Preventing Grain Dust Explosions

Total Page:16

File Type:pdf, Size:1020Kb

Preventing Grain Dust Explosions DIVISION OF AGRICULTURE RESEARCH & EXTENSION Agriculture and Natural Resources University of Arkansas System FSA1092 Preventing Grain Dust Explosions Introduction The National Safety Council Sammy Sadaka, defnes dust as solid particles derived Ph.D., P.E. Combustible dust explosion from crushing, grinding, rapid Associate Professor - hazards are prevalent in various impact and detonation of organic or Extension Engineer industries including, but not limited inorganic materials such as rocks, to, agriculture grain, food, chemicals, metal, wood or grain. Dust originates fertilizer, tobacco and pesticides. The from operations of dry and powdery Kingsly Ambrose, Ph.D. total number of reported agricultural Associate Professor - material such as conveying, trimming dust explosion incidents in the United of excess material, solids crushing Purdue University States reached 84 cases between 2009 and screening, sanding, tank and and 2018 (Fig. 1), resulting in 16 fatal- bin feeding and storing of granular John W. Magugu, Ph.D. ities and 96 injuries cases, respectively materials, among others. Professional Assistant - (Fig. 2). There were 12 dust explosion University of Arkansas incidents in 2018 alone, the highest rate in a decade. Dust explosions in grain elevators corresponded to 51 percent of all U.S. agricultural dust ex- plosion incidents, with many of these occuring in grain milling facilities. This fact sheet presents an overview on how to help prevent dust explosions in both industrial mill facilities and producer-owned facilities. Grain Dust Figure 3. Westwego Grain Dust Explosion in Louisiana, December 1977 (Courtesy of Gambit) Figure 1. Total U.S. Agricultural Dust Explosions 14 12 Grain dust is a highly combustible 10 material, and has more combustible 8 6 power than coal dust. The generation 4 and accumulation of the combustible 2 dust in grain facilities create explosion 0 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 risks and possess an immediate dan- II Number ger to human lives and grain facilities (Fig. 3). Alongside vapor cloud explo- Figure 2. Number of Reported Fatalities and Injuries from Grain Dust Explosions sions, dust explosions pose the most Arkansas Is 18 hazard within the process industry, 16 especially within grain elevators, bins, 14 Our Campus 12 silos, four bins and feed mills. The 10 8 particle size of dust generated during 6 grain handling and processing are 4 2 very small (< 500 µm), posing fagra- Visit our web site at: 0 tion and explosion risks. https://www.uaex.uada.edu 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 13Fatalities El Injured University of Arkansas, United States Department of Agriculture, and County Governments Cooperating Grain Dust Explosion Elements Most elements required for a grain dust explosion are present in a grain handling facility. Some — pri- The critical requirements of a fre are fuel, oxi- marily oxygen, grain dust and confned spaces — are dizer and ignition. These three elements are part diffcult to control. Apart from the usual fre triangle of the fve elements required for a dust explosion to of fuel (the dust), oxygen and heat, dispersion of dust occur (Fig. 4): particles in suffcient quantities and concentrations can cause rapid combustion (defagration). The pres- 1. Fuel – Tiny particles of dry grain dust from wheat, milo, oats, barley, four, corn starch and other par- ence of fammable gases, such as methane and its ticles are highly combustible. The National Fire heterogeneous mixtures within the dust mixture, Protection Association (NFPA) standard mentions increases the propensity of these gases to explode. that dust particles of less than 500 µm size can If one of the elements of the dust explosion lead to a fre and explosion. pentagon — fuel, oxygen, heat, dispersion or confnement — is missing, the possibility of an 2. Oxygen – Enough air supply with normal oxygen levels is always present in grain handling and explosion decreases. Eliminating ignition sources processing facilities. Oxygen concentration, usu- and controlling dust through improved material ally close to 21 percent, will increase the burning handling and housecleaning remain the most effective effciency of the fuel. techniques for preventing grain dust explosions. 3. Ignition source – Overheated bearings within Development and Occurrence of elevator leg boots, heads or conveyors; elevator Grain Dust Explosions leg belts rubbing against leg sidewall casings; Combustible grain dust is composed of fne par- electrical shorts, electrical arcs from a non-ex- ticles that pose an explosion hazard when suspended plosion proof electrical devices; static electricity; in the air under certain conditions. Several dust phosphine pellets or tablets exploding in a wet explosion incidents have resulted from employers’ or aeration duct; cigarette lighters or lit cigarettes; employees’ lack of awareness. It remains critical to cutting torches or weldings; metal sparks from determine if the facility has dust hazards and, if so, to grinders; metal to metal sparks; dropped tools take immediate action. and lightning are some of the potential ignition sources located in the grain elevator or feed mill In most cases, dust explosions often occur at facility. grain transfer points – in bucket elevators or enclosed conveyors (Fig. 5), where small dust particles separate – Grain dust must be sus- 4. Dispersion of dust from kernels due to tumbling, agitation and impacts, pended in the air to create an explosion. Layers of as fast-fowing grain hit the bucket elevator cups or dust in a confned space can ignite and lead to a change direction in drag or belt conveyors. Reducing minor explosion. This minor explosion may unset- the dust generation in these conveyors through tle the dust and create a secondary explosion of appropriate design substantially reduces this risk. greater magnitude. The air turbulence of the dust cloud within a grain dust matrix will increase the chances of an explosion. head pulley 5. Confinement – A vertical elevator leg casing or housing; an enclosed drag conveyor; basement tunnel; dust bin; aeration duct; downspout; bin f ,j..,C. ....... --..-- Drive reducer deck gallery or silo are some examples of confned --~ -- - Driving strap spaces within a grain handling facility. Within confned enclosures like buildings, rooms, vessels or process equipment, an explosion may result in a pressure rise that can damage the facilities. Figure 5. A schematic drawing of a Bucket Elevator System Figure 4. The Essential Elements for Grain Dust Explosion Mechanical or electrical devices can become a common grains including wheat four, corn starch potential ignition source. The ignition sources are usu- and rye dust are 410-430°C, 410-450°C and 410- ally either sparks or a hot surface. In some cases, igni- 500°C, respectively. tion of the dust cloud occurs directly; in other cases, fre or an open fame may take place frst, acting as 4. Minimum Ignition Energy (MIE) of Dust – The the ignition source for the dust cloud. Energy require- Minimum Ignition Energy of a dust cloud is less ments for igniting the dust clouds are quite small, and than 15 MJ. most ignition sources that occur during grain han- dling are capable of supplying suffcient amounts of 5. Maximum Explosion Pressure and Rate of – The maximum explosion this energy. Pressure Rise pressure and the rate of pressure rise depend For illustration, an initial explosion in the pro- on the dust type, dust particle size and dust cessing equipment or in an area where fugitive dust cloud concentration. Decreasing the particle size has accumulated may eject additional accumulated increases the explosion pressure, and to a more dust into the air. This dust, if ignited, may cause a signifcant degree, increases the rate of pressure secondary explosion, which is more likely fatal and rise. For most organic dust, the explosion pressure destructive. and rate of pressure rise tend to plateau at a particle size of 10 to 40 microns. Explanation of Grain Dust Terminologies Preventing Grain Dust Explosions For a grain dust explosion to occur, all the ele- Flame propagation within the dust cloud matrix is ments in the dust explosion pentagon must be present mainly a function of the nature of dust, dust particle (Fig. 4). Thus, if a single factor is removed, a dust size and the byproducts formed. The following termi- explosion can be prevented. The following approaches nologies must be understood: can reduce the formation of dust explosion pentagon: 1. Minimum Explosion Concentration (MEC) of 1. Modify the process to reduce dust handling Dust – Dust concentrations within certain limits effectively – Minimize hazardous materials, the of 0.050-0.100 kg/m3 (lowest concentration) and substitute less hazardous materials, and moderate 2.0-3.0 kg/m3 (highest concentration) are enough hazardous materials handling methods. for a dust explosion to occur, provided an ignition – Work source is present. Fine dust particles tend to com- 2. Prevent suspension of combustible dust with smaller piles of dust, remove dust and thor- bust faster than larger dust particles. ough clean dust “hot spots” within facilities. 2. Minimum Depths of Dust for Explosion (MED) 3. Remove the ignition sources entirely or at least – The minimum explosion depth (MED) varies minimize their presence – Eliminate ignition between 0.001 in and 0.021 in, depending on the sources traceable to workers’ actions, including depth of the enclosed space, as shown in Table 1. smoking, open fames, open light bulbs, weld- On the other hand, the maximum explosion depth ing, cutting, and grinding through training and (OED) for dust varies between 0.01 in and 0.20 in. enforcement. – Table 1. Relationships between the height of the enclosed space 4. Provide appropriate equipment maintenance and the minimum and optimum grain dust explosion depths. Read the equipment operator’s manuals, become familiar with them and follow the instructions for Height of enclosed Minimum depth of The optimum depth space (ft) dust for the explosion of dust for the regular equipment maintenance.
Recommended publications
  • Mitigating Coal Dust Explosions in Modern Underground Coal Mines
    MITIGATING COAL DUST EXPLOSIONS IN MODERN UNDERGROUND COAL MINES Marcia L. Harris1, Kenneth L. Cashdollar2, Chi-Keung Man3 and Ed Thimons4 1The National Institute For Occupational Safety and Health, P.O. Box 18070, 626 Cochrans Mill Rd., Pittsburgh, PA 15236, Email: [email protected] 2The National Institute For Occupational Safety and Health, P.O. Box 18070, 626 Cochrans Mill Rd., Pittsburgh, PA 15236, Email: [email protected] 3The National Institute For Occupational Safety and Health, P.O. Box 18070, 626 Cochrans Mill Rd., Pittsburgh, PA 15236, Email: [email protected] 4The National Institute For Occupational Safety and Health, P.O. Box 18070, 626 Cochrans Mill Rd., Pittsburgh, PA 15236, Email: [email protected] ABSTRACT The N ational Institute for Occupational Safety and Health (NIOSH), as part of its continuing research program for evaluating coal dust explosion hazards, has investigated several areas in which current practices may need to be updated in order to adequately protect mines against coal dust propagated explosions. In the United States, current rock dusting requirements remained largely unchanged since 1969. US Title 30 Code of Federal Regulations Section 75.403 is based on a coal dust particle size survey performed in the 1920s and later was supplemented by full-scale testing of the rock dust ability to inert a coal dust explosion. NIOSH recently conducted a comprehensive survey of US underground coal mines to determine the range of coal particle sizes found in dust samples collected from the mine entries. Due to advancements in technology and modern coal mining techniques, the current coal dust particles in intake airways are significantly finer than those found in the mines in the 1920s.
    [Show full text]
  • Combustible Dust
    Combustible dust SS-957 March 2019 Combustible dust Table of contents What are the risks? ..................................................................................... 2 Know the dust fire and explosion pentagon ................................................ 4 Avoid the secondary dust explosion ............................................................ 4 Learn from serious accidents ...................................................................... 5 National emphasis program ........................................................................ 9 Review your hazards and controls ............................................................ 11 Resources ................................................................................................. 16 SS-957 | ©SAIF 03.19 Page | 2 Combustible dust What are the risks? Combustible dust explosion hazards exist in a variety of industries, including food (such as candy, starch, flour, and feed), plastics, wood, rubber, furniture, textiles, pesticides, pharmaceuticals, dyes, coal, metals (such as aluminum, chromium, iron, magnesium, and zinc), and fossil-fuel power generation. The vast majority of natural and synthetic organic materials, as well as some metals, can form combustible dust. The National Fire Protection Association (NFPA) Industrial Fire Hazards Handbook states: “Any industrial process that reduces a combustible material and some normally noncombustible materials to a finely divided state presents a potential for a serious fire or explosion.” The primary factor
    [Show full text]
  • Combustible Dust Flame Propagation and Quenching in Pipes and Ducts
    TECHNICAL NOTES Combustible Dust Flame Propagation and Quenching in Pipes and Ducts FINAL REPORT BY: Alexander Ing National Fire Protection Association, 1 Batterymarch Park, Quincy, Massachusetts, USA. December 2018 © 2018 Fire Protection Research Foundation 1 Batterymarch Park, Quincy, MA 02169-7417, USA Email: [email protected] | Web: nfpa.org/foundation ---page intentionally left blank--- —— Page ii —— FOREWORD A technical basis is required for determining when pipes or ducts are too small in diameter to permit the propagation of combustible dust deflagrations. This must be evaluated considering the characteristics of the equipment system (pipe/duct diameter and length), properties of the combustible dust, and operating conditions (pressure, temperature, flow rate, etc.). The knowledge will permit establishing rational protection requirements in NFPA’s various combustible dust fire and explosion prevention standards. There is also a lack of knowledge around conditions influencing the explosion propagation through piping, especially small diameter piping. Having a clear understanding of experimental testing data would allow analysis to see what conditions and parameters will affect the explosion propagation and also point out where there are knowledge gaps. This comprehensive literature review project seeks to identify the parameters affecting flame propagation involving combustible dusts within pipes and ducts, and seeks to determine the conditions under which a combustible dust flame will not propagate (i.e., will quench) within a piping or ductwork system. The following tasks have been carried out for this project: 1) Identify the conditions under which combustible dust deflagration will not propagate within a piping or duct work system. 2) Identify the factors (pipe diameter, pipe length, dust type, and dust concentration) affecting the explosion propagation through pipes from relevant literatures.
    [Show full text]
  • Explosibility of Coal Dust
    DEPARTMENT OF THE INTERIOR UNITED STATES GEOLOGICAL SURVEY GEOKGE OTIS SMITH, DIRECTOR BULLETIN 425 THE EXPLOSIBILITY OF COAL DUST BY GEORGE S. RICE WITH CHAPTERS BX J. C. W. FRAZER, AXEL LARSEN, FRANK HAAS, AND CARL SCHOLZ WASHINGTON GOVERN M E N T P K I N T IN G OFFICE 1910 CONTENTS. Page. Introd uctory statement...................................... ............ 9 The coal-dust, problem................................................ 9 i Acknowledgments.................................................... 10 Historical review of the coal-dust question in Europe ....................... 11 Observations in England prior to 1850................................. 11 Observations by French engineers prior to 1890........................ 12 Experiments in England between 1850 and 1885........................ 12 Experiments in Prussia............................,.............:..... 14 Experiments in Austria between 1885 and 1891......................... 16 Views of English authorities between 1886 and 1908.................... 17 German, French, and Belgian stations for testing explosives............ 19 Altofts gallery, England, 1908......................................... 21 Second report of Royal Commission on Mines, 1909...................... 21 Recent Austrian experiments.......................................... 22 Historical review of the coal-dust question in the United States.............. 23 Grahamite explosions in West Virginia, 1871 and 1873.................. 23 Flour-mill explosion at Minneapolis, 1878.............................
    [Show full text]
  • Combustible Dust Explosion Hazard Awareness
    Combustible Dust Explosion Hazard Awareness Instructor Guide Texas Engineering Extension Service (TEEX) Professional and Regulatory Training (PRT) A Member of The Texas A&M University System OS PRT281 TR 07/09 COMBUSTIBLE DUST EXPLOSION HAZARD AWARENESS INSTRUCTOR GUIDE The Texas A&M University System Texas Engineering Extension Service (TEEX) Professional and Regulatory Training (PRT) COMBUSTIBLE DUST EXPLOSION HAZARD AWARENESS Copyright Information COMBUSTIBLE DUST EXPLOSION HAZARD AWARENESS © 2009 Texas Engineering Extension Service All Rights Reserved. First Edition July 2009. Printed in the United States of America Reproduction of this document, in whole or in part, requires written authorization from the Director, Texas Engineering Extension Service (TEEX), The Texas A&M University System, unless such reproduction is authorized or executed by the United States Government. The safety statements, procedures, and guidelines contained in this manual are current as of the publication date. Prior to using the safety statements, procedures, and guidelines contained in this manual, it is advised that you confirm the currency of these statements, procedures, and guidelines with the appropriate controlling authorities. This training is provided under Susan B. Harwood grant number 17798-08-60-F-48 awarded to the Texas Engineering Extension Service, OSHA Training Institute Southwest Education Center from the Occupational Safety and Health Administration, U.S. Department of Labor. It does not necessarily reflect the views or policies of the U.S. Department of Labor, nor does mention of trade names, commercial products, or organizations imply endorsement by the U.S. Government. INSTRUCTOR GUIDE Table of Contents Class Schedule.................................................vii Explosion Dynamics ................................ 1-8 Distribution Shipping List ................................
    [Show full text]
  • Coal Dust Explosion at Mitsui Miike Coal Mine November 9, 1963.In the Tunnels at Mitsui Miike in Omuta, Fukuoka
    Failure Knowledge Database / 100 Selected Cases Coal dust explosion at Mitsui Miike coal mine November 9, 1963.In the tunnels at Mitsui Miike in Omuta, Fukuoka Masayuki Nakao (Institute of Engineering Innovation, School of Engineering, The University of Tokyo) An explosion occurred in a m ine tunnel at Mi tsui Miike coal m ine (Figure 1) roughly 500 meters below the m ine ground-level entrance. T he blast and fla me caused roof fall in m any areas in the tunnels, which then quickly filled wi th carbon monoxide. 458 people were killed and 555 people were injured. It was the worst postwar m ine disaster . Lack of safety provisions was the primal cause. Figure 2 indicates the cross-section of the accident site. The coal beds at Mitsui Miike sloped towards Ariake Sea, and mine openings had also shifted over time towards the se a ( to the lef t in the f igure) f rom m ountainside. At the tim e, coal beds roughly 350 to 450 meters below the sea level were being mined. Saga Omuta Ariake Sea Mitsui Miike Isahaya Shimabara Kumamoto Nagasaki Peninsula Figure 1: Location of Mitsui Miike Coal Mine 1 Failure Knowledge Database / 100 Selected Cases Mitsui Miike Mine Ariake Sea 1st sloped mine 2nd sloped mine Location where the roof fell 300m horizontal run Location of original explosion 450m horizontal run Tunnel with severe explosion Mine dust pump Figure 2: Cross section of the accident site [1] 1. Event An explosion occurred in a tunnel at Mitsui Miike coal m ine roughly 500 m eters below the mine entrance.
    [Show full text]
  • Potentially Explosive Dust ATEX
    ATEX Potentially explosive dust ATEX ATEX derives from the French “Atmosphères Explosibles” and refers to atmospheres that are potentially explosive. EU Directive 1999/92/EU covers the health and safety of workers in such environments. All equipment marketed in the EU for use in explosive atmospheres with “inherent ignition sources” must fulfil the requirements of directive 2014/34/EU. Dust explosions occur when combustible dust is mixed with air or oxygen and is ignited in an enclosed space. For this to happen, the dust must occur in sufficiently large concentrations. Almost all substances that arise as a result of, or that are used during industrial manufacturing, are combustible and can cause explosions under certain conditions. Examples of such substances include coal, flour, cereals, wood, cotton and certain plastics. Aluminium and magnesium dusts are also particularly liable to explode. Hazardous dust deposits should be avoided through regular cleaning of any premises used for work or operations. Using a stationary central extraction system from Dustcontrol, you can extract dust, fumes, chips, oil spillages and other harmful substances, right at their source. The result is efficient production where the risk of a dust explosion is reduced to a minimum. Our mobile EX-line range features light, flexible equipment suitable for general cleaning in locations where highly portable or movable units are required. Conditions necessary for a dust explosion to occur Five conditions must be fulfilled for a dust CombustibleBrännbart explosion to occur. materialmaterial OxygenSyre Explosion • There must be a sufficiently large dust content. • The dust must be mixed with gas (ex. air) which has a sufficiently high oxygen concentration to maintain combustion.
    [Show full text]
  • Basic Concepts for Explosion Protection Basic Concepts for Explosion Protection
    Basic concepts for explosion protection Basic concepts for explosion protection This brochure was put together carefully in conformance to the current status of standards and regulations. The respective amended version of the technical and statutory rules is binding. Errors and misprints do not justify any claim for damages. All rights reserved, in particular the rights of duplication, distribution and translation. BARTEC brochure Basic concepts for explosion protection 14. revised edition - Version 2020 Authors: Dr.-Ing. Hans-Jürgen Linström Dipl.-Ing. Johannes Buhn Dipl.-Ing. Karel Neleman 2 Contents Technical development 6 - 8 Secondary 15 - 26 of explosion protection explosion protection Harmonization of explosion protection 8 Relevance and advantage of the area 15 classification in workplaces Explosion parameters 17 Explosion protection 9 - 14 Ignition temperature 17 Explosion 9 Equipment sub-groups 19 Basis for an explosion 9 for Gases/Vapours Protection principles 21 Three factors 10 Design standards and prevention 22 Explosion Range (limits) 13 of effective sources of ignition in devices Prevention of explosions 13 Standards for explosion protection 23 Primary explosion protection 14 Secondary explosion protection 14 Tertiary explosion protection 14 3 Basic concepts for explosion protection Types of protection 27-37 Marking 38-42 General requirements 27 Marking in accordance with Directive 38 2014/34/EU, the standards and the IECEx system Types of protection to 28 electrical equipment Marking in accordance with IECEx 39 Types of
    [Show full text]
  • GESTIS-DUST-EX Database Combustion and Explosion
    GESTIS-DUST-EX Database Combustion and explosion characteristics of dusts BIA HVBG Hauptverband der gewerblichen Berufsgenossenschaften Editor: Hauptverband der gewerblichen Berufsgenossenschaften – HVBG, Sankt Augustin The Report underlying the present database was elaborated in co-operation with: DMT-Gesellschaft für Forschung und Prüfung mbH (association for research and testing), expert body for surface fire and explosion protection – mining test facility, Dortmund, Germany; Berufsgenossenschaft Nahrungsmittel und Gaststätten – BGN (institution for statutory accident insurance and prevention in the foodstuff industry and the catering trade)/ Forschungsgesellschaft für angewandte Systemsicherheit und Arbeitsmedizin e.V. – FSA (research association for applied system safety and occupational medicine), Mannheim, Germany; CHEMSAFE – database for assessed characteristics in safety technology, German Society for Chemical Apparatus, Chemical Engineering and Biotechnology e.V. – DECHEMA, Frankfurt/Main, Germany/Federal Institute for Materials Research and Testing – BAM, Berlin, Germany/Federal Institute of Physics and Metrology – PTB, Brunswick, Germany; Henkel KGaA, TTA–Safety Technology, Düsseldorf, Germany. The Report was realised with the financial support of the European Commission, Directorate-General V - employment, work relations and social affairs, Brussels and Luxembourg. Authors: H. Beck, N. Glienke, C. Möhlmann Berufsgenossenschaftliches Institut für Arbeitssicherheit - BIA (Institute for Occupational Safety of the German Federation
    [Show full text]
  • Classification of Combustible Dusts and of Hazardous (Classified) Locat
    Classification of Combustible Dusts and of Hazardous (Classified) Locat... http://submittals.nfpa.org/TerraViewWeb/ContentFetcher?contentId=499... NFPA STANDARDS DEVELOPMENT SITE FIRST DRAFT REPORT Released Version Closing Date: March 06, 2015 NFPA 499, Recommended Practice for the Classification of Combustible Dusts and of Hazardous (Classified) Locations for Electrical Installations in Chemical Process Areas, 2013 Edition Chapter 1 Administration Save As Word Show Revisions/Notes Show PI/PC's Quick Print 1.1 Scope. 1.1.1* This recommended practice provides information on the classification of combustible dusts and of hazardous (classified) locations for electrical installations in chemical process areas and other areas where combustible dusts are produced or handled. 1.1.2 This recommended practice provides information on combustible dusts as it relates to the proper selection of electrical equipment in hazardous (classified) locations in accordance with NFPA 70, National Electrical Code . 1.1.3 The tables of selected combustible dusts contained in this document are not intended to be all-inclusive. 1.2 Purpose. 1.2.1 The purpose of this recommended practice is to provide the user with a basic understanding of the parameters that determine the degree and the extent of the hazardous (classified) location. This recommended practice also provides the user with examples of the applications of these parameters. 1.2.2 This recommended practice is intended as a guide and should be applied with sound engineering judgment. Where all factors are properly evaluated, a consistent area classification scheme can be developed. 1.2.3 This recommended practice is based on the criteria established by Articles 500 and 502 of NFPA 70, National Electrical Code .
    [Show full text]
  • Dust Explosion Hazard Overview About Us
    Dust Explosion Hazard Overview About Us Established in 1949 • Specialty chemicals • Customer focused • Family enterprise Today, Michelman is: • Global Michelman Headquarters Cincinnati, OH • Over 400 employees • Family owned • Professionally managed michelman.com Agenda • Background • Dust Hazard Risk factors • Control Measures michelman.com Background • Chemical Safety Board (CSB) investigation examined 281 dust explosions • Plastic dust accounted for 14% of dust explosions Common Sources of Dust Explosions – per CSB michelman.com Background – cont. • West Pharmaceutical: Polyethylene – 6 Fatalities • CTA Acoustics: Phenolic resin – 7 Fatalities • Jahn Foundry: Resins – 3 Fatalities michelman.com michelman.com Lack of Awareness/Information • Qualitative statements in SDS are less than adequate • Quantitative combustible dust fire and explosion properties are not required by OSHA Hazard/GHS • 41% of the 140 combustible powder SDSs the CSB surveyed did not warn users about dust explosion hazards michelman.com What’s the Hazard? • Most solid organic materials will burn or explode if finely divided and dispersed (<420 microns) • More than 1/32”of dust over 5% of a room’s surface area is a significant explosion hazard • Factors affecting explosivity: particle size, shape, surface area/volume ratio, humidity, etc. michelman.com Dust Risk Factors • MIT: Minimum Ignition Temperature • Particle Distribution: Smaller means higher risk • Kst Value (bar/m.s): Max. rate of pressure rise • MIE: Minimum Ignition Energy (mJ) : Minimum energy that can ignite a material in air michelman.com Kst – How big is the boom? Dust Explosion Class Deflagration Index, Kst Hazard Descriptor Range (bar.m/sec) 0 0 No Explosion 1 1 – 200 Weak to Moderate Explosion 2 201 – 300 Strong Explosion 3 >300 Very Strong Explosion michelman.com Recommended Controls (MIE) MIE Guidance >100 Conductive items should be bonded and grounded.
    [Show full text]
  • The Fire and Explosion Hazards of Dried Sewage Sludge S.J
    SYMPOSIUM SERIES No. 148 © 2001 IChemE THE FIRE AND EXPLOSION HAZARDS OF DRIED SEWAGE SLUDGE S.J. Manchester BSc CChem MRSC Fire and Risk Sciences Division, BRE Ltd, Bucknalls Lane, Garston, Watford, WD25 9XX. This paper describes the fire and explosion tests that have been undertaken on dried sewage sludge samples from plants throughout the UK, elsewhere in Europe and from around the world. As a result of legislation banning the dumping of sewage sludge at sea, it has become necessary for waste water treatment companies to find alternative means of disposing of sewage sludge. One process used extensively is to dry the sewage sludge to produce a solid granular or pellet product that can be used as fertiliser. During the operation of producing the final dried material fine dust is produced. This dust is combustible and a number of explosion and fire incidents have occurred in drying plants. These incidents have occurred mainly through a general lack of understanding of the hazards posed by the generation of fine dust and the long term storage of large quantities of combustible final product. Dust explosibility tests and self-heating tests on the sewage sludge provide quantitative data, which is used to enable preventative and protective systems to be designed and implemented. Keywords: dust explosion, self-heating, spontaneous combustion, explosion prevention, explosion protection. BACKGROUND The total amount of sewage sludge produced in the UK is currently about 1.1 million tonnes and is expected to grow to 1.5 million tonnes of dry solids by 2005. As a result of legislation banning the dumping of sewage sludge at sea, it has become necessary for the waste water treatment companies to find other means of disposing of sewage sludge.
    [Show full text]