.A.P. Franz, Hugh M.B. Harris, Paola 9 Mattarelli, Paul W. O’Toole, Bruno Pot, Peter Vandamme, Jens Walter, Koichi Watanabe, Sander 10 Wuyts, Giovanna E. Felis, Michael G. Gänzle, Sarah Lebeer]. 11 The definitive peer reviewed, edited version of this article is published in International Journal of 12 Systematic and Evolutionary Microbiology, https://doi.org/10.1099/ijsem.0.004107 13 1Huazhong Agricultural University, State Key Laboratory of Agricultural Microbiology, Hubei Key 14 Laboratory of Agricultural Bioinformatics, Wuhan, Hubei, P.R. China. 15 2Research Group Environmental Ecology and Applied Microbiology, Department of Bioscience 16 Engineering, University of Antwerp, Antwerp, Belgium 17 3 Dept. of Biotechnology, University of Verona, Verona, Italy 18 4 Max Rubner‐Institut, Department of Microbiology and Biotechnology, Kiel, Germany 19 5 School of Microbiology & APC Microbiome Ireland, University College Cork, Co. Cork, Ireland 20 6 University of Bologna, Dept. of Agricultural and Food Sciences, Bologna, Italy 21 7 Research Group of Industrial Microbiology and Food Biotechnology (IMDO), Vrije Universiteit 22 Brussel, Brussels, Belgium 23 8 Laboratory of Microbiology, Department of Biochemistry and Microbiology, Ghent University, Ghent, 24 Belgium 25 9 Department of Agricultural, Food & Nutritional Science, University of Alberta, Edmonton, Canada 26 10 Department of Biological Sciences, University of Alberta, Edmonton, Canada 27 11 National Taiwan University, Dept.
    [Show full text]
  • Fermented and Ripened Fish Products in the Northern European Countries
    Accepted Manuscript Fermented and ripened fish products in the Northern European countries Torstein Skåra, Lars Axelsson, Gudmundur Stefánsson, Bo Ekstrand, Helge Hagen PII: S2352-6181(15)00005-0 DOI: 10.1016/j.jef.2015.02.004 Reference: JEF 12 To appear in: Journal of Ethnic Foods Received Date: 16 January 2015 Revised Date: 23 January 2015 Accepted Date: 2 February 2015 Please cite this article as: Skåra T, Axelsson L, Stefánsson G, Ekstrand B, Hagen H, Fermented and ripened fish products in the Northern European countries, Journal of Ethnic Foods (2015), doi: 10.1016/ j.jef.2015.02.004. This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain. ACCEPTED MANUSCRIPT 1 Fermented and ripened fish products in the Northern European countries 2 Torstein Skåra 1* , Lars Axelsson 2, Gudmundur Stefánsson 3, Bo Ekstrand 4 and Helge Hagen 5 3 1 Nofima - Norwegian Institute of Food, Fisheries, and Aquaculture Research, Postboks 8034, 4 NO-4068 Stavanger, Norway 5 2 Nofima - Norwegian Institute of Food, Fisheries, and Aquaculture Research, P.O.Box 210, 6 NO-1431 Ås, Norway 7 3 Matis, Vinlandsleid 12, 113 Reykjavik, Iceland 8 4 Bioconsult AB, Stora Vägen 49, SE-523 61 Gällstad, Sweden 5 MANUSCRIPT 9 Dælivegen 118, NO-2385 Brumunddal, Norway 10 *Author for correspondence: Tel: +47-51844600; Fax: +47-51844651 11 E-mail.
    [Show full text]
  • Assessment of Nutritional Quality of Shidal A
    Assessment of nutritional quality of 'Shidal' a fermented fish product of northeast India Item Type article Authors Majumdar, R.K.; Basu, S.; Nayak, B.B. Download date 06/10/2021 06:29:46 Link to Item http://hdl.handle.net/1834/33378 J. Indian Fish Assoc., 36: 25-34, 2009 25 ASSESSMENT OF NUTRITIONAL QUALITY OF 'SHIDAL' A FERMENTED FISH PRODUCT OF NORTHEAST INDIA Ranendra Kumar Majumdar\ S. Basu 2 and B. B. Nayak2 1Col/ege of Fisheries {Central Agricultural University), Lembucherra, Agartala, Tripura 799210. 2Centrallnstitute of Fisheries Education (Deemed University), Versova, Mumbai 400061. 1Corresponding author e-mail: [email protected]/[email protected] ABSTRACT 'Shidal' is a salt-free fermented fish product prepared from Puntius ss.caught in late monsoon period. Shidal is very popular amongst the inhabitants of Northeast India. The fermentation process of this product takes four to six months in anaerobic condition till the product gains a characteristic flavour and colour. Detailed studies on the biochemical and nutritive qualities of this product are very few. Therefore, in this paper we report the results of the proximate analysis, amino acid and fatty acid compositions. The results suggest that 'Shidal' is a rich source of amino acids as well as of essential fatty acids like linoleic and linolenic acids. The n- 3/n-6 ratio was found 0.51. Keywords: Shidal, fermented fish, Puntius sp., PUFAs. INTRODUCTION 'Shidal' is a fermented fish product indigenous to the Northeastern region of Fermentation of fish, apart from India. Assam and Tripura are the major 'Shidal' being a preservation method, helps in producing states.
    [Show full text]
  • Full-Text (PDF)
    African Journal of Food Science Vol. 6(14), pp. 381-385, 29 July, 2012 Available online http://www.academicjournals.org/AJFS DOI: 10.5897/AJFS12.039 ISSN 1996-0794 ©2012 Academic Journals Full Length Research Paper The influence of fermentation and salting on the bacterial, chemical and sensory characteristics of catfish (Clarias buthupogon) based marinate in Nigeria C. F. Ezeama* and E. J. Udoh Department of Food Science and Technology, Michael Okpara University of Agriculture Umudike, P. M. B. 7267 Umuahia, Nigeria. Accepted 13 June, 2012 Catfish (Clarias buthupogon) was treated with 10% w/w NaCl and 15% w/w NaCl with or without the addition of spices (1% w/w garlic powder and 1% w/w red pepper) and allowed to ferment naturally and at room temperature (28 ± 2°C) for two weeks. Bacte rial, chemical and sensory analyses were carried out on the unfermented non-salted and fermented salted samples of the fish species. Results obtained revealed that fermentation and salting caused a remarkable reduction in the total bacterial count from 2.29×10 6 to 3.80×10 5 cfu/g. There was also reduction in pH from 7.29 to 5.26. The predominant bacteria isolated from the samples were Lactobacillus sp , Staphylococcus spp for the unfermented non salted and fermented salted samples respectively while total titratable acidity increased from 0.63 to 1.44%. Chemical analysis result showed that fat and ash contents increased with fermentation and salting while moisture, protein and Nitrogen free Extracts (NFE) contents decreased with fermentation and salting of C. buthupogon .
    [Show full text]
  • Isolation and Identification of Lactic Acid Bacteria in Traditional Fermented Sushi, Funazushi, from Japan
    Food Sci. Technol. Res., 18 (1), 77–82, 2012 Isolation and Identification of Lactic Acid Bacteria in Traditional Fermented Sushi, Funazushi, from Japan 1 2 1 1* Harutoshi Tsuda , Kenzo kuboTa , Teruki MaTsuMoTo and Yoshiko ishiMi 1 National Institute of Health and Nutrition, 1-23-1 Toyama, Shinjuku-ku, Tokyo 162-8063, Japan 2 Department of Biotechnology, Faculty of Life Sciences, Ritsumeikan University, 1-1-1, Nojihigashi, Kusatsu, Shiga 525-8577, Japan Received June 21, 2011; Accepted September 8, 2011 The lactic acid bacterial flora in commercial and homemade Funazushi (fermented crucian carp and rice) were investigated. Funazushi is a fermented fish product that continues to be produced in the traditional style in Japan. Lactic acid bacteria in four commercial and five homemade Funazushi were enumerated. The viable counts of commercial samples ranged from 3.0 × 103 to 2.7 × 105 cfu/g, with an average of 2.4 × 104 cfu/g, while the viable counts of homemade samples ranged from 2.0 × 102 to 2.6 × 107 cfu/g, with an average of 1.3 × 105 cfu/g. Twenty-seven lactic acid bacteria isolates were obtained from the commercial samples, and identified as Streptococcus salivarius, Lactobacillus buchneri, and Lactobacillus parabuchneri. Forty-eight isolates were obtained from the homemade samples, and identified as Lactoba- cillus plantarum, Lb. buchneri, Lactobacillus alimentarius, Lactobacillus farciminis, Lactobacillus acidipis- cis, and Lactobacillus casei. Lb. buchneri was the predominant species in commercial Funazushi, while Lb. plantarum and Lb. buchneri were the predominant species in the homemade products. Keywords: lactic acid bacteria, microbial flora, fermented fish product, funazushi Introduction rel, and 8.
    [Show full text]
  • Cortisol-Related Signatures of Stress in the Fish Microbiome
    fmicb-11-01621 July 11, 2020 Time: 15:28 # 1 ORIGINAL RESEARCH published: 14 July 2020 doi: 10.3389/fmicb.2020.01621 Cortisol-Related Signatures of Stress in the Fish Microbiome Tamsyn M. Uren Webster*, Deiene Rodriguez-Barreto, Sofia Consuegra and Carlos Garcia de Leaniz Centre for Sustainable Aquatic Research, College of Science, Swansea University, Swansea, United Kingdom Exposure to environmental stressors can compromise fish health and fitness. Little is known about how stress-induced microbiome disruption may contribute to these adverse health effects, including how cortisol influences fish microbial communities. We exposed juvenile Atlantic salmon to a mild confinement stressor for two weeks. We then measured cortisol in the plasma, skin-mucus, and feces, and characterized the skin and fecal microbiome. Fecal and skin cortisol concentrations increased in fish exposed to confinement stress, and were positively correlated with plasma cortisol. Elevated fecal cortisol was associated with pronounced changes in the diversity and Edited by: Malka Halpern, structure of the fecal microbiome. In particular, we identified a marked decline in the University of Haifa, Israel lactic acid bacteria Carnobacterium sp. and an increase in the abundance of operational Reviewed by: taxonomic units within the classes Clostridia and Gammaproteobacteria. In contrast, Heather Rose Jordan, cortisol concentrations in skin-mucus were lower than in the feces, and were not Mississippi State University, United States related to any detectable changes in the skin microbiome. Our results demonstrate that Timothy John Snelling, stressor-induced cortisol production is associated with disruption of the gut microbiome, Harper Adams University, United Kingdom which may, in turn, contribute to the adverse effects of stress on fish health.
    [Show full text]
  • Comparative Genomic Analysis of Carnobacterium Maltaromaticum: Study of Diversity and Adaptation to Different Environments Christelle Iskandar
    Comparative genomic analysis of Carnobacterium maltaromaticum: Study of diversity and adaptation to different environments Christelle Iskandar To cite this version: Christelle Iskandar. Comparative genomic analysis of Carnobacterium maltaromaticum: Study of diversity and adaptation to different environments. Food and Nutrition. Université de Lorraine, 2015. English. NNT : 2015LORR0245. tel-01754646 HAL Id: tel-01754646 https://hal.univ-lorraine.fr/tel-01754646 Submitted on 30 Mar 2018 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. AVERTISSEMENT Ce document est le fruit d'un long travail approuvé par le jury de soutenance et mis à disposition de l'ensemble de la communauté universitaire élargie. Il est soumis à la propriété intellectuelle de l'auteur. Ceci implique une obligation de citation et de référencement lors de l’utilisation de ce document. D'autre part, toute contrefaçon, plagiat, reproduction illicite encourt une poursuite pénale. Contact : [email protected] LIENS Code de la Propriété Intellectuelle. articles L 122. 4
    [Show full text]
  • Growth of Carnobacterium Spp. from Permafrost Under Low Pressure, Temperature, and Anoxic Atmosphere Has Implications for Earth Microbes on Mars
    Growth of Carnobacterium spp. from permafrost under low pressure, temperature, and anoxic atmosphere has implications for Earth microbes on Mars Wayne L. Nicholsona,1, Kirill Krivushinb, David Gilichinskyb,2, and Andrew C. Schuergerc Departments of aMicrobiology and Cell Science and cPlant Pathology, Space Life Sciences Laboratory, University of Florida, Merritt Island, FL 32953; and bInstitute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Pushchino 142290 Moscow Region, Russian Federation Edited* by Henry J. Melosh, Purdue University, West Lafayette, IN, and approved November 9, 2012 (received for review June 8, 2012) The ability of terrestrial microorganisms to grow in the near-surface Results and Discussion environment of Mars is of importance to the search for life and Isolation of Microorganisms from Siberian Permafrost. Samples of protection of that planet from forward contamination by human permafrost obtained from the Siberian arctic (Fig. 1) were sus- and robotic exploration. Because most water on present-day Mars is pendedandplatedontrypticasesoybrothyeastextractsalt frozen in the regolith, permafrosts are considered to be terrestrial (TSBYS) medium and incubated at room temperature (ca. 23 °C) analogs of the martian subsurface environment. Six bacterial isolates for up to 28 d. Colonies were either picked or replica-plated onto were obtained from a permafrost borehole in northeastern Siberia fresh TSBYS plates and incubated for 30 d under low-PTA con- capable of growth under conditions of low temperature (0 °C), low ditions. Out of a total of ∼9.3 × 103 colonies tested from four pressure (7 mbar), and a CO2-enriched anoxic atmosphere. By 16S different permafrost soil samples, 6 colonies were observed to fi ribosomal DNA analysis, all six permafrost isolates were identi ed grow under low-PTA conditions (Table 1).
    [Show full text]
  • New Insight Into Antimicrobial Compounds from Food and Marine-Sourced Carnobacterium Species Through Phenotype and Genome Analyses
    microorganisms Article New Insight into Antimicrobial Compounds from Food and Marine-Sourced Carnobacterium Species through Phenotype and Genome Analyses Simon Begrem 1,2, Flora Ivaniuk 2, Frédérique Gigout-Chevalier 2, Laetitia Kolypczuk 2, Sandrine Bonnetot 2, Françoise Leroi 2, Olivier Grovel 1 , Christine Delbarre-Ladrat 2 and Delphine Passerini 2,* 1 University of Nantes, 44035 Nantes CEDEX 1, France; [email protected] (S.B.); [email protected] (O.G.) 2 IFREMER, BRM, EM3B Laboratory, 44300 Nantes CEDEX 3, France; fl[email protected] (F.I.); [email protected] (F.G.-C.); [email protected] (L.K.); [email protected] (S.B.); [email protected] (F.L.); [email protected] (C.D.-L.) * Correspondence: [email protected] Received: 6 July 2020; Accepted: 19 July 2020; Published: 21 July 2020 Abstract: Carnobacterium maltaromaticum and Carnobacterium divergens, isolated from food products, are lactic acid bacteria known to produce active and efficient bacteriocins. Other species, particularly those originating from marine sources, are less studied. The aim of the study is to select promising strains with antimicrobial potential by combining genomic and phenotypic approaches on large datasets comprising 12 Carnobacterium species. The biosynthetic gene cluster (BGCs) diversity of 39 publicly available Carnobacterium spp. genomes revealed 67 BGCs, distributed according to the species and ecological niches. From zero to six BGCs were predicted per strain and classified into four classes: terpene, NRPS (non-ribosomal peptide synthetase), NRPS-PKS (hybrid non-ribosomal peptide synthetase-polyketide synthase), RiPP (ribosomally synthesized and post-translationally modified peptide). In parallel, the antimicrobial activity of 260 strains from seafood products was evaluated.
    [Show full text]
  • Growth of Carnobacterium Spp. from Permafrost Under Low Pressure, Temperature, and Anoxic Atmosphere Has Implications for Earth Microbes on Mars
    Growth of Carnobacterium spp. from permafrost under low pressure, temperature, and anoxic atmosphere has implications for Earth microbes on Mars Wayne L. Nicholsona,1, Kirill Krivushinb, David Gilichinskyb,2, and Andrew C. Schuergerc Departments of aMicrobiology and Cell Science and cPlant Pathology, Space Life Sciences Laboratory, University of Florida, Merritt Island, FL 32953; and bInstitute of Physicochemical and Biological Problems in Soil Science, Russian Academy of Sciences, Pushchino 142290 Moscow Region, Russian Federation Edited* by Henry J. Melosh, Purdue University, West Lafayette, IN, and approved November 9, 2012 (received for review June 8, 2012) The ability of terrestrial microorganisms to grow in the near-surface Results and Discussion environment of Mars is of importance to the search for life and Isolation of Microorganisms from Siberian Permafrost. Samples of protection of that planet from forward contamination by human permafrost obtained from the Siberian arctic (Fig. 1) were sus- and robotic exploration. Because most water on present-day Mars is pendedandplatedontrypticasesoybrothyeastextractsalt frozen in the regolith, permafrosts are considered to be terrestrial (TSBYS) medium and incubated at room temperature (ca. 23 °C) analogs of the martian subsurface environment. Six bacterial isolates for up to 28 d. Colonies were either picked or replica-plated onto were obtained from a permafrost borehole in northeastern Siberia fresh TSBYS plates and incubated for 30 d under low-PTA con- capable of growth under conditions of low temperature (0 °C), low ditions. Out of a total of ∼9.3 × 103 colonies tested from four pressure (7 mbar), and a CO2-enriched anoxic atmosphere. By 16S different permafrost soil samples, 6 colonies were observed to fi ribosomal DNA analysis, all six permafrost isolates were identi ed grow under low-PTA conditions (Table 1).
    [Show full text]
  • Characterization of Carnobacterium Species by Pyrolysis Mass Spectrometry
    Journal of Applied Bacteriology 1995, 78, 8696 Characterization of Carnobacterium species by pyrolysis mass spectrometry L.N. Manchester, A. Toole and R. Goodacre Institute of Biological Sciences, University of Wales, A berystwyth , Dyfed, UK 5050/09/94: received 9 September 1994 and accepted 13 September 1994 L.N. MANCHESTER, A. TOOLE AND R. GOODACRE. 1995. Forty-eight strains of Carnobacterium were examined by pyrolysis mass spectrometry (PyMS). The effects of culture age and reproducibility over a 4 week period were also examined. The results were analysed by multivariate statistical techniques and compared with those from a previous numerical taxonomic study based on morphological, physiological and biochemical characteristics and with studies which used DNA-DNA and 16s rRNA sequence homologies. Taxonomic correlations were observed between the PyMS data and the previous studies. Culture age was observed to have little effect on the mass spectra obtained and the reproducibility study indicated that there was very little variation over the 4 week period. It was concluded that PyMS provides a reliable method for studying carnobacterial classification and provides a rapid way for clarifying and refining subgeneric relationships within the genus Carnobacterium. Further work may also show that it offers a potentially very rapid and accurate method for the identification of Carnobacterium. INTRODUCTION (ca 96-98%) and formed a group which is phylogenetically The genus Carnobacterium was proposed by Collins et al. distinct from other lactic acid bacteria. Vagococcus juvialis (1987) to describe the atypical lactobacilli poultry isolates of and the enterococci were observed to be the most closely Thornley and Sharpe (1959), Lactobacillus divergens related genera.
    [Show full text]
  • Putrid Meat and Fish in the Eurasian Middle and Upper Paleolithic: Are We Missing a Key Part of Neanderthal and Modern Human Diet?
    Putrid Meat and Fish in the Eurasian Middle and Upper Paleolithic: Are We Missing a Key Part of Neanderthal and Modern Human Diet? JOHN D. SPETH Department of Anthropology, 101 West Hall, 1085 South University Avenue, University of Michigan, Ann Arbor, MI 48109-1107, USA; [email protected] submitted: 21 February 2017; revised 2 April 2017; accepted 4 April 2017 ABSTRACT This paper begins by exploring the role of fermented and deliberately rotted (putrefied) meat, fish, and fat in the diet of modern hunters and gatherers throughout the arctic and subarctic. These practices partially ‘pre-digest’ the high protein and fat content typical of northern forager diets without the need for cooking, and hence without the need for fire or scarce fuel. Because of the peculiar properties of many bacteria, including various lactic acid bacteria (LAB) which rapidly colonize decomposing meat and fish, these foods can be preserved free of pathogens for weeks or even months and remain safe to eat. In addition, aerobic bacteria in the early stages of putrefaction deplete the supply of oxygen in the tissues, creating an anaerobic environment that retards the production of po- tentially toxic byproducts of lipid autoxidation (rancidity). Moreover, LAB produce B-vitamins, and the anaerobic environment favors the preservation of vitamin C, a critical but scarce micronutrient in heavily meat-based north- ern diets. If such foods are cooked, vitamin C may be depleted or lost entirely, increasing the threat of scurvy. Psy- chological studies indicate that the widespread revulsion shown by many Euroamericans to the sight and smell of putrefied meat is not a universal hard-wired response, but a culturally learned reaction that does not emerge in young children until the age of about five or later, too late to protect the infant from pathogens during the highly vulnerable immediate-post-weaning period.
    [Show full text]