1 Single Crystal Growth by the Traveling Solvent Technique: a Review
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Deformation and Recrystallization of Single Crystal Nickel-Based
Journal of Materials Processing Technology 217 (2015) 1–12 Contents lists available at ScienceDirect Journal of Materials Processing Technology jo urnal homepage: www.elsevier.com/locate/jmatprotec Deformation and recrystallization of single crystal nickel-based superalloys during investment casting a b a,∗ b a Li Zhonglin , Xiong Jichun , Xu Qingyan , Li Jiarong , Liu Baicheng a School of Materials Science and Engineering, Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Tsinghua University, Beijing 100084, China b National Key Laboratory of Advanced High Temperature Structural Materials, Beijing Institute of Aeronautical Materials, Beijing 100095, China a r t i c l e i n f o a b s t r a c t Article history: A semi-quantitative, macroscopic, phenomenon-based, thermo-elastic–plastic model was developed to Received 28 August 2014 predict the final plastic strains of single crystal nickel-based superalloys by considering their orthotropic Received in revised form 21 October 2014 mechanical properties. Various cases were considered and simulated to investigate the basic factors Accepted 23 October 2014 that influence the final plasticity. Thermo-mechanical numerical analysis was conducted to predict the Available online 4 November 2014 recrystallization sites of simplified cored rods, with the results in good agreement with the experimental results. These hollowed rods with thin walls showed an increased propensity for recrystallization. The Keywords: geometric features, especially stress concentration sites, are more significant to the induced plasticity Single crystal Superalloys than the material’s orientation or shell/core materials. This paper also attempts to provide useful sug- gestions, such as introducing filets, to avoid causing plastic strains during the casting process that induce Investment casting Plastic deformation recrystallization. -
Growth and Characterization of Lif Single-Crystal Fibers by the Micro
ARTICLE IN PRESS Journal of Crystal Growth 270 (2004) 121–123 Growth and characterization of LiF single-crystal fibers by the micro-pulling-down method A.M.E. Santoa, B.M. Epelbaumb, S.P. Moratoc, N.D. Vieira Jr.a, S.L. Baldochia,* a Instituto de Pesquisas Energeticas! e Nucleares, IPEN-CNEN/SP, Av. Prof. Lineu Prestes, CEP 05508-900, Sao* Paulo, SP, Brazil b Department of Materials Science, University of Erlangen-Nurnberg, D-91058, Erlangen, Germany c LaserTools Tecnologia Ltda., 05379-130,Sao* Paulo, SP, Brazil Accepted 27 May 2004 Available online 20 July 2004 Communicated by G. Muller. Abstract Good optical quality LiF single-crystalline fibers ranging from 0:5to0:8 mm in diameter and 100 mm in length were successfully grown by the micro-pulling-down technique in the resistive mode. A commercial equipment was modified in order to achieve suitable conditions to grow fluoride single-crystalline fibers. r 2004 Elsevier B.V. All rights reserved. PACS: 81.10.Fq; 78.20.Àe Keywords: A2. Micro-pulling-down method; A2. Single crystal growth; B1. Fluorides 1. Introduction oxide single-crystals have already been grown by the laser heated pedestal growth (LHPG) [2] and There is an increasinginterest in the production by the micro-pulling-down (m-PD) [3] methods. of single-crystalline fibers. Their unique properties However, the growth and hence the possible indicate their use for production of a variety of applications of fluoride single-crystalline fibers optical and electronic devices [1]. The final shape has not yet been investigated. of the single-crystalline fiber is already in a form As it is already known from other methods of suitable for optical testingand applications, fluoride growth, these materials are very sensitive reducingthe time and cost of preparation. -
Single Crystals from Metal Solutions
Single Crystals from Metal Solutions centration of less than about 5 percent (the limit we had established by x-ray diffraction iven a free choice, any solid-state experimentalist would characterize a techniques) would produce some increase, material by making measurements on a single crystal rather than a depending on its concentration. but the in- G polycrystalline sample. A single crystal more accurately represents the crease would be nowhere near that expected material (since it is free of grain boundaries at which impurities can hide) and is in fact if UPt3 itself was a superconductor. (The required for measuring the directional dependence of various properties. Yet growing BCS theory predicts an increase of about 150 a single crystal can be exceptionally difficult, and a large number of important percent.) experiments await the preparation of appropriate single crystals. The whiskers we could gather at the time Numerous techniques exist for growing crystals, but finding one that works for a for the specific heat measurement amounted particular material can be frustrating and time-consuming. A method we use quite to only 20 milligrams, but, fortunately. we often in our research is growth from slowly cooled solutions of the desired materiaI in have developed techniques and equipment for a molten metallic solvent, (This method is an easy extension of the observed natural measuring specific heats of very small sam- growth of single crystals from aqueous solutions.) We have used as solvents such ples. We spent nine days hovering over the metals as aluminum, iridium, tin, copper, bismuth, and gallium, The solvent provides a refrigerator, and by Friday. -
Growth of Srb4o7 Crystal Fibers Along the C-Axis by Micro-Pulling-Down Method
crystals Article Growth of SrB4O7 Crystal Fibers along the c-Axis by Micro-Pulling-Down Method Ryouta Ishibashi, Harutoshi Asakawa * and Ryuichi Komatsu Graduate School of Science and Engineering, Yamaguchi University, Yamaguchi 753-8511, Japan; [email protected] (R.I.); [email protected] (R.K.) * Correspondence: [email protected]; Tel.: +81-836-85-9631 Abstract: SrB4O7 (SBO) receives much attention as solid-state ultraviolet lasers for micro-machining, photochemical synthesis, and laser spectroscopy. For the application of SBO, the SBO crystals require the control of twinning to amplify the conversion light. We also expected that the inhibitation of the SrB2O4 appearance was essential. Here, we show the growth of SBO crystals along the c-axis through the micro-pulling-down method while alternating the application of electric fields (E). Without the application, single crystals were grown. At E = 400 V/cm no needle domains of SrB2O4 inside SBO crystals existed; however, composition planes were formed and twin boundaries did not appear. In contrast, the inversion of surface morphology emerged, and the convex size was especially large at 1000 V/cm. These results demonstrate that convection is generated perpendicular to the growth front by alternating the application of electric fields. This surface morphological change contradicts the conventional concept of growth through the micro-pulling-down method. The distance from seed crystals vs. grain density plot also showed that the density did not decrease with a sufficient slope. Consequently, we concluded that the selection of the c-axis as growth faces is not fruitful to fabricate Citation: Ishibashi, R.; Asakawa, H.; twins, and the selection of the growth condition, under which geometrical selection strongly affects, Komatsu, R. -
Development Team
Material science Paper No. : Crystallography & crystal growth Module : Growth from melt II Development Team Prof. Vinay Gupta, Department of Physics and Astrophysics, Principal Investigator University of Delhi, Delhi Prof. P. N. Kotru ,Department of Physics, University of Jammu, Paper Coordinator Jammu-180006 Content Writer Prof. P. N. Kotru ,Department of Physics, University of Jammu, Jammu-180006 Prof Mahavir Singh Department of Physics, Himachal Pradesh Content Reviewer University, Shimla 1 Crystallography & crystal growth Material science Growth from melt II Description of Module Subject Name Physics Paper Name Crystallography & crystal growth Module Name/Title Growth from melt II Module Id 31 2 Crystallography & crystal growth Material science Growth from melt II 31 Bridgman-Stockbarger Growth Technique. 31.1 Introduction The techniques were originated by Bridgman (1925) and Stockbarger (1938) and so are named after them. In these techniques a crucible containing the material to be grown is lowered through a furnace in such a way that the lowest point in the crucible and the solidification surface rises slowly up the crucible. It means that the melt contained in the crucible is progressively frozen to yield a single crystal. The rate of lowering the crucible may range from about 0.1 to 200 mmh─1 but in most of the cases it may range somewhere in between 1-30 mmh─1. There are situations where the movement of the crucible is reversed. In other words, the crucible is raised up through the furnace and so is advantageously applicable for materials which are volatile; the interface with the vapour being the coolest part of the charge. -
An Investigation of the Techniques and Advantages of Crystal Growth
Int. J. Thin. Film. Sci. Tec. 9, No. 1, 27-30 (2020) 27 International Journal of Thin Films Science and Technology http://dx.doi.org/10.18576/ijtfst/090104 An Investigation of the Techniques and Advantages of Crystal Growth Maryam Kiani*, Ehsan Parsyanpour and Feridoun Samavat* Department of Physics, Bu-Ali Sina University, Hamadan, Iran. Received: 2 Aug. 2019, Revised: 22 Nov. 2019, Accepted: 23 Nov. 2019 Published online: 1 Jan. 2020 Abstract: An ideal crystal is built with regular and unlimited recurring of crystal unit in the space. Crystal growth is defined as the phase shift control. Regarding the diverse crystals and the need to produce crystals of high optical quality, several many methods have been proposed for crystal growth. Crystal growth of any specific matter requires careful and proper selection of growth method. Based on material properties, the considered quality and size of crystal, its growth methods can be classified as follows: solid phase crystal growth process, liquid phase crystal growth process which involves two major sub-groups: growth from the melt and growth from solution, as well as vapour phase crystal growth process. Methods of growth from solution are very important. Thus, most materials grow using these methods. Methods of crystal growth from melt are those of Czochralski (tensile), the Kyropoulos, Bridgman-Stockbarger, and zone melting. In growth of oxide crystals with good laser quality, Czochralski method is still predominant and it is widely used in the production of most solid-phase laser materials. Keywords: Crystal growth; Czochralski method; Kyropoulos method; Bridgman-Stockbarger method. A special method is used for each group of elements depending on their usage and importance of their impurity, or consideration of form, impurity and size of crystal. -
Single-Crystal Metal Growth on Amorphous Insulating Substrates
Single-crystal metal growth on amorphous insulating substrates Kai Zhanga,1, Xue Bai Pitnera,1, Rui Yanga, William D. Nixb,2, James D. Plummera, and Jonathan A. Fana,2 aDepartment of Electrical Engineering, Stanford University, Stanford, CA 94305; and bDepartment of Materials Science and Engineering, Stanford University, Stanford, CA 94305 Contributed by William D. Nix, December 1, 2017 (sent for review October 12, 2017; reviewed by Hanchen Huang, David J. Srolovitz, and Carl Thompson) Metal structures on insulators are essential components in advanced Our method is based on liquid phase epitaxy, in which the electronic and nanooptical systems. Their electronic and optical polycrystalline metal structures are encapsulated in an amor- properties are closely tied to their crystal quality, due to the strong phous insulating crucible, together with polycrystalline seed dependence of carrier transport and band structure on defects and structures of differing material, and heated to the liquid phase. grain boundaries. Here we report a method for creating patterned As the system cools, the metal solidifies into single crystals. single-crystal metal microstructures on amorphous insulating sub- Liquid phase epitaxy has been previously studied in the context of strates, using liquid phase epitaxy. In this process, the patterned semiconductor-on-oxide growth (24–26), but has not been ex- metal microstructures are encapsulated in an insulating crucible, plored for metal growth. We will examine gold as a model system together with a small seed of a differing material. The system is in this study. Gold is an essential material in electronics and heated to temperatures above the metal melting point, followed by plasmonics because of its high conductivity and chemical inertness. -
Petrology, Mineralogy, and Geochemistry Northern California
Petrology, Mineralogy, and Geochemistry of the Lower Coon Mountain Pluton, Northern California, with Respect to the Di.stribution of Platinum-Group Elements Petrology, Mineralogy, and Geochemistry of the Lower Coon Mountain Pluton, Northern California, with Respect to the Distribution of Platinum-Group Elements By NORMAN J PAGE, FLOYD GRAY, and ANDREW GRISCOM U.S. GEOLOGICAL SURVEY BULLETIN 2014 U.S. DEPARTMENT OF THE INTERIOR BRUCE BABBITT, Secretary U.S. GEOLOGICAL SURVEY Dallas L. Peck, Director Any use of trade, product, or firm names in this publication is for descriptive purposes only and does not imply endorsement by the U.S. Government Text edited by George Havach Illustrations edited by Carol L. Ostergren UNITED STATES GOVERNMENT PRINTING OFFICE, WASHINGTON : 1993 For sale by Book and Open-File Report Sales U.S. Geological Survey Federal Center, Box 25286 Denver, CO 80225 Library of Congress Cataloging in Publication Data Page, Norman J Petrology, mineralogy, and geochemistry of the Lower Coon Mountain pluton, northern California, with respect to the distribution of platinum-group elements I by Norman J Page, Floyd Gray, and Andrew Griscom. p. em.- (U.S. Geological Survey bulletin ; 2014) Includes bibliographical references. 1. Rocks, Igneous-California-Del Norte County. 2. Geochemistry California-Del Norte County. I. Gray, Floyd. II. Griscom, Andrew. Ill. Title. IV. Series. QE75.89 no. 2014 [QE461] 557.3 s-dc20 92-27975 [552'.3'0979411] CIP CONTENTS Abstract 1 Introduction 2 Regional geologic setting 2 Geology 2 Shape, size, -
3 Single Crystals Using Czochralski Method
Journal of Siberian Federal University. Engineering & Technologies 4 (2009 2) 400-408 ~ ~ ~ УДК 669:621.315.592 Synthesis of Ca4GdO(BO3)3 Single Crystals using Czochralski Method Robert Möckel*, Margitta Hengst, Christoph Reuther and Jens Götze TU Bergakademie Freiberg, Institute of Mineralogy, Brennhausgasse 14, D-09596 Freiberg, Germany 1 Received 16.11.2009, received in revised form 03.12.2009, accepted 18.12.2009 The oxoborate Ca4GdO(BO3)3 (GdCOB) is a potential material for advanced industrial applications because of its optical and electric properties. High quality single crystals of GdCOB have been grown from a melt using the Czochralski method. Single crystals of laboratory scale are of good optical quality showing no macroscopic defects like cracks, inclusions or discolouration. Crystals in [001] direction reveal regular growth, whereas crystals in [010] are of asymmetric shape but show less difficulties during the growth process. Keywords: single crystal growth, Czochralski, oxoborate, Ca4GdO(BO3)3. 1. Introduction First investigations on the system REE2O3–CaO–B2O3 go back to the late 1960s, early 1970s, when Kindermann took care of the whole system [1]. Most of these early syntheses were realized by solid state reactions. Later, Ca4REEO(BO3)3 (REECOB) was synthesized and described by Norrestam & Nygren [2], who produced the materials by simple solid state reactions of stoichiometric mixtures as well. They showed that most trivalent REE like La, Nd, Sm, Gd, Er, and Y fit into the crystal lattice crystallizing isostructurally. First analysis of the crystallographic structures revealed analogies to calcium fluoroborate (Ca5F(BO3)3) and also to well known structure of common fluorapatite (Ca5[F/(PO4)3]). -
Single Crystal Growth for Topology and Beyond Chandra Shekhar#, Horst Borrmann, Claudia Felser, Guido Kreiner, Kaustuv Manna, Marcus Schmidt, and Vicky Sü
CHEMICAL METALS SCIENCE & SOLID STATE CHEMISTRY Single crystal growth for topology and beyond Chandra Shekhar#, Horst Borrmann, Claudia Felser, Guido Kreiner, Kaustuv Manna, Marcus Schmidt, and Vicky Sü Single crystals are the pillars for many technological advancements, which begin with acquiring the material. Since different compounds have different physical and chemical properties, different techniques are needed to obtain their single crystals. New classes of quantum materials, from insulators to semimetals, that exhibit non-trivial topologies, have been found. They display a plethora of novel phenomena, including topological surface states, new fermions such as Weyl, Dirac, or Majorana, and non-collinear spin textures such as antiskyrmions. To obtain the crystals and explore the properties of these families of compounds, it is necessary to employ different crystal growth techniques such as the chemical vapour transport method, Bridgman technique, flux growth method, and floating-zone method. For the last four years, we have grown more than 150 compounds in single crystal form by employing these methods. We sometimes go beyond these techniques if the phase diagram of a particular material allows it; e.g., we choose the Bridgman technique as a flux growth method. Before measuring the properties, we fully characterize the grown crystals using different characterization tools. Our TaAs family of crystals have, for the first time, been proven experimentally to exhibit Weyl semimetal properties. They exhibit extremely high magnetoresistance and mobility of charge carriers, which is indicative of the Weyl fermion properties. Moreover, a very large value of intrinsic anomalous Hall and Weyl physics with broken time-reversal symmetry is found in the full-Heuslers, while the half-Heuslers exhibit topological surface states. -
Project Title: Embedded Nanocrystal Silicon Films: a New Paradigm for Improving the Stability of Thin-Film Silicon
Suite 1000 ME 111 Church St. SE Minneapolis, MN 55455-0111 Project Title: Embedded Nanocrystal Silicon Films: A New Paradigm for Improving the Stability of Thin-film Silicon Contract Number: RD-3-25 Report Date: 16 Dec 2011 Principal Investigator: Uwe Kortshagen Contract Contact: Amy Rollinger 612-625-4028 612-625-1359 Congressional District: (Corporate office) Minnesota 5th Congressional District: (Project location) Minnesota 5th FINAL REPORT Executive Summary: Under this grant, we pursued two different routes that may help increase the efficiency and lower the cost of thin film silicon solar cells. Our first approach (Track 1) is based on our unique ability to produce silicon nanocrystals in a low-pressure plasma-based synthesis reactor and to embed these nanocrystals in amorphous silicon films. Our novel deposition process enables us to independently control the properties of the amorphous matrix and of the crystalline phase, which we hope will enable us to improve the electronic quality of amorphous silicon that is used in thin film solar cells. In the second approach (Track 2), we study using such embedded nanocrystals as nuclei for seed-induced re-crystallization of amorphous silicon films. We expected that controlling the seed concentration will enable us to grow microcrystalline Si films faster and with grain sizes larger than possible with other deposition approaches. This may enable the cheaper production of solar cells based on microcrystalline silicon. The goals and objectives of this grant were achieved. This research led to two major conclusions: 1. The inclusion of Si nanocrystals into amorphous silicon leads to a mixed phase material that is more resistive to light-induced defect creation than standard amorphous silicon. -
Solid-Phase Epitaxy
Published in Handbook of Crystal Growth, 2nd edition, Volume III, Part A. Thin Films and Epitaxy: Basic Techniques edited by T.F. Kuech (Elsevier North-Holland, Boston, 2015) Print book ISBN: 978-0-444-63304-0; e-book ISBN: 97800444633057 7 Solid-Phase Epitaxy Brett C. Johnson1, Jeffrey C. McCallum1, Michael J. Aziz2 1 SCHOOL OF PHYSICS, UNIVERSITY OF MELBOURNE, VICTORIA, AUSTRALIA; 2 HARVARD SCHOOL OF ENGINEERING AND APPLIED SCIENCES, CAMBRIDGE, MA, USA CHAPTER OUTLINE 7.1 Introduction and Background.................................................................................................... 318 7.2 Experimental Methods ............................................................................................................... 319 7.2.1 Sample Preparation........................................................................................................... 319 7.2.1.1 Heating.................................................................................................................... 321 7.2.2 Characterization Methods................................................................................................ 321 7.2.2.1 Time-Resolved Reflectivity........................................................................................ 321 7.2.2.2 Other Techniques ....................................................................................................323 7.3 Solid-Phase Epitaxy in Si and Ge .............................................................................................. 323 7.3.1 Structure