A Guide in the Big Data Jungle Thesis, Bachelor of Science
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Combined Documents V2
Outline: Combining Brainstorming Deliverables Table of Contents 1. Introduction and Definition 2. Reference Architecture and Taxonomy 3. Requirements, Gap Analysis, and Suggested Best Practices 4. Future Directions and Roadmap 5. Security and Privacy - 10 Top Challenges 6. Conclusions and General Advice Appendix A. Terminology Glossary Appendix B. Solutions Glossary Appendix C. Use Case Examples Appendix D. Actors and Roles 1. Introduction and Definition The purpose of this outline is to illustrate how some initial brainstorming documents might be pulled together into an integrated deliverable. The outline will follow the diagram below. Section 1 introduces a definition of Big Data. An extended terminology Glossary is found in Appendix A. In section 2, a Reference Architecture diagram is presented followed by a taxonomy describing and extending the elements of the Reference Architecture. Section 3 maps requirements from use case building blocks to the Reference Architecture. A description of the requirement, a gap analysis, and suggested best practice is included with each mapping. In Section 4 future improvements in Big Data technology are mapped to the Reference Architecture. An initial Technology Roadmap is created on the requirements and gap analysis in Section 3 and the expected future improvements from Section 4. Section 5 is a placeholder for an extended discussion of Security and Privacy. Section 6 gives an example of some general advice. The Appendices provide Big Data terminology and solutions glossaries, Use Case Examples, and some possible Actors and Roles. Big Data Definition - “Big Data refers to the new technologies and applications introduced to handle increasing Volumes of data while enhancing data utilization capabilities such as Variety, Velocity, Variability, Veracity, and Value.” The key attribute is the large Volume of data available that forces horizontal scalability of storage and processing and has implications for all the other V-attributes. -
Oracle Metadata Management V12.2.1.3.0 New Features Overview
An Oracle White Paper October 12 th , 2018 Oracle Metadata Management v12.2.1.3.0 New Features Overview Oracle Metadata Management version 12.2.1.3.0 – October 12 th , 2018 New Features Overview Disclaimer This document is for informational purposes. It is not a commitment to deliver any material, code, or functionality, and should not be relied upon in making purchasing decisions. The development, release, and timing of any features or functionality described in this document remains at the sole discretion of Oracle. This document in any form, software or printed matter, contains proprietary information that is the exclusive property of Oracle. This document and information contained herein may not be disclosed, copied, reproduced, or distributed to anyone outside Oracle without prior written consent of Oracle. This document is not part of your license agreement nor can it be incorporated into any contractual agreement with Oracle or its subsidiaries or affiliates. 1 Oracle Metadata Management version 12.2.1.3.0 – October 12 th , 2018 New Features Overview Table of Contents Executive Overview ............................................................................ 3 Oracle Metadata Management 12.2.1.3.0 .......................................... 4 METADATA MANAGER VS METADATA EXPLORER UI .............. 4 METADATA HOME PAGES ........................................................... 5 METADATA QUICK ACCESS ........................................................ 6 METADATA REPORTING ............................................................. -
Apache Log4j 2 V
...................................................................................................................................... Apache Log4j 2 v. 2.4.1 User's Guide ...................................................................................................................................... The Apache Software Foundation 2015-10-08 T a b l e o f C o n t e n t s i Table of Contents ....................................................................................................................................... 1. Table of Contents . i 2. Introduction . 1 3. Architecture . 3 4. Log4j 1.x Migration . 10 5. API . 16 6. Configuration . 19 7. Web Applications and JSPs . 50 8. Plugins . 58 9. Lookups . 62 10. Appenders . 70 11. Layouts . 128 12. Filters . 154 13. Async Loggers . 167 14. JMX . 181 15. Logging Separation . 188 16. Extending Log4j . 190 17. Programmatic Log4j Configuration . 198 18. Custom Log Levels . 204 © 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D . T a b l e o f C o n t e n t s ii © 2 0 1 5 , T h e A p a c h e S o f t w a r e F o u n d a t i o n • A L L R I G H T S R E S E R V E D . 1 I n t r o d u c t i o n 1 1 Introduction ....................................................................................................................................... 1.1 Welcome to Log4j 2! 1.1.1 Introduction Almost every large application includes its own logging or tracing API. In conformance with this rule, the E.U. -
Apache Sentry
Apache Sentry Prasad Mujumdar [email protected] [email protected] Agenda ● Various aspects of data security ● Apache Sentry for authorization ● Key concepts of Apache Sentry ● Sentry features ● Sentry architecture ● Integration with Hadoop ecosystem ● Sentry administration ● Future plans ● Demo ● Questions Who am I • Software engineer at Cloudera • Committer and PPMC member of Apache Sentry • also for Apache Hive and Apache Flume • Part of the the original team that started Sentry work Aspects of security Perimeter Access Visibility Data Authentication Authorization Audit, Lineage Encryption, what user can do data origin, usage Kerberos, LDAP/AD Masking with data Data access Access ● Provide user access to data Authorization ● Manage access policies what user can do ● Provide role based access with data Agenda ● Various aspects of data security ● Apache Sentry for authorization ● Key concepts of Apache Sentry ● Sentry features ● Sentry architecture ● Integration with Hadoop ecosystem ● Sentry administration ● Future plans ● Demo ● Questions Apache Sentry (Incubating) Unified Authorization module for Hadoop Unlocks Key RBAC Requirements Secure, fine-grained, role-based authorization Multi-tenant administration Enforce a common set of policies across multiple data access path in Hadoop. Key Capabilities of Sentry Fine-Grained Authorization Permissions on object hierarchie. Eg, Database, Table, Columns Role-Based Authorization Support for role templetes to manage authorization for a large set of users and data objects Multi Tanent Administration -
Talend Open Studio for Big Data Release Notes
Talend Open Studio for Big Data Release Notes 6.0.0 Talend Open Studio for Big Data Adapted for v6.0.0. Supersedes previous releases. Publication date July 2, 2015 Copyleft This documentation is provided under the terms of the Creative Commons Public License (CCPL). For more information about what you can and cannot do with this documentation in accordance with the CCPL, please read: http://creativecommons.org/licenses/by-nc-sa/2.0/ Notices Talend is a trademark of Talend, Inc. All brands, product names, company names, trademarks and service marks are the properties of their respective owners. License Agreement The software described in this documentation is licensed under the Apache License, Version 2.0 (the "License"); you may not use this software except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0.html. Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. This product includes software developed at AOP Alliance (Java/J2EE AOP standards), ASM, Amazon, AntlR, Apache ActiveMQ, Apache Ant, Apache Avro, Apache Axiom, Apache Axis, Apache Axis 2, Apache Batik, Apache CXF, Apache Cassandra, Apache Chemistry, Apache Common Http Client, Apache Common Http Core, Apache Commons, Apache Commons Bcel, Apache Commons JxPath, Apache -
Multimedia Big Data Processing Using Hpcc Systems
MULTIMEDIA BIG DATA PROCESSING USING HPCC SYSTEMS by Vishnu Chinta A Thesis Submitted to the Faculty of The College of Engineering & Computer Science In Partial Fulfillment of the Requirements for the Degree of Master of Science Florida Atlantic University Boca Raton, FL May 2017 Copyright by Vishnu Chinta 2017 ii ACKNOWLEDGEMENTS I would like to express gratitude to my advisor, Dr. Hari Kalva, for his constant guidance and support in helping me complete this thesis successfully. His enthusiasm, inspiration and his efforts to explain all aspects clearly and simply helped me throughout. My sincere thanks also go to my committee members Dr. Borko Furht and Dr. Xingquan Zhu for their valuable comments, suggestions and inputs to the thesis. I would also like to thank the LexisNexis for making this study possible by providing its funding, tools and all the technical support I’ve received. I would also like to thank all my professors during my time at FAU for all the invaluable lessons I’ve learnt in their classes. This work has been funded by the NSF Award No. 1464537, Industry/University Cooperative Research Center, Phase II under NSF 13-542. I would like to thank the NSF for this. Many thanks to my friends at FAU and my fellow lab mates in the Multimedia lab for the enthusiastic support and interesting times we have had during the past two years. Last but not the least I would like to thank my family for being a constant source of support and encouragement during my Masters. iv ABSTRACT Author: Vishnu Chinta Title: Multimedia Big Data Processing Using Hpcc Systems Institution: Florida Atlantic University Thesis Advisor: Dr. -
Chainsys-Platform-Technical Architecture-Bots
Technical Architecture Objectives ChainSys’ Smart Data Platform enables the business to achieve these critical needs. 1. Empower the organization to be data-driven 2. All your data management problems solved 3. World class innovation at an accessible price Subash Chandar Elango Chief Product Officer ChainSys Corporation Subash's expertise in the data management sphere is unparalleled. As the creative & technical brain behind ChainSys' products, no problem is too big for Subash, and he has been part of hundreds of data projects worldwide. Introduction This document describes the Technical Architecture of the Chainsys Platform Purpose The purpose of this Technical Architecture is to define the technologies, products, and techniques necessary to develop and support the system and to ensure that the system components are compatible and comply with the enterprise-wide standards and direction defined by the Agency. Scope The document's scope is to identify and explain the advantages and risks inherent in this Technical Architecture. This document is not intended to address the installation and configuration details of the actual implementation. Installation and configuration details are provided in technology guides produced during the project. Audience The intended audience for this document is Project Stakeholders, technical architects, and deployment architects The system's overall architecture goals are to provide a highly available, scalable, & flexible data management platform Architecture Goals A key Architectural goal is to leverage industry best practices to design and develop a scalable, enterprise-wide J2EE application and follow the industry-standard development guidelines. All aspects of Security must be developed and built within the application and be based on Best Practices. -
Realization of Big Data Ana- Lytics Tool for Optimization Processes Within the Finnish Engineering Company
OPINNÄYTETYÖ - AMMATTIKORKEAKOULUTUTKINTO TEKNIIKAN JA LIIKENTEEN ALA REALIZATION OF BIG DATA ANA- LYTICS TOOL FOR OPTIMIZATION PROCESSES WITHIN THE FINNISH ENGINEERING COMPANY A u t h o r / s : Karapetyan Karina SAVONIA UNIVERSITY OF APPLIED SCIENCES THESIS Abstract Field of Study Technology, Communication and Transport Degree Programme Degree Programme in Information Technology Author(s) Karapetyan Karina Title of Thesis Realization of Big Data Analytics Tool for optimization processes within the Finnish engineering company Date 23.05.2016 Pages/Appendices 54 Supervisor(s) Mr. Arto Toppinen, Principal Lecturer at Savonia University of Applied Sciences, Mr. Anssi Suhonen, Lecturer at Savonia University of Applied Sciences Client Organisation /Partners Hydroline Oy Abstract Big Data Analytics Tool offers an entire business picture for making both operational and strategic deci- sions from selecting the product price to establishing the priorities for the further vendor’s enhancement. The purpose of the thesis was to explore the industrial system of Hydroline Oy and provide a software solution for the elaboration of the manufacture, due to the internal analyzing within the company. For the development of Big Data Analytics Tool, several software programs and tools were employed. Java-written server controls all components in the project and visualizes the processed data via a user- friendly client web application. The SQL Server maintains data, observed from the ERP system. Moreo- ver, it is responsible for the login and registration procedure to enforce the information security. In the Hadoop environment, two research methods were implemented. The Overall Equipment Effectiveness model investigated the production data to obtain daily, monthly and annual efficiency indices of equip- ment utilization, employees’ workload, resource management, quality degree, among others. -
Mapreduce Service
MapReduce Service Troubleshooting Issue 01 Date 2021-03-03 HUAWEI TECHNOLOGIES CO., LTD. Copyright © Huawei Technologies Co., Ltd. 2021. All rights reserved. No part of this document may be reproduced or transmitted in any form or by any means without prior written consent of Huawei Technologies Co., Ltd. Trademarks and Permissions and other Huawei trademarks are trademarks of Huawei Technologies Co., Ltd. All other trademarks and trade names mentioned in this document are the property of their respective holders. Notice The purchased products, services and features are stipulated by the contract made between Huawei and the customer. All or part of the products, services and features described in this document may not be within the purchase scope or the usage scope. Unless otherwise specified in the contract, all statements, information, and recommendations in this document are provided "AS IS" without warranties, guarantees or representations of any kind, either express or implied. The information in this document is subject to change without notice. Every effort has been made in the preparation of this document to ensure accuracy of the contents, but all statements, information, and recommendations in this document do not constitute a warranty of any kind, express or implied. Issue 01 (2021-03-03) Copyright © Huawei Technologies Co., Ltd. i MapReduce Service Troubleshooting Contents Contents 1 Account Passwords.................................................................................................................. 1 1.1 Resetting -
D3.2 - Transport and Spatial Data Warehouse
Holistic Approach for Providing Spatial & Transport Planning Tools and Evidence to Metropolitan and Regional Authorities to Lead a Sustainable Transition to a New Mobility Era D3.2 - Transport and Spatial Data Warehouse Technical Design @Harmony_H2020 #harmony-h2020 D3.2 - Transport and SpatialData Warehouse Technical Design SUMMARY SHEET PROJECT Project Acronym: HARMONY Project Full Title: Holistic Approach for Providing Spatial & Transport Planning Tools and Evidence to Metropolitan and Regional Authorities to Lead a Sustainable Transition to a New Mobility Era Grant Agreement No. 815269 (H2020 – LC-MG-1-2-2018) Project Coordinator: University College London (UCL) Website www.harmony-h2020.eu Starting date June 2019 Duration 42 months DELIVERABLE Deliverable No. - Title D3.2 - Transport and Spatial Data Warehouse Technical Design Dissemination level: Public Deliverable type: Demonstrator Work Package No. & Title: WP3 - Data collection tools, data fusion and warehousing Deliverable Leader: ICCS Responsible Author(s): Efthimios Bothos, Babis Magoutas, Nikos Papageorgiou, Gregoris Mentzas (ICCS) Responsible Co-Author(s): Panagiotis Georgakis (UoW), Ilias Gerostathopoulos, Shakur Al Islam, Athina Tsirimpa (MOBY X SOFTWARE) Peer Review: Panagiotis Georgakis (UoW), Ilias Gerostathopoulos (MOBY X SOFTWARE) Quality Assurance Committee Maria Kamargianni, Lampros Yfantis (UCL) Review: DOCUMENT HISTORY Version Date Released by Nature of Change 0.1 02/12/2019 ICCS ToC defined 0.3 15/01/2020 ICCS Conceptual approach described 0.5 10/03/2020 ICCS Data descriptions updated 0.7 15/04/2020 ICCS Added sections 3 and 4 0.9 12/05/2020 ICCS Ready for internal review 1.0 01/06/2020 ICCS Final version 1 D3.2 - Transport and SpatialData Warehouse Technical Design TABLE OF CONTENTS EXECUTIVE SUMMARY .................................................................................................................... -
Apache Couchdb Tutorial Apache Couchdb Tutorial
Apache CouchDB Tutorial Apache CouchDB Tutorial Welcome to CouchDB Tutorial. In this CouchDB Tutorial, we will learn how to install CouchDB, create database in CouchDB, create documents in a database, replication between CouchDBs, configure databases, and many other concepts. What is CouchDB? CouchDB is a NoSQL Database that uses JSON for documents. CouchDB uses JavaScript for MapReduce indexes. CouchDB uses HTTP for the REST API. CouchDB Installation To install CouchDB, visit [https://couchdb.apache.org/] and click on the download button as shown below. When you click on the download button, it scrolls to the section, where based on your Operating System, you can download the installer. In this tutorial, we have downloaded for Windows (x64), and it should not make any difference if you download for macOs or Debian/Ubuntu/RHEL/CentOS. Double click the downloaded installer and follow through the steps. Once the installation is complete, you can check if CouchDB is installed successfully by requesting the URL http://127.0.0.1:5984/ in your browser. This is CouchDB saying welcome to you, along with information about CouchDB version, GIT hash, UUID, features and vendor. Fauxton Fauxton is a web based interface built into CouchDB. You can do actions like creating and deleting databases, CRUD operations on documents, user management, running MapReduce on indexex, replication between CouchDB instances. You can access CouchDB through Fauxton available at the URL http://127.0.0.1:5984/_utils/. Here you can access the following tabs in the left menu. All Databases Setup Active Tasks Configuration Replication Documentation Verify Create Database in CouchDB To create a CouchDB Database, click on Databases tab in the left menu and then click on Create Database. -
Deliver Performance and Scalability with Hitachi Vantara's Pentaho
Deliver Performance and Scalability With Hitachi Vantara’s Pentaho Business Analytics Platform By Hitachi Vantara November 2018 Contents Executive Summary ........................................................................................... 2 Meet Enterprise Scalability and High-Performance Requirements With Pentaho Business Analytics Platform ............................................................................... 3 Pentaho Business Analytics Server................................................................................................................. 3 Deployment on 64-Bit Operating Systems ........................................................................................................ 4 Optimize Configuration of the Reporting and Analysis Engines .............................. 5 Pentaho Reporting .............................................................................................................................................. 5 Pentaho Analysis ................................................................................................................................................. 5 Pentaho Data Integration ..................................................................................... 7 1 Executive Summary Business analytics solutions are only valuable when they can be accessed and used by anyone, from anywhere and at any time. When selecting a business analytics platform, it is critical to assess the underlying architecture of the platform. This consideration ensures that it not