O F an Inquiry by the Court of Coal Mines Regulation

Total Page:16

File Type:pdf, Size:1020Kb

O F an Inquiry by the Court of Coal Mines Regulation 622.81099 44 GOR 1979 7 IN qtif A% Aft'..7 EXPLOSION AT APPIN COLLIERY ON 24th JULY, 1979 R E P O R T of His Honour Judge A.J. Goran Q.C. following an Inquiry by the Court of Coal Mines Regulation established under Section 31 of the Coal Mines Regulation Act, 1912, as amended Accession No. itO 64C, Order No. PSF No. Date Received , Classification .. P(..1.7:4(-/ No. ()‹ • His Honour Judge A. J. Goran Q.C. Court of Coal Mines Regulation Whereas it appears to me that a formal investigation of the explosion that occurred at Appin Colliery on 24th July, 1979, and of its causes and circumstances is expedient. I Ronald Joseph Mulock, Minister for Mineral Resources and Development in pursuance of the powers conferred on me by Section 31 of the Coal Mines Regulation Act, 1912, hereby direct such investigation to be held and require the Court of Coal Mines Regulation established under that Act to hold the investigation. Dated at Sydney this twenty fifth day of July 1979 R. J. Mulock Minister for Mineral Resources and Development IN THE COURT OF COAL MINES REGULATION ) HOLDEN AT SYDNEY, WOLLONGONG AND PORT ) No. 1 of 1979 KEMBLA IN THE MATTER of an Inquiry in pursuance of the Coal Mines Regulation Act into an explosion which occurred at Appin Colliery on the 24th July, 1979 and its causes and circumstances. REPORT TO The Honourable Ronald Joseph Mulock, Minister for Mineral Resources and Development in the State of New South Wales Sir, Having been directed by your Notice dated at Sydney on the 25th day of July, 1979 made and issued in pursuance of the powers conferred upon you by the provisions of Section 31 of the Coal Mines Regulation Act, 1912, as amended, to hold a formal investigation as the Court of Coal Mines Regulation established under Section 33 of the said Act of the explosion that occurred at Appin Colliery on the 24th July, 1979 and of the causes and circumstances of such explosion, I have completed my investigation and have the honour to report as follows: GENERAL PRELIMINARY OBSERVATIONS Most inquiries into fires, explosions and disasters in coal mines which occur in coal mines in the United Kingdom are non-judicial inquiries, the investigation itself being conducted at a senior administrative level. The resultant report takes the form of a description of the colliery and the relevant equipment, followed by a narrative setting out the events. Conclusions are in short form and there is a list of recommendations for future improvements in coal mines generally. A list of casualties (deceased and seriously injured) is relegated to an appendix (see, for example, the report of H.M. Chief Inspector of Mines and Quarries on the explosion at Colborne Colliery, 18th March, 1979, 2 and the similar report in regard to Houghton Main, Yorkshire, in 1965). I make no criticism of this method of reporting. The report which I now tender, however, is the report of a Court which has investigated an explosion. The conclusions drawn are based upon a mass of evidence tendered before me and tested in the greatest detail by the cross-examination of learned Counsel and laymen of much experience in the mining industry. have had the assistance of two assessors, Mr. W. Smale and Mr. L. Griffiths, both of whom have a deep knowledge of coal mining, its problems, its technicalities and its techniques. I have adopted standards of proof as any Judge must do, accepting some evidence and rejecting other evidence at times which experience in judgment has told me I cannot accept. This Report is an account of how men came to die while at work. I feel that it is my duty to see that the Government and the people receive a carefully considered answer to the question. The Act which gives the Court jurisdiction also invites me to add "any observations which the Court thinks right to make". In the past I have taken this to be an invitation, inter alia, to make recommendations which the Government may consider adopting for the future safe running of the coal mining industry. On this occasion the parties before me have asked that I make recommendations along lines suggested and argued by them. I include such recommendations as I think it proper for the Court to make. It must always be borne in mind that the duty of this Court is to assist in so regulating the industry that events such as that which occurred at Appin Colliery are not repeated and that men who work in this industry should do so with such safety as can be afforded to them by legislation or by proper practices. OPENING THE INQUIRY On the 25th July 1979 after consultation with the Minister I visited the Appin Colliery, arriving at about 1.00 p.m. Under the powers conferred upon me by the Coal Mines Regulation Act I made a brief inspection of surface arrangements for the rescue of men and the recovery of damaged sections of the mine. I held conversations with a number of officials including the Manager, Mr. A. E. Fisher. I held conversations with 3 Mr. G. Mould, Inspector of Collieries for the district and asked that all documents and materials relevant to the Inquiry be made secure. Mr. Mould also explained and demonstrated to me the recently installed Tube-Bundle gas monitoring system situated at the surface. I made preliminary arrangements with the officer-in-charge of police to protect the mine area from trespassers and to co-operate by photography in recording any matters underground which might be relevant to the Inquiry. I did not see Mr. Metcalfe, Mine Under-Manager, or Mr. Kininmonth, the local Senior Inspector of Collieries, who were both at the time underground, engaged in rescue work. I suggested to Mr. Fisher, who was in need of sleep and was otherwise obviously under great strain, that he should go home to rest. He was reluctant to do so but I understand that he ultimately took this course. I visited the mine on the 2nd August, 1979 and in company with Mr. B. Murray of Counsel, Mr, Fisher, Mine Manager, Mr. Kininmonth, Senior Inspector of Collieries, Mr. M. J. Muir, Chief Inspector of Coal Mines, and several other officials, I went underground and inspected in such detail as was possible the area affected by the explosion. At that time ventilation had been at least partly restored to the area, the bodies of the deceased men had all been removed, the locations where they had been found having been clearly marked, but nothing which could possibly be relevant to the explosion had been shifted. FIRST SITTING OF THE COURT I held a formal Sitting of the Court in Sydney on the 22nd August, 1979. There I received appearances and appointed my two Assessors. Mr. B. F. Murray of Counsel appeared for the Minister for Mineral Resources I followed the practice of inviting him to act as Counsel assisting the Inquiry. I gave leave to Mr. T. Marling, Q.C. with Mr. R. Stitt, to appear for the Australian Iron & Steel Collieries Limited; to Mr. L. King of Counsel to appear for the Mine Managers Association, Mr. A.E. Fisher, Manager of Appin Mine; to Mr. Maguire, Solicitor, who subsequently instructed Mr. S. Littlemore of Counsel, who appeared for the Electrical Trades Union 4 and for the widow of the late Mr. A. Brewin, Electrician; to Mr. P. J. Phelan of Counsel who appeared for Mr. K. T. Reed, Electrical Engineer and Mr. F. Metcalfe, Under-Manager; to Mr. A. Brown, Solicitor, who later instructed Mr. J. D. Heydon of Counsel, who appeared for the Australian Collieries Staff Association and for the relatives of the late J. A. Oldcorn, Assistant Under-Manager; to Mr. Whyburn, later replaced by Mr. R. Williams, who appeared for the Amalgamated Metal Workers' & Shipwrights' Union and for the relatives of the late Mr. K. Staats; to Mr. L. Ohlsen, President of the Southern District Miners' Federation, with Mr. Loy, a Mine Check Inspector, who appeared for the Australian Coal & Shale Employees Association; to Mr. L. Leffley, Secretary of the New South Wales Colliery Officials Association with Mr. Penman, President of the Association, who appeared for the Association and for the next-of-kin of the late Mr. R. Rawcliffe. At a later date I gave leave to Mr. C. Bowie of Counsel (subsequently Her Majesty's Counsel) with Mr. Deakin, to appear for the widows of the ten machine men who died during the mine explosion. These latter Counsel withdrew on the 13th November, 1979 with leave to re-appear should the occasion arise. I wish to acknowledge with gratitude the great assistance which I have received from my two Assessors, Mr. L. Griffiths and Mr. W. T. Smale whose experience and advice was invaluable. Each of these gentlemen adopted a completely impartial attitude throughout the Inquiry and not only assisted me to find my way through the difficulties posed by the evidence, but also, with my concurrence, gave assistance to the parties before me. It should be noted that Mr. Murray of Counsel was set a most onerous task, Not only was his brief a difficult one but at my behest he opened the evidence in the Inquiry before he was fully prepared. considered that, although this placed Mr. Murray and those instructing him in an invidious position, to wait for the completion of all investigations by the Department before commencing the actual hearing of the Inquiry would create such delay as would cause uneasiness among members of the public.
Recommended publications
  • Mitigating Coal Dust Explosions in Modern Underground Coal Mines
    MITIGATING COAL DUST EXPLOSIONS IN MODERN UNDERGROUND COAL MINES Marcia L. Harris1, Kenneth L. Cashdollar2, Chi-Keung Man3 and Ed Thimons4 1The National Institute For Occupational Safety and Health, P.O. Box 18070, 626 Cochrans Mill Rd., Pittsburgh, PA 15236, Email: [email protected] 2The National Institute For Occupational Safety and Health, P.O. Box 18070, 626 Cochrans Mill Rd., Pittsburgh, PA 15236, Email: [email protected] 3The National Institute For Occupational Safety and Health, P.O. Box 18070, 626 Cochrans Mill Rd., Pittsburgh, PA 15236, Email: [email protected] 4The National Institute For Occupational Safety and Health, P.O. Box 18070, 626 Cochrans Mill Rd., Pittsburgh, PA 15236, Email: [email protected] ABSTRACT The N ational Institute for Occupational Safety and Health (NIOSH), as part of its continuing research program for evaluating coal dust explosion hazards, has investigated several areas in which current practices may need to be updated in order to adequately protect mines against coal dust propagated explosions. In the United States, current rock dusting requirements remained largely unchanged since 1969. US Title 30 Code of Federal Regulations Section 75.403 is based on a coal dust particle size survey performed in the 1920s and later was supplemented by full-scale testing of the rock dust ability to inert a coal dust explosion. NIOSH recently conducted a comprehensive survey of US underground coal mines to determine the range of coal particle sizes found in dust samples collected from the mine entries. Due to advancements in technology and modern coal mining techniques, the current coal dust particles in intake airways are significantly finer than those found in the mines in the 1920s.
    [Show full text]
  • Combustible Dust
    Combustible dust SS-957 March 2019 Combustible dust Table of contents What are the risks? ..................................................................................... 2 Know the dust fire and explosion pentagon ................................................ 4 Avoid the secondary dust explosion ............................................................ 4 Learn from serious accidents ...................................................................... 5 National emphasis program ........................................................................ 9 Review your hazards and controls ............................................................ 11 Resources ................................................................................................. 16 SS-957 | ©SAIF 03.19 Page | 2 Combustible dust What are the risks? Combustible dust explosion hazards exist in a variety of industries, including food (such as candy, starch, flour, and feed), plastics, wood, rubber, furniture, textiles, pesticides, pharmaceuticals, dyes, coal, metals (such as aluminum, chromium, iron, magnesium, and zinc), and fossil-fuel power generation. The vast majority of natural and synthetic organic materials, as well as some metals, can form combustible dust. The National Fire Protection Association (NFPA) Industrial Fire Hazards Handbook states: “Any industrial process that reduces a combustible material and some normally noncombustible materials to a finely divided state presents a potential for a serious fire or explosion.” The primary factor
    [Show full text]
  • Combustible Dust Flame Propagation and Quenching in Pipes and Ducts
    TECHNICAL NOTES Combustible Dust Flame Propagation and Quenching in Pipes and Ducts FINAL REPORT BY: Alexander Ing National Fire Protection Association, 1 Batterymarch Park, Quincy, Massachusetts, USA. December 2018 © 2018 Fire Protection Research Foundation 1 Batterymarch Park, Quincy, MA 02169-7417, USA Email: [email protected] | Web: nfpa.org/foundation ---page intentionally left blank--- —— Page ii —— FOREWORD A technical basis is required for determining when pipes or ducts are too small in diameter to permit the propagation of combustible dust deflagrations. This must be evaluated considering the characteristics of the equipment system (pipe/duct diameter and length), properties of the combustible dust, and operating conditions (pressure, temperature, flow rate, etc.). The knowledge will permit establishing rational protection requirements in NFPA’s various combustible dust fire and explosion prevention standards. There is also a lack of knowledge around conditions influencing the explosion propagation through piping, especially small diameter piping. Having a clear understanding of experimental testing data would allow analysis to see what conditions and parameters will affect the explosion propagation and also point out where there are knowledge gaps. This comprehensive literature review project seeks to identify the parameters affecting flame propagation involving combustible dusts within pipes and ducts, and seeks to determine the conditions under which a combustible dust flame will not propagate (i.e., will quench) within a piping or ductwork system. The following tasks have been carried out for this project: 1) Identify the conditions under which combustible dust deflagration will not propagate within a piping or duct work system. 2) Identify the factors (pipe diameter, pipe length, dust type, and dust concentration) affecting the explosion propagation through pipes from relevant literatures.
    [Show full text]
  • Explosibility of Coal Dust
    DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY GEOKGE OTIS SMITH, DIRECTOR BULLETIN 425 THE EXPLOSIBILITY OF COAL DUST BY GEORGE S. RICE WITH CHAPTERS BX J. C. W. FRAZER, AXEL LARSEN, FRANK HAAS, AND CARL SCHOLZ WASHINGTON GOVERN M E N T P K I N T IN G OFFICE 1910 CONTENTS. Page. Introd uctory statement...................................... ............ 9 The coal-dust, problem................................................ 9 i Acknowledgments.................................................... 10 Historical review of the coal-dust question in Europe ....................... 11 Observations in England prior to 1850................................. 11 Observations by French engineers prior to 1890........................ 12 Experiments in England between 1850 and 1885........................ 12 Experiments in Prussia............................,.............:..... 14 Experiments in Austria between 1885 and 1891......................... 16 Views of English authorities between 1886 and 1908.................... 17 German, French, and Belgian stations for testing explosives............ 19 Altofts gallery, England, 1908......................................... 21 Second report of Royal Commission on Mines, 1909...................... 21 Recent Austrian experiments.......................................... 22 Historical review of the coal-dust question in the United States.............. 23 Grahamite explosions in West Virginia, 1871 and 1873.................. 23 Flour-mill explosion at Minneapolis, 1878.............................
    [Show full text]
  • Preventing Grain Dust Explosions
    DIVISION OF AGRICULTURE RESEARCH & EXTENSION Agriculture and Natural Resources University of Arkansas System FSA1092 Preventing Grain Dust Explosions Introduction The National Safety Council Sammy Sadaka, defnes dust as solid particles derived Ph.D., P.E. Combustible dust explosion from crushing, grinding, rapid Associate Professor - hazards are prevalent in various impact and detonation of organic or Extension Engineer industries including, but not limited inorganic materials such as rocks, to, agriculture grain, food, chemicals, metal, wood or grain. Dust originates fertilizer, tobacco and pesticides. The from operations of dry and powdery Kingsly Ambrose, Ph.D. total number of reported agricultural Associate Professor - material such as conveying, trimming dust explosion incidents in the United of excess material, solids crushing Purdue University States reached 84 cases between 2009 and screening, sanding, tank and and 2018 (Fig. 1), resulting in 16 fatal- bin feeding and storing of granular John W. Magugu, Ph.D. ities and 96 injuries cases, respectively materials, among others. Professional Assistant - (Fig. 2). There were 12 dust explosion University of Arkansas incidents in 2018 alone, the highest rate in a decade. Dust explosions in grain elevators corresponded to 51 percent of all U.S. agricultural dust ex- plosion incidents, with many of these occuring in grain milling facilities. This fact sheet presents an overview on how to help prevent dust explosions in both industrial mill facilities and producer-owned facilities. Grain Dust Figure 3. Westwego Grain Dust Explosion in Louisiana, December 1977 (Courtesy of Gambit) Figure 1. Total U.S. Agricultural Dust Explosions 14 12 Grain dust is a highly combustible 10 material, and has more combustible 8 6 power than coal dust.
    [Show full text]
  • Combustible Dust Explosion Hazard Awareness
    Combustible Dust Explosion Hazard Awareness Instructor Guide Texas Engineering Extension Service (TEEX) Professional and Regulatory Training (PRT) A Member of The Texas A&M University System OS PRT281 TR 07/09 COMBUSTIBLE DUST EXPLOSION HAZARD AWARENESS INSTRUCTOR GUIDE The Texas A&M University System Texas Engineering Extension Service (TEEX) Professional and Regulatory Training (PRT) COMBUSTIBLE DUST EXPLOSION HAZARD AWARENESS Copyright Information COMBUSTIBLE DUST EXPLOSION HAZARD AWARENESS © 2009 Texas Engineering Extension Service All Rights Reserved. First Edition July 2009. Printed in the United States of America Reproduction of this document, in whole or in part, requires written authorization from the Director, Texas Engineering Extension Service (TEEX), The Texas A&M University System, unless such reproduction is authorized or executed by the United States Government. The safety statements, procedures, and guidelines contained in this manual are current as of the publication date. Prior to using the safety statements, procedures, and guidelines contained in this manual, it is advised that you confirm the currency of these statements, procedures, and guidelines with the appropriate controlling authorities. This training is provided under Susan B. Harwood grant number 17798-08-60-F-48 awarded to the Texas Engineering Extension Service, OSHA Training Institute Southwest Education Center from the Occupational Safety and Health Administration, U.S. Department of Labor. It does not necessarily reflect the views or policies of the U.S. Department of Labor, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government. INSTRUCTOR GUIDE Table of Contents Class Schedule.................................................vii Explosion Dynamics ................................ 1-8 Distribution Shipping List ................................
    [Show full text]
  • Coal Dust Explosion at Mitsui Miike Coal Mine November 9, 1963.In the Tunnels at Mitsui Miike in Omuta, Fukuoka
    Failure Knowledge Database / 100 Selected Cases Coal dust explosion at Mitsui Miike coal mine November 9, 1963.In the tunnels at Mitsui Miike in Omuta, Fukuoka Masayuki Nakao (Institute of Engineering Innovation, School of Engineering, The University of Tokyo) An explosion occurred in a m ine tunnel at Mi tsui Miike coal m ine (Figure 1) roughly 500 meters below the m ine ground-level entrance. T he blast and fla me caused roof fall in m any areas in the tunnels, which then quickly filled wi th carbon monoxide. 458 people were killed and 555 people were injured. It was the worst postwar m ine disaster . Lack of safety provisions was the primal cause. Figure 2 indicates the cross-section of the accident site. The coal beds at Mitsui Miike sloped towards Ariake Sea, and mine openings had also shifted over time towards the se a ( to the lef t in the f igure) f rom m ountainside. At the tim e, coal beds roughly 350 to 450 meters below the sea level were being mined. Saga Omuta Ariake Sea Mitsui Miike Isahaya Shimabara Kumamoto Nagasaki Peninsula Figure 1: Location of Mitsui Miike Coal Mine 1 Failure Knowledge Database / 100 Selected Cases Mitsui Miike Mine Ariake Sea 1st sloped mine 2nd sloped mine Location where the roof fell 300m horizontal run Location of original explosion 450m horizontal run Tunnel with severe explosion Mine dust pump Figure 2: Cross section of the accident site [1] 1. Event An explosion occurred in a tunnel at Mitsui Miike coal m ine roughly 500 m eters below the mine entrance.
    [Show full text]
  • Potentially Explosive Dust ATEX
    ATEX Potentially explosive dust ATEX ATEX derives from the French “Atmosphères Explosibles” and refers to atmospheres that are potentially explosive. EU Directive 1999/92/EU covers the health and safety of workers in such environments. All equipment marketed in the EU for use in explosive atmospheres with “inherent ignition sources” must fulfil the requirements of directive 2014/34/EU. Dust explosions occur when combustible dust is mixed with air or oxygen and is ignited in an enclosed space. For this to happen, the dust must occur in sufficiently large concentrations. Almost all substances that arise as a result of, or that are used during industrial manufacturing, are combustible and can cause explosions under certain conditions. Examples of such substances include coal, flour, cereals, wood, cotton and certain plastics. Aluminium and magnesium dusts are also particularly liable to explode. Hazardous dust deposits should be avoided through regular cleaning of any premises used for work or operations. Using a stationary central extraction system from Dustcontrol, you can extract dust, fumes, chips, oil spillages and other harmful substances, right at their source. The result is efficient production where the risk of a dust explosion is reduced to a minimum. Our mobile EX-line range features light, flexible equipment suitable for general cleaning in locations where highly portable or movable units are required. Conditions necessary for a dust explosion to occur Five conditions must be fulfilled for a dust CombustibleBrännbart explosion to occur. materialmaterial OxygenSyre Explosion • There must be a sufficiently large dust content. • The dust must be mixed with gas (ex. air) which has a sufficiently high oxygen concentration to maintain combustion.
    [Show full text]
  • Basic Concepts for Explosion Protection Basic Concepts for Explosion Protection
    Basic concepts for explosion protection Basic concepts for explosion protection This brochure was put together carefully in conformance to the current status of standards and regulations. The respective amended version of the technical and statutory rules is binding. Errors and misprints do not justify any claim for damages. All rights reserved, in particular the rights of duplication, distribution and translation. BARTEC brochure Basic concepts for explosion protection 14. revised edition - Version 2020 Authors: Dr.-Ing. Hans-Jürgen Linström Dipl.-Ing. Johannes Buhn Dipl.-Ing. Karel Neleman 2 Contents Technical development 6 - 8 Secondary 15 - 26 of explosion protection explosion protection Harmonization of explosion protection 8 Relevance and advantage of the area 15 classification in workplaces Explosion parameters 17 Explosion protection 9 - 14 Ignition temperature 17 Explosion 9 Equipment sub-groups 19 Basis for an explosion 9 for Gases/Vapours Protection principles 21 Three factors 10 Design standards and prevention 22 Explosion Range (limits) 13 of effective sources of ignition in devices Prevention of explosions 13 Standards for explosion protection 23 Primary explosion protection 14 Secondary explosion protection 14 Tertiary explosion protection 14 3 Basic concepts for explosion protection Types of protection 27-37 Marking 38-42 General requirements 27 Marking in accordance with Directive 38 2014/34/EU, the standards and the IECEx system Types of protection to 28 electrical equipment Marking in accordance with IECEx 39 Types of
    [Show full text]
  • GESTIS-DUST-EX Database Combustion and Explosion
    GESTIS-DUST-EX Database Combustion and explosion characteristics of dusts BIA HVBG Hauptverband der gewerblichen Berufsgenossenschaften Editor: Hauptverband der gewerblichen Berufsgenossenschaften – HVBG, Sankt Augustin The Report underlying the present database was elaborated in co-operation with: DMT-Gesellschaft für Forschung und Prüfung mbH (association for research and testing), expert body for surface fire and explosion protection – mining test facility, Dortmund, Germany; Berufsgenossenschaft Nahrungsmittel und Gaststätten – BGN (institution for statutory accident insurance and prevention in the foodstuff industry and the catering trade)/ Forschungsgesellschaft für angewandte Systemsicherheit und Arbeitsmedizin e.V. – FSA (research association for applied system safety and occupational medicine), Mannheim, Germany; CHEMSAFE – database for assessed characteristics in safety technology, German Society for Chemical Apparatus, Chemical Engineering and Biotechnology e.V. – DECHEMA, Frankfurt/Main, Germany/Federal Institute for Materials Research and Testing – BAM, Berlin, Germany/Federal Institute of Physics and Metrology – PTB, Brunswick, Germany; Henkel KGaA, TTA–Safety Technology, Düsseldorf, Germany. The Report was realised with the financial support of the European Commission, Directorate-General V - employment, work relations and social affairs, Brussels and Luxembourg. Authors: H. Beck, N. Glienke, C. Möhlmann Berufsgenossenschaftliches Institut für Arbeitssicherheit - BIA (Institute for Occupational Safety of the German Federation
    [Show full text]
  • Classification of Combustible Dusts and of Hazardous (Classified) Locat
    Classification of Combustible Dusts and of Hazardous (Classified) Locat... http://submittals.nfpa.org/TerraViewWeb/ContentFetcher?contentId=499... NFPA STANDARDS DEVELOPMENT SITE FIRST DRAFT REPORT Released Version Closing Date: March 06, 2015 NFPA 499, Recommended Practice for the Classification of Combustible Dusts and of Hazardous (Classified) Locations for Electrical Installations in Chemical Process Areas, 2013 Edition Chapter 1 Administration Save As Word Show Revisions/Notes Show PI/PC's Quick Print 1.1 Scope. 1.1.1* This recommended practice provides information on the classification of combustible dusts and of hazardous (classified) locations for electrical installations in chemical process areas and other areas where combustible dusts are produced or handled. 1.1.2 This recommended practice provides information on combustible dusts as it relates to the proper selection of electrical equipment in hazardous (classified) locations in accordance with NFPA 70, National Electrical Code . 1.1.3 The tables of selected combustible dusts contained in this document are not intended to be all-inclusive. 1.2 Purpose. 1.2.1 The purpose of this recommended practice is to provide the user with a basic understanding of the parameters that determine the degree and the extent of the hazardous (classified) location. This recommended practice also provides the user with examples of the applications of these parameters. 1.2.2 This recommended practice is intended as a guide and should be applied with sound engineering judgment. Where all factors are properly evaluated, a consistent area classification scheme can be developed. 1.2.3 This recommended practice is based on the criteria established by Articles 500 and 502 of NFPA 70, National Electrical Code .
    [Show full text]
  • Dust Explosion Hazard Overview About Us
    Dust Explosion Hazard Overview About Us Established in 1949 • Specialty chemicals • Customer focused • Family enterprise Today, Michelman is: • Global Michelman Headquarters Cincinnati, OH • Over 400 employees • Family owned • Professionally managed michelman.com Agenda • Background • Dust Hazard Risk factors • Control Measures michelman.com Background • Chemical Safety Board (CSB) investigation examined 281 dust explosions • Plastic dust accounted for 14% of dust explosions Common Sources of Dust Explosions – per CSB michelman.com Background – cont. • West Pharmaceutical: Polyethylene – 6 Fatalities • CTA Acoustics: Phenolic resin – 7 Fatalities • Jahn Foundry: Resins – 3 Fatalities michelman.com michelman.com Lack of Awareness/Information • Qualitative statements in SDS are less than adequate • Quantitative combustible dust fire and explosion properties are not required by OSHA Hazard/GHS • 41% of the 140 combustible powder SDSs the CSB surveyed did not warn users about dust explosion hazards michelman.com What’s the Hazard? • Most solid organic materials will burn or explode if finely divided and dispersed (<420 microns) • More than 1/32”of dust over 5% of a room’s surface area is a significant explosion hazard • Factors affecting explosivity: particle size, shape, surface area/volume ratio, humidity, etc. michelman.com Dust Risk Factors • MIT: Minimum Ignition Temperature • Particle Distribution: Smaller means higher risk • Kst Value (bar/m.s): Max. rate of pressure rise • MIE: Minimum Ignition Energy (mJ) : Minimum energy that can ignite a material in air michelman.com Kst – How big is the boom? Dust Explosion Class Deflagration Index, Kst Hazard Descriptor Range (bar.m/sec) 0 0 No Explosion 1 1 – 200 Weak to Moderate Explosion 2 201 – 300 Strong Explosion 3 >300 Very Strong Explosion michelman.com Recommended Controls (MIE) MIE Guidance >100 Conductive items should be bonded and grounded.
    [Show full text]